/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2003 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "quad.h" static const double C[] = { 0.0, 0.5, 1.0, 68719476736.0, 536870912.0, 48.0, 16.0, 1.52587890625000000000e-05, 2.86102294921875000000e-06, 5.96046447753906250000e-08, 3.72529029846191406250e-09, 1.70530256582424044609e-13, 7.10542735760100185871e-15, 8.67361737988403547206e-19, 2.16840434497100886801e-19, 1.27054942088145050860e-21, 1.21169035041947413311e-27, 9.62964972193617926528e-35, 4.70197740328915003187e-38 }; #define zero C[0] #define half C[1] #define one C[2] #define two36 C[3] #define two29 C[4] #define three2p4 C[5] #define two4 C[6] #define twom16 C[7] #define three2m20 C[8] #define twom24 C[9] #define twom28 C[10] #define three2m44 C[11] #define twom47 C[12] #define twom60 C[13] #define twom62 C[14] #define three2m71 C[15] #define three2m91 C[16] #define twom113 C[17] #define twom124 C[18] static const unsigned fsr_re = 0x00000000u, fsr_rn = 0xc0000000u; #ifdef __sparcv9 /* * _Qp_sqrt(pz, x) sets *pz = sqrt(*x). */ void _Qp_sqrt(union longdouble *pz, const union longdouble *x) #else /* * _Q_sqrt(x) returns sqrt(*x). */ union longdouble _Q_sqrt(const union longdouble *x) #endif /* __sparcv9 */ { union longdouble z; union xdouble u; double c, d, rr, r[2], tt[3], xx[4], zz[5]; unsigned int xm, fsr, lx, wx[3]; unsigned int msw, frac2, frac3, frac4, rm; int ex, ez; if (QUAD_ISZERO(*x)) { Z = *x; QUAD_RETURN(Z); } xm = x->l.msw; __quad_getfsrp(&fsr); /* handle nan and inf cases */ if ((xm & 0x7fffffff) >= 0x7fff0000) { if ((x->l.msw & 0xffff) | x->l.frac2 | x->l.frac3 | x->l.frac4) { if (!(x->l.msw & 0x8000)) { /* snan, signal invalid */ if (fsr & FSR_NVM) { __quad_fsqrtq(x, &Z); } else { Z = *x; Z.l.msw |= 0x8000; fsr = (fsr & ~FSR_CEXC) | FSR_NVA | FSR_NVC; __quad_setfsrp(&fsr); } QUAD_RETURN(Z); } Z = *x; QUAD_RETURN(Z); } if (x->l.msw & 0x80000000) { /* sqrt(-inf), signal invalid */ if (fsr & FSR_NVM) { __quad_fsqrtq(x, &Z); } else { Z.l.msw = 0x7fffffff; Z.l.frac2 = Z.l.frac3 = Z.l.frac4 = 0xffffffff; fsr = (fsr & ~FSR_CEXC) | FSR_NVA | FSR_NVC; __quad_setfsrp(&fsr); } QUAD_RETURN(Z); } /* sqrt(inf), return inf */ Z = *x; QUAD_RETURN(Z); } /* handle negative numbers */ if (xm & 0x80000000) { if (fsr & FSR_NVM) { __quad_fsqrtq(x, &Z); } else { Z.l.msw = 0x7fffffff; Z.l.frac2 = Z.l.frac3 = Z.l.frac4 = 0xffffffff; fsr = (fsr & ~FSR_CEXC) | FSR_NVA | FSR_NVC; __quad_setfsrp(&fsr); } QUAD_RETURN(Z); } /* now x is finite, positive */ __quad_setfsrp((unsigned *)&fsr_re); /* get the normalized significand and exponent */ ex = (int)(xm >> 16); lx = xm & 0xffff; if (ex) { lx |= 0x10000; wx[0] = x->l.frac2; wx[1] = x->l.frac3; wx[2] = x->l.frac4; } else { if (lx | (x->l.frac2 & 0xfffe0000)) { wx[0] = x->l.frac2; wx[1] = x->l.frac3; wx[2] = x->l.frac4; ex = 1; } else if (x->l.frac2 | (x->l.frac3 & 0xfffe0000)) { lx = x->l.frac2; wx[0] = x->l.frac3; wx[1] = x->l.frac4; wx[2] = 0; ex = -31; } else if (x->l.frac3 | (x->l.frac4 & 0xfffe0000)) { lx = x->l.frac3; wx[0] = x->l.frac4; wx[1] = wx[2] = 0; ex = -63; } else { lx = x->l.frac4; wx[0] = wx[1] = wx[2] = 0; ex = -95; } while ((lx & 0x10000) == 0) { lx = (lx << 1) | (wx[0] >> 31); wx[0] = (wx[0] << 1) | (wx[1] >> 31); wx[1] = (wx[1] << 1) | (wx[2] >> 31); wx[2] <<= 1; ex--; } } ez = ex - 0x3fff; if (ez & 1) { /* make exponent even */ lx = (lx << 1) | (wx[0] >> 31); wx[0] = (wx[0] << 1) | (wx[1] >> 31); wx[1] = (wx[1] << 1) | (wx[2] >> 31); wx[2] <<= 1; ez--; } /* extract the significands into doubles */ c = twom16; xx[0] = (double)((int)lx) * c; c *= twom24; xx[0] += (double)((int)(wx[0] >> 8)) * c; c *= twom24; xx[1] = (double)((int)(((wx[0] << 16) | (wx[1] >> 16)) & 0xffffff)) * c; c *= twom24; xx[2] = (double)((int)(((wx[1] << 8) | (wx[2] >> 24)) & 0xffffff)) * c; c *= twom24; xx[3] = (double)((int)(wx[2] & 0xffffff)) * c; /* approximate the divisor for the Newton iteration */ c = xx[0] + xx[1]; c = __quad_dp_sqrt(&c); rr = half / c; /* compute the first five "digits" of the square root */ zz[0] = (c + two29) - two29; tt[0] = zz[0] + zz[0]; r[0] = (xx[0] - zz[0] * zz[0]) + xx[1]; zz[1] = (rr * (r[0] + xx[2]) + three2p4) - three2p4; tt[1] = zz[1] + zz[1]; r[0] -= tt[0] * zz[1]; r[1] = xx[2] - zz[1] * zz[1]; c = (r[1] + three2m20) - three2m20; r[0] += c; r[1] = (r[1] - c) + xx[3]; zz[2] = (rr * (r[0] + r[1]) + three2m20) - three2m20; tt[2] = zz[2] + zz[2]; r[0] -= tt[0] * zz[2]; r[1] -= tt[1] * zz[2]; c = (r[1] + three2m44) - three2m44; r[0] += c; r[1] = (r[1] - c) - zz[2] * zz[2]; zz[3] = (rr * (r[0] + r[1]) + three2m44) - three2m44; r[0] = ((r[0] - tt[0] * zz[3]) + r[1]) - tt[1] * zz[3]; r[1] = -tt[2] * zz[3]; c = (r[1] + three2m91) - three2m91; r[0] += c; r[1] = (r[1] - c) - zz[3] * zz[3]; zz[4] = (rr * (r[0] + r[1]) + three2m71) - three2m71; /* reduce to three doubles, making sure zz[1] is positive */ zz[0] += zz[1] - twom47; zz[1] = twom47 + zz[2] + zz[3]; zz[2] = zz[4]; /* if the third term might lie on a rounding boundary, perturb it */ if (zz[2] == (twom62 + zz[2]) - twom62) { /* here we just need to get the sign of the remainder */ c = (((((r[0] - tt[0] * zz[4]) - tt[1] * zz[4]) + r[1]) - tt[2] * zz[4]) - (zz[3] + zz[3]) * zz[4]) - zz[4] * zz[4]; if (c < zero) zz[2] -= twom124; else if (c > zero) zz[2] += twom124; } /* * propagate carries/borrows, using round-to-negative-infinity mode * to make all terms nonnegative (note that we can't encounter a * borrow so large that the roundoff is unrepresentable because * we took care to make zz[1] positive above) */ __quad_setfsrp(&fsr_rn); c = zz[1] + zz[2]; zz[2] += (zz[1] - c); zz[1] = c; c = zz[0] + zz[1]; zz[1] += (zz[0] - c); zz[0] = c; /* adjust exponent and strip off integer bit */ ez = (ez >> 1) + 0x3fff; zz[0] -= one; /* the first 48 bits of fraction come from zz[0] */ u.d = d = two36 + zz[0]; msw = u.l.lo; zz[0] -= (d - two36); u.d = d = two4 + zz[0]; frac2 = u.l.lo; zz[0] -= (d - two4); /* the next 32 come from zz[0] and zz[1] */ u.d = d = twom28 + (zz[0] + zz[1]); frac3 = u.l.lo; zz[0] -= (d - twom28); /* condense the remaining fraction; errors here won't matter */ c = zz[0] + zz[1]; zz[1] = ((zz[0] - c) + zz[1]) + zz[2]; zz[0] = c; /* get the last word of fraction */ u.d = d = twom60 + (zz[0] + zz[1]); frac4 = u.l.lo; zz[0] -= (d - twom60); /* keep track of what's left for rounding; note that the error */ /* in computing c will be non-negative due to rounding mode */ c = zz[0] + zz[1]; /* get the rounding mode */ rm = fsr >> 30; /* round and raise exceptions */ fsr &= ~FSR_CEXC; if (c != zero) { fsr |= FSR_NXC; /* decide whether to round the fraction up */ if (rm == FSR_RP || (rm == FSR_RN && (c > twom113 || (c == twom113 && ((frac4 & 1) || (c - zz[0] != zz[1])))))) { /* round up and renormalize if necessary */ if (++frac4 == 0) if (++frac3 == 0) if (++frac2 == 0) if (++msw == 0x10000) { msw = 0; ez++; } } } /* stow the result */ z.l.msw = (ez << 16) | msw; z.l.frac2 = frac2; z.l.frac3 = frac3; z.l.frac4 = frac4; if ((fsr & FSR_CEXC) & (fsr >> 23)) { __quad_setfsrp(&fsr); __quad_fsqrtq(x, &Z); } else { Z = z; fsr |= (fsr & 0x1f) << 5; __quad_setfsrp(&fsr); } QUAD_RETURN(Z); }