/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2014 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2016, Chris Fraire . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libipadm_impl.h" /* error codes and text description */ static struct ipadm_error_info { ipadm_status_t error_code; const char *error_desc; } ipadm_errors[] = { { IPADM_SUCCESS, "Operation succeeded" }, { IPADM_FAILURE, "Operation failed" }, { IPADM_EAUTH, "Insufficient user authorizations" }, { IPADM_EPERM, "Permission denied" }, { IPADM_NO_BUFS, "No buffer space available" }, { IPADM_NO_MEMORY, "Insufficient memory" }, { IPADM_BAD_ADDR, "Invalid address" }, { IPADM_BAD_PROTOCOL, "Incorrect protocol family for operation" }, { IPADM_DAD_FOUND, "Duplicate address detected" }, { IPADM_EXISTS, "Already exists" }, { IPADM_IF_EXISTS, "Interface already exists" }, { IPADM_ADDROBJ_EXISTS, "Address object already exists" }, { IPADM_ADDRCONF_EXISTS, "Addrconf already in progress" }, { IPADM_ENXIO, "Interface does not exist" }, { IPADM_GRP_NOTEMPTY, "IPMP group is not empty" }, { IPADM_INVALID_ARG, "Invalid argument provided" }, { IPADM_INVALID_NAME, "Invalid name" }, { IPADM_DLPI_FAILURE, "Could not open DLPI link" }, { IPADM_DLADM_FAILURE, "Datalink does not exist" }, { IPADM_PROP_UNKNOWN, "Unknown property" }, { IPADM_ERANGE, "Value is outside the allowed range" }, { IPADM_ESRCH, "Value does not exist" }, { IPADM_EOVERFLOW, "Number of values exceeds the allowed limit" }, { IPADM_NOTFOUND, "Object not found" }, { IPADM_IF_INUSE, "Interface already in use" }, { IPADM_ADDR_INUSE, "Address already in use" }, { IPADM_BAD_HOSTNAME, "Hostname maps to multiple IP addresses" }, { IPADM_ADDR_NOTAVAIL, "Can't assign requested address" }, { IPADM_ALL_ADDRS_NOT_ENABLED, "All addresses could not be enabled" }, { IPADM_NDPD_NOT_RUNNING, "IPv6 autoconf daemon in.ndpd not running" }, { IPADM_DHCP_START_ERROR, "Could not start dhcpagent" }, { IPADM_DHCP_IPC_ERROR, "Could not communicate with dhcpagent" }, { IPADM_DHCP_IPC_TIMEOUT, "Communication with dhcpagent timed out" }, { IPADM_TEMPORARY_OBJ, "Persistent operation on temporary object" }, { IPADM_IPC_ERROR, "Could not communicate with ipmgmtd" }, { IPADM_NOTSUP, "Operation not supported" }, { IPADM_OP_DISABLE_OBJ, "Operation not supported on disabled object" }, { IPADM_EBADE, "Invalid data exchange with daemon" }, { IPADM_GZ_PERM, "Operation not permitted on from-gz interface"} }; #define IPADM_NUM_ERRORS (sizeof (ipadm_errors) / sizeof (*ipadm_errors)) ipadm_status_t ipadm_errno2status(int error) { switch (error) { case 0: return (IPADM_SUCCESS); case ENXIO: return (IPADM_ENXIO); case ENOMEM: return (IPADM_NO_MEMORY); case ENOBUFS: return (IPADM_NO_BUFS); case EINVAL: return (IPADM_INVALID_ARG); case EBUSY: return (IPADM_IF_INUSE); case EEXIST: return (IPADM_EXISTS); case EADDRNOTAVAIL: return (IPADM_ADDR_NOTAVAIL); case EADDRINUSE: return (IPADM_ADDR_INUSE); case ENOENT: return (IPADM_NOTFOUND); case ERANGE: return (IPADM_ERANGE); case EPERM: return (IPADM_EPERM); case ENOTSUP: case EOPNOTSUPP: return (IPADM_NOTSUP); case EBADF: return (IPADM_IPC_ERROR); case EBADE: return (IPADM_EBADE); case ESRCH: return (IPADM_ESRCH); case EOVERFLOW: return (IPADM_EOVERFLOW); default: return (IPADM_FAILURE); } } /* * Returns a message string for the given libipadm error status. */ const char * ipadm_status2str(ipadm_status_t status) { int i; for (i = 0; i < IPADM_NUM_ERRORS; i++) { if (status == ipadm_errors[i].error_code) return (dgettext(TEXT_DOMAIN, ipadm_errors[i].error_desc)); } return (dgettext(TEXT_DOMAIN, "")); } /* * Opens a handle to libipadm. * Possible values for flags: * IPH_VRRP: Used by VRRP daemon to set the socket option SO_VRRP. * IPH_LEGACY: This is used whenever an application needs to provide a * logical interface name while creating or deleting * interfaces and static addresses. * IPH_INIT: Used by ipadm_init_prop(), to initialize protocol properties * on reboot. */ ipadm_status_t ipadm_open(ipadm_handle_t *handle, uint32_t flags) { ipadm_handle_t iph; ipadm_status_t status = IPADM_SUCCESS; zoneid_t zoneid; ushort_t zflags; int on = B_TRUE; if (handle == NULL) return (IPADM_INVALID_ARG); *handle = NULL; if (flags & ~(IPH_VRRP|IPH_LEGACY|IPH_INIT|IPH_IPMGMTD)) return (IPADM_INVALID_ARG); if ((iph = calloc(1, sizeof (struct ipadm_handle))) == NULL) return (IPADM_NO_MEMORY); iph->iph_sock = -1; iph->iph_sock6 = -1; iph->iph_door_fd = -1; iph->iph_rtsock = -1; iph->iph_flags = flags; (void) pthread_mutex_init(&iph->iph_lock, NULL); if ((iph->iph_sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 || (iph->iph_sock6 = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) { goto errnofail; } /* * We open a handle to libdladm here, to facilitate some daemons (like * nwamd) which opens handle to libipadm before devfsadmd installs the * right device permissions into the kernel and requires "all" * privileges to open DLD_CONTROL_DEV. * * In a non-global shared-ip zone there will be no DLD_CONTROL_DEV node * and dladm_open() will fail. So, we avoid this by not calling * dladm_open() for such zones. */ zoneid = getzoneid(); iph->iph_zoneid = zoneid; if (zoneid != GLOBAL_ZONEID) { if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &zflags, sizeof (zflags)) < 0) { goto errnofail; } } if ((zoneid == GLOBAL_ZONEID) || (zflags & ZF_NET_EXCL)) { if (dladm_open(&iph->iph_dlh) != DLADM_STATUS_OK) { ipadm_close(iph); return (IPADM_DLADM_FAILURE); } if (zoneid != GLOBAL_ZONEID) { iph->iph_rtsock = socket(PF_ROUTE, SOCK_RAW, 0); /* * Failure to open rtsock is ignored as this is * only used in non-global zones to initialize * routing socket information. */ } } else { assert(zoneid != GLOBAL_ZONEID); iph->iph_dlh = NULL; } if (flags & IPH_VRRP) { if (setsockopt(iph->iph_sock6, SOL_SOCKET, SO_VRRP, &on, sizeof (on)) < 0 || setsockopt(iph->iph_sock, SOL_SOCKET, SO_VRRP, &on, sizeof (on)) < 0) { goto errnofail; } } *handle = iph; return (status); errnofail: status = ipadm_errno2status(errno); ipadm_close(iph); return (status); } /* * Closes and frees the libipadm handle. */ void ipadm_close(ipadm_handle_t iph) { if (iph == NULL) return; if (iph->iph_sock != -1) (void) close(iph->iph_sock); if (iph->iph_sock6 != -1) (void) close(iph->iph_sock6); if (iph->iph_rtsock != -1) (void) close(iph->iph_rtsock); if (iph->iph_door_fd != -1) (void) close(iph->iph_door_fd); dladm_close(iph->iph_dlh); (void) pthread_mutex_destroy(&iph->iph_lock); free(iph); } /* * Checks if the caller has the authorization to configure network * interfaces. */ boolean_t ipadm_check_auth(void) { struct passwd pwd; char buf[NSS_BUFLEN_PASSWD]; /* get the password entry for the given user ID */ if (getpwuid_r(getuid(), &pwd, buf, sizeof (buf)) == NULL) return (B_FALSE); /* check for presence of given authorization */ return (chkauthattr(NETWORK_INTERFACE_CONFIG_AUTH, pwd.pw_name) != 0); } /* * Stores the index value of the interface in `ifname' for the address * family `af' into the buffer pointed to by `index'. */ static ipadm_status_t i_ipadm_get_index(ipadm_handle_t iph, const char *ifname, sa_family_t af, int *index) { struct lifreq lifr; int sock; bzero(&lifr, sizeof (lifr)); (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); if (af == AF_INET) sock = iph->iph_sock; else sock = iph->iph_sock6; if (ioctl(sock, SIOCGLIFINDEX, (caddr_t)&lifr) < 0) return (ipadm_errno2status(errno)); *index = lifr.lifr_index; return (IPADM_SUCCESS); } /* * Maximum amount of time (in milliseconds) to wait for Duplicate Address * Detection to complete in the kernel. */ #define DAD_WAIT_TIME 1000 /* * Any time that flags are changed on an interface where either the new or the * existing flags have IFF_UP set, we'll get a RTM_NEWADDR message to * announce the new address added and its flag status. * We wait here for that message and look for IFF_UP. * If something's amiss with the kernel, though, we don't wait forever. * (Note that IFF_DUPLICATE is a high-order bit, and we cannot see * it in the routing socket messages.) */ static ipadm_status_t i_ipadm_dad_wait(ipadm_handle_t handle, const char *lifname, sa_family_t af, int rtsock) { struct pollfd fds[1]; union { struct if_msghdr ifm; char buf[1024]; } msg; int index; ipadm_status_t retv; uint64_t flags; hrtime_t starttime, now; fds[0].fd = rtsock; fds[0].events = POLLIN; fds[0].revents = 0; retv = i_ipadm_get_index(handle, lifname, af, &index); if (retv != IPADM_SUCCESS) return (retv); starttime = gethrtime(); for (;;) { now = gethrtime(); now = (now - starttime) / 1000000; if (now >= DAD_WAIT_TIME) break; if (poll(fds, 1, DAD_WAIT_TIME - (int)now) <= 0) break; if (read(rtsock, &msg, sizeof (msg)) <= 0) break; if (msg.ifm.ifm_type != RTM_NEWADDR) continue; /* Note that ifm_index is just 16 bits */ if (index == msg.ifm.ifm_index && (msg.ifm.ifm_flags & IFF_UP)) return (IPADM_SUCCESS); } retv = i_ipadm_get_flags(handle, lifname, af, &flags); if (retv != IPADM_SUCCESS) return (retv); if (flags & IFF_DUPLICATE) return (IPADM_DAD_FOUND); return (IPADM_SUCCESS); } /* * Sets the flags `on_flags' and resets the flags `off_flags' for the logical * interface in `lifname'. * * If the new flags value will transition the interface from "down" to "up" * then duplicate address detection is performed by the kernel. This routine * waits to get the outcome of that test. */ ipadm_status_t i_ipadm_set_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af, uint64_t on_flags, uint64_t off_flags) { struct lifreq lifr; uint64_t oflags; ipadm_status_t ret; int rtsock = -1; int sock, err; ret = i_ipadm_get_flags(iph, lifname, af, &oflags); if (ret != IPADM_SUCCESS) return (ret); sock = (af == AF_INET ? iph->iph_sock : iph->iph_sock6); /* * Any time flags are changed on an interface that has IFF_UP set, * we get a routing socket message. We care about the status, * though, only when the new flags are marked "up." */ if (!(oflags & IFF_UP) && (on_flags & IFF_UP)) rtsock = socket(PF_ROUTE, SOCK_RAW, af); oflags |= on_flags; oflags &= ~off_flags; bzero(&lifr, sizeof (lifr)); (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name)); lifr.lifr_flags = oflags; if (ioctl(sock, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) { err = errno; if (rtsock != -1) (void) close(rtsock); return (ipadm_errno2status(err)); } if (rtsock == -1) { return (IPADM_SUCCESS); } else { /* Wait for DAD to complete. */ ret = i_ipadm_dad_wait(iph, lifname, af, rtsock); (void) close(rtsock); return (ret); } } /* * Returns the flags value for the logical interface in `lifname' * in the buffer pointed to by `flags'. */ ipadm_status_t i_ipadm_get_flags(ipadm_handle_t iph, const char *lifname, sa_family_t af, uint64_t *flags) { struct lifreq lifr; int sock; bzero(&lifr, sizeof (lifr)); (void) strlcpy(lifr.lifr_name, lifname, sizeof (lifr.lifr_name)); if (af == AF_INET) sock = iph->iph_sock; else sock = iph->iph_sock6; if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) { return (ipadm_errno2status(errno)); } *flags = lifr.lifr_flags; return (IPADM_SUCCESS); } /* * Determines whether or not an interface name represents a loopback * interface, before the interface has been plumbed. * It is assumed that the interface name in `ifname' is of correct format * as verified by ifparse_ifspec(). * * Returns: B_TRUE if loopback, B_FALSE if not. */ boolean_t i_ipadm_is_loopback(const char *ifname) { int len = strlen(LOOPBACK_IF); return (strncmp(ifname, LOOPBACK_IF, len) == 0 && (ifname[len] == '\0' || ifname[len] == IPADM_LOGICAL_SEP)); } /* * Determines whether or not an interface name represents a vni * interface, before the interface has been plumbed. * It is assumed that the interface name in `ifname' is of correct format * as verified by ifparse_ifspec(). * * Returns: B_TRUE if vni, B_FALSE if not. */ boolean_t i_ipadm_is_vni(const char *ifname) { ifspec_t ifsp; return (ifparse_ifspec(ifname, &ifsp) && strcmp(ifsp.ifsp_devnm, "vni") == 0); } /* * Returns B_TRUE if `ifname' is an IP interface on a 6to4 tunnel. */ boolean_t i_ipadm_is_6to4(ipadm_handle_t iph, char *ifname) { dladm_status_t dlstatus; datalink_class_t class; iptun_params_t params; datalink_id_t linkid; if (iph->iph_dlh == NULL) { assert(iph->iph_zoneid != GLOBAL_ZONEID); return (B_FALSE); } dlstatus = dladm_name2info(iph->iph_dlh, ifname, &linkid, NULL, &class, NULL); if (dlstatus == DLADM_STATUS_OK && class == DATALINK_CLASS_IPTUN) { params.iptun_param_linkid = linkid; dlstatus = dladm_iptun_getparams(iph->iph_dlh, ¶ms, DLADM_OPT_ACTIVE); if (dlstatus == DLADM_STATUS_OK && params.iptun_param_type == IPTUN_TYPE_6TO4) { return (B_TRUE); } } return (B_FALSE); } /* * Returns B_TRUE if `ifname' represents an IPMP underlying interface. */ boolean_t i_ipadm_is_under_ipmp(ipadm_handle_t iph, const char *ifname) { struct lifreq lifr; (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); if (ioctl(iph->iph_sock, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) { if (ioctl(iph->iph_sock6, SIOCGLIFGROUPNAME, (caddr_t)&lifr) < 0) { return (B_FALSE); } } return (lifr.lifr_groupname[0] != '\0'); } /* * Returns B_TRUE if `ifname' represents an IPMP meta-interface. */ boolean_t i_ipadm_is_ipmp(ipadm_handle_t iph, const char *ifname) { uint64_t flags; if (i_ipadm_get_flags(iph, ifname, AF_INET, &flags) != IPADM_SUCCESS && i_ipadm_get_flags(iph, ifname, AF_INET6, &flags) != IPADM_SUCCESS) return (B_FALSE); return ((flags & IFF_IPMP) != 0); } /* * For a given interface name, ipadm_if_enabled() checks if v4 * or v6 or both IP interfaces exist in the active configuration. */ boolean_t ipadm_if_enabled(ipadm_handle_t iph, const char *ifname, sa_family_t af) { struct lifreq lifr; int s4 = iph->iph_sock; int s6 = iph->iph_sock6; bzero(&lifr, sizeof (lifr)); (void) strlcpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); switch (af) { case AF_INET: if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) return (B_TRUE); break; case AF_INET6: if (ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) return (B_TRUE); break; case AF_UNSPEC: if (ioctl(s4, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0 || ioctl(s6, SIOCGLIFFLAGS, (caddr_t)&lifr) == 0) { return (B_TRUE); } } return (B_FALSE); } /* * Apply the interface property by retrieving information from nvl. */ static ipadm_status_t i_ipadm_init_ifprop(ipadm_handle_t iph, nvlist_t *nvl) { nvpair_t *nvp; char *name, *pname = NULL; char *protostr = NULL, *ifname = NULL, *pval = NULL; uint_t proto; int err = 0; for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) { name = nvpair_name(nvp); if (strcmp(name, IPADM_NVP_IFNAME) == 0) { if ((err = nvpair_value_string(nvp, &ifname)) != 0) break; } else if (strcmp(name, IPADM_NVP_PROTONAME) == 0) { if ((err = nvpair_value_string(nvp, &protostr)) != 0) break; } else { assert(!IPADM_PRIV_NVP(name)); pname = name; if ((err = nvpair_value_string(nvp, &pval)) != 0) break; } } if (err != 0) return (ipadm_errno2status(err)); proto = ipadm_str2proto(protostr); return (ipadm_set_ifprop(iph, ifname, pname, pval, proto, IPADM_OPT_ACTIVE)); } /* * Instantiate the address object or set the address object property by * retrieving the configuration from the nvlist `nvl'. */ ipadm_status_t i_ipadm_init_addrobj(ipadm_handle_t iph, nvlist_t *nvl) { nvpair_t *nvp; char *name; char *aobjname = NULL, *pval = NULL, *ifname = NULL; sa_family_t af = AF_UNSPEC; ipadm_addr_type_t atype = IPADM_ADDR_NONE; int err = 0; ipadm_status_t status = IPADM_SUCCESS; for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) { name = nvpair_name(nvp); if (strcmp(name, IPADM_NVP_IFNAME) == 0) { if ((err = nvpair_value_string(nvp, &ifname)) != 0) break; } else if (strcmp(name, IPADM_NVP_AOBJNAME) == 0) { if ((err = nvpair_value_string(nvp, &aobjname)) != 0) break; } else if (i_ipadm_name2atype(name, &af, &atype)) { break; } else { assert(!IPADM_PRIV_NVP(name)); err = nvpair_value_string(nvp, &pval); break; } } if (err != 0) return (ipadm_errno2status(err)); switch (atype) { case IPADM_ADDR_STATIC: status = i_ipadm_enable_static(iph, ifname, nvl, af); break; case IPADM_ADDR_DHCP: status = i_ipadm_enable_dhcp(iph, ifname, nvl); if (status == IPADM_DHCP_IPC_TIMEOUT) status = IPADM_SUCCESS; break; case IPADM_ADDR_IPV6_ADDRCONF: status = i_ipadm_enable_addrconf(iph, ifname, nvl); break; case IPADM_ADDR_NONE: status = ipadm_set_addrprop(iph, name, pval, aobjname, IPADM_OPT_ACTIVE); break; } return (status); } /* * Instantiate the interface object by retrieving the configuration from * `ifnvl'. The nvlist `ifnvl' contains all the persistent configuration * (interface properties and address objects on that interface) for the * given `ifname'. */ ipadm_status_t i_ipadm_init_ifobj(ipadm_handle_t iph, const char *ifname, nvlist_t *ifnvl) { nvlist_t *nvl = NULL; nvpair_t *nvp; char *afstr; ipadm_status_t status; ipadm_status_t ret_status = IPADM_SUCCESS; char newifname[LIFNAMSIZ]; char *aobjstr; sa_family_t af = AF_UNSPEC; boolean_t is_ngz = (iph->iph_zoneid != GLOBAL_ZONEID); (void) strlcpy(newifname, ifname, sizeof (newifname)); /* * First plumb the given interface and then apply all the persistent * interface properties and then instantiate any persistent addresses * objects on that interface. */ for (nvp = nvlist_next_nvpair(ifnvl, NULL); nvp != NULL; nvp = nvlist_next_nvpair(ifnvl, nvp)) { if (nvpair_value_nvlist(nvp, &nvl) != 0) continue; if (nvlist_lookup_string(nvl, IPADM_NVP_FAMILY, &afstr) == 0) { status = i_ipadm_plumb_if(iph, newifname, atoi(afstr), IPADM_OPT_ACTIVE); /* * If the interface is already plumbed, we should * ignore this error because there might be address * address objects on that interface that needs to * be enabled again. */ if (status == IPADM_IF_EXISTS) status = IPADM_SUCCESS; if (is_ngz) af = atoi(afstr); } else if (nvlist_lookup_string(nvl, IPADM_NVP_AOBJNAME, &aobjstr) == 0) { /* * For addresses, we need to relocate addrprops from the * nvlist `ifnvl'. */ if (nvlist_exists(nvl, IPADM_NVP_IPV4ADDR) || nvlist_exists(nvl, IPADM_NVP_IPV6ADDR) || nvlist_exists(nvl, IPADM_NVP_DHCP)) { status = i_ipadm_merge_addrprops_from_nvl(ifnvl, nvl, aobjstr); if (status != IPADM_SUCCESS) continue; } status = i_ipadm_init_addrobj(iph, nvl); /* * If this address is in use on some other interface, * we want to record an error to be returned as * a soft error and continue processing the rest of * the addresses. */ if (status == IPADM_ADDR_NOTAVAIL) { ret_status = IPADM_ALL_ADDRS_NOT_ENABLED; status = IPADM_SUCCESS; } } else { assert(nvlist_exists(nvl, IPADM_NVP_PROTONAME)); status = i_ipadm_init_ifprop(iph, nvl); } if (status != IPADM_SUCCESS) return (status); } if (is_ngz && af != AF_UNSPEC) ret_status = ipadm_init_net_from_gz(iph, newifname, NULL); return (ret_status); } /* * Retrieves the persistent configuration for the given interface(s) in `ifs' * by contacting the daemon and dumps the information in `allifs'. */ ipadm_status_t i_ipadm_init_ifs(ipadm_handle_t iph, const char *ifs, nvlist_t **allifs) { nvlist_t *nvl = NULL; size_t nvlsize, bufsize; ipmgmt_initif_arg_t *iargp; char *buf = NULL, *nvlbuf = NULL; ipmgmt_get_rval_t *rvalp = NULL; int err; ipadm_status_t status = IPADM_SUCCESS; if ((err = ipadm_str2nvlist(ifs, &nvl, IPADM_NORVAL)) != 0) return (ipadm_errno2status(err)); err = nvlist_pack(nvl, &nvlbuf, &nvlsize, NV_ENCODE_NATIVE, 0); if (err != 0) { status = ipadm_errno2status(err); goto done; } bufsize = sizeof (*iargp) + nvlsize; if ((buf = malloc(bufsize)) == NULL) { status = ipadm_errno2status(errno); goto done; } /* populate the door_call argument structure */ iargp = (void *)buf; iargp->ia_cmd = IPMGMT_CMD_INITIF; iargp->ia_flags = 0; iargp->ia_family = AF_UNSPEC; iargp->ia_nvlsize = nvlsize; (void) bcopy(nvlbuf, buf + sizeof (*iargp), nvlsize); if ((rvalp = malloc(sizeof (ipmgmt_get_rval_t))) == NULL) { status = ipadm_errno2status(errno); goto done; } if ((err = ipadm_door_call(iph, iargp, bufsize, (void **)&rvalp, sizeof (*rvalp), B_TRUE)) != 0) { status = ipadm_errno2status(err); goto done; } /* * Daemon reply pointed to by rvalp contains ipmgmt_get_rval_t structure * followed by a list of packed nvlists, each of which represents * configuration information for the given interface(s). */ err = nvlist_unpack((char *)rvalp + sizeof (ipmgmt_get_rval_t), rvalp->ir_nvlsize, allifs, 0); if (err != 0) status = ipadm_errno2status(err); done: nvlist_free(nvl); free(buf); free(nvlbuf); free(rvalp); return (status); } /* * Returns B_FALSE if * (1) `ifname' is NULL or has no string or has a string of invalid length * (2) ifname is a logical interface and IPH_LEGACY is not set, or */ boolean_t i_ipadm_validate_ifname(ipadm_handle_t iph, const char *ifname) { ifspec_t ifsp; if (ifname == NULL || ifname[0] == '\0' || !ifparse_ifspec(ifname, &ifsp)) return (B_FALSE); if (ifsp.ifsp_lunvalid) return (ifsp.ifsp_lun > 0 && (iph->iph_flags & IPH_LEGACY)); return (B_TRUE); } /* * Wrapper for sending a non-transparent I_STR ioctl(). * Returns: Result from ioctl(). */ int i_ipadm_strioctl(int s, int cmd, char *buf, int buflen) { struct strioctl ioc; (void) memset(&ioc, 0, sizeof (ioc)); ioc.ic_cmd = cmd; ioc.ic_timout = 0; ioc.ic_len = buflen; ioc.ic_dp = buf; return (ioctl(s, I_STR, (char *)&ioc)); } /* * Make a door call to the server and checks if the door call succeeded or not. * `is_varsize' specifies that the data returned by ipmgmtd daemon is of * variable size and door will allocate buffer using mmap(). In such cases * we re-allocate the required memory,n assign it to `rbufp', copy the data to * `rbufp' and then call munmap() (see below). * * It also checks to see if the server side procedure ran successfully by * checking for ir_err. Therefore, for some callers who just care about the * return status can set `rbufp' to NULL and set `rsize' to 0. */ int ipadm_door_call(ipadm_handle_t iph, void *arg, size_t asize, void **rbufp, size_t rsize, boolean_t is_varsize) { door_arg_t darg; int err; ipmgmt_retval_t rval, *rvalp; boolean_t reopen = B_FALSE; if (rbufp == NULL) { rvalp = &rval; rbufp = (void **)&rvalp; rsize = sizeof (rval); } darg.data_ptr = arg; darg.data_size = asize; darg.desc_ptr = NULL; darg.desc_num = 0; darg.rbuf = *rbufp; darg.rsize = rsize; reopen: (void) pthread_mutex_lock(&iph->iph_lock); /* The door descriptor is opened if it isn't already */ if (iph->iph_door_fd == -1) { if ((iph->iph_door_fd = open(IPMGMT_DOOR, O_RDONLY)) < 0) { err = errno; (void) pthread_mutex_unlock(&iph->iph_lock); return (err); } } (void) pthread_mutex_unlock(&iph->iph_lock); if (door_call(iph->iph_door_fd, &darg) == -1) { /* * Stale door descriptor is possible if ipmgmtd was restarted * since last iph_door_fd was opened, so try re-opening door * descriptor. */ if (!reopen && errno == EBADF) { (void) close(iph->iph_door_fd); iph->iph_door_fd = -1; reopen = B_TRUE; goto reopen; } return (errno); } err = ((ipmgmt_retval_t *)(void *)(darg.rbuf))->ir_err; if (darg.rbuf != *rbufp) { /* * if the caller is expecting the result to fit in specified * buffer then return failure. */ if (!is_varsize) err = EBADE; /* * The size of the buffer `*rbufp' was not big enough * and the door itself allocated buffer, for us. We will * hit this, on several occasion as for some cases * we cannot predict the size of the return structure. * Reallocate the buffer `*rbufp' and memcpy() the contents * to new buffer. */ if (err == 0) { void *newp; /* allocated memory will be freed by the caller */ if ((newp = realloc(*rbufp, darg.rsize)) == NULL) { err = ENOMEM; } else { *rbufp = newp; (void) memcpy(*rbufp, darg.rbuf, darg.rsize); } } /* munmap() the door buffer */ (void) munmap(darg.rbuf, darg.rsize); } else { if (darg.rsize != rsize) err = EBADE; } return (err); } /* * ipadm_is_nil_hostname() : Determine if the `hostname' is nil: i.e., * NULL, empty, or a single space (e.g., as returned by * domainname(1M)/sysinfo). * * input: const char *: the hostname to inspect; * output: boolean_t: B_TRUE if `hostname' is not NULL satisfies the * criteria above; otherwise, B_FALSE; */ boolean_t ipadm_is_nil_hostname(const char *hostname) { return (hostname == NULL || *hostname == '\0' || (*hostname == ' ' && hostname[1] == '\0')); } /* * ipadm_is_valid_hostname(): check whether a string is a valid hostname * * input: const char *: the string to verify as a hostname * output: boolean_t: B_TRUE if the string is a valid hostname * * Note that we accept host names beginning with a digit, which is not * strictly legal according to the RFCs but is in common practice, so we * endeavour to not break what customers are using. * * RFC 1035 limits a wire-format domain name to 255 octets. For a printable * `hostname' as we have, the limit is therefore 253 characters (excluding * the terminating '\0'--or 254 characters if the last character of * `hostname' is a '.'. * * Excerpt from section 2.3.1., Preferred name syntax: * * ::= | " " * ::=