/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Conversion from decimal to binary floating point */ #pragma weak decimal_to_single = _decimal_to_single #pragma weak decimal_to_double = _decimal_to_double #pragma weak decimal_to_extended = _decimal_to_extended #pragma weak decimal_to_quadruple = _decimal_to_quadruple #include "synonyms.h" #include #include "base_conversion.h" /* * Convert the integer part of a nonzero base-10^4 _big_float *pd * to base 2^16 in **ppb. The converted value is accurate to nsig * significant bits. On exit, *sticky is nonzero if *pd had a * nonzero fractional part. If pd->exponent > 0 and **ppb is not * large enough to hold the final converted value (i.e., the con- * verted significand scaled by 10^pd->exponent), then on exit, * *ppb will point to a newly allocated _big_float, which must be * freed by the caller. (The number of significant bits we need * should fit in pb, but __big_float_times_power may allocate new * storage anyway because the exact product could require more than * 16000 bits.) * * This routine does not check that **ppb is large enough to hold * the result of converting the significand of *pd. */ static void __big_decimal_to_big_binary(_big_float *pd, int nsig, _big_float **ppb, int *sticky) { _big_float *pb; int i, j, len, s; unsigned int carry; pb = *ppb; /* convert pd a digit at a time, most significant first */ if (pd->bexponent + ((pd->blength - 1) << 2) >= 0) { pb->bsignificand[0] = pd->bsignificand[pd->blength - 1]; len = 1; for (i = pd->blength - 2; i >= 0 && pd->bexponent + (i << 2) >= 0; i--) { /* multiply pb by 10^4 and add next digit */ carry = pd->bsignificand[i]; for (j = 0; j < len; j++) { carry += (unsigned int)pb->bsignificand[j] * 10000; pb->bsignificand[j] = carry & 0xffff; carry >>= 16; } if (carry) pb->bsignificand[j++] = carry; len = j; } } else { i = pd->blength - 1; len = 0; } /* convert any partial digit */ if (i >= 0 && pd->bexponent + (i << 2) > -4) { s = pd->bexponent + (i << 2) + 4; /* multiply pb by 10^s and add partial digit */ carry = pd->bsignificand[i]; if (s == 1) { s = carry % 1000; carry = carry / 1000; for (j = 0; j < len; j++) { carry += (unsigned int)pb->bsignificand[j] * 10; pb->bsignificand[j] = carry & 0xffff; carry >>= 16; } } else if (s == 2) { s = carry % 100; carry = carry / 100; for (j = 0; j < len; j++) { carry += (unsigned int)pb->bsignificand[j] * 100; pb->bsignificand[j] = carry & 0xffff; carry >>= 16; } } else { s = carry % 10; carry = carry / 10; for (j = 0; j < len; j++) { carry += (unsigned int)pb->bsignificand[j] * 1000; pb->bsignificand[j] = carry & 0xffff; carry >>= 16; } } if (carry) pb->bsignificand[j++] = carry; len = j; i--; } else { s = 0; } pb->blength = len; pb->bexponent = 0; /* continue accumulating sticky flag */ while (i >= 0) s |= pd->bsignificand[i--]; *sticky = s; if (pd->bexponent > 0) { /* scale pb by 10^pd->exponent */ __big_float_times_power(pb, 10, pd->bexponent, nsig, ppb); } } /* * Convert the decimal_record *pd to an unpacked datum *px accurately * enough that *px can be rounded correctly to sigbits significant bits. * (We may assume sigbits <= 113.) */ static void __decimal_to_unpacked(unpacked *px, decimal_record *pd, int sigbits) { _big_float d, b, *pbd, *pbb; char *ds; int ids, i, ix, exp, ndigs; int sticky, powtwo, sigdigits; px->sign = pd->sign; px->fpclass = pd->fpclass; ds = pd->ds; ndigs = pd->ndigits; exp = pd->exponent; /* remove trailing zeroes */ while (ndigs > 0 && ds[ndigs - 1] == '0') { exp++; ndigs--; } if (ndigs < 1) { /* nothing left */ px->fpclass = fp_zero; return; } /* convert remaining digits to a base-10^4 _big_float */ d.bsize = _BIG_FLOAT_SIZE; d.bexponent = exp; d.blength = (ndigs + 3) >> 2; i = d.blength - 1; ids = ndigs - (d.blength << 2); switch (ids) { case -1: d.bsignificand[i] = 100 * ds[ids + 1] + 10 * ds[ids + 2] + ds[ids + 3] - 111 * '0'; i--; ids += 4; break; case -2: d.bsignificand[i] = 10 * ds[ids + 2] + ds[ids + 3] - 11 * '0'; i--; ids += 4; break; case -3: d.bsignificand[i] = ds[ids + 3] - '0'; i--; ids += 4; break; } while (i >= 0) { d.bsignificand[i] = 1000 * ds[ids] + 100 * ds[ids + 1] + 10 * ds[ids + 2] + ds[ids + 3] - 1111 * '0'; i--; ids += 4; } pbd = &d; powtwo = 0; /* pre-scale to get the bits we want into the integer part */ if (exp < 0) { /* i is a lower bound on log10(x) */ i = exp + ndigs - 1; if (i <= 0 || ((i * 217705) >> 16) < sigbits + 2) { /* * Scale by 2^(sigbits + 2 + u) where * u is an upper bound on -log2(x). */ powtwo = sigbits + 2; if (i < 0) powtwo += ((-i * 217706) + 65535) >> 16; else if (i > 0) powtwo -= (i * 217705) >> 16; /* * Take sigdigits large enough to get * all integral digits correct. */ sigdigits = i + 1 + (((powtwo * 19729) + 65535) >> 16); __big_float_times_power(&d, 2, powtwo, sigdigits, &pbd); } } /* convert to base 2^16 */ b.bsize = _BIG_FLOAT_SIZE; pbb = &b; __big_decimal_to_big_binary(pbd, sigbits + 2, &pbb, &sticky); /* adjust pbb->bexponent based on the scale factor above */ pbb->bexponent -= powtwo; /* convert to unpacked */ ix = 0; for (i = pbb->blength - 1; i > 0 && ix < 5; i -= 2) { px->significand[ix++] = (pbb->bsignificand[i] << 16) | pbb->bsignificand[i - 1]; } if (ix < 5) { /* pad with zeroes */ if (i == 0) px->significand[ix++] = pbb->bsignificand[i] << 16; while (ix < 5) px->significand[ix++] = 0; } else { /* truncate and set a sticky bit if necessary */ while (i >= 0 && pbb->bsignificand[i] == 0) i--; if (i >= 0) px->significand[4] |= 1; } if (sticky | pd->more) px->significand[4] |= 1; px->exponent = pbb->bexponent + (pbb->blength << 4) - 1; /* normalize so the most significant bit is set */ while (px->significand[0] < 0x80000000u) { px->significand[0] = (px->significand[0] << 1) | (px->significand[1] >> 31); px->significand[1] = (px->significand[1] << 1) | (px->significand[2] >> 31); px->significand[2] = (px->significand[2] << 1) | (px->significand[3] >> 31); px->significand[3] = (px->significand[3] << 1) | (px->significand[4] >> 31); px->significand[4] <<= 1; px->exponent--; } if (pbd != &d) (void) free((void *)pbd); if (pbb != &b) (void) free((void *)pbb); } /* * Convert a string s consisting of n <= 18 ASCII decimal digits * to an integer value in double precision format, and set *pe * to the number of rounding errors incurred (0 or 1). */ static double __digits_to_double(char *s, int n, int *pe) { int i, acc; double t, th, tl; if (n <= 9) { acc = s[0] - '0'; for (i = 1; i < n; i++) { /* acc <- 10 * acc + next digit */ acc = (acc << 1) + (acc << 3) + s[i] - '0'; } t = (double)acc; *pe = 0; } else { acc = s[0] - '0'; for (i = 1; i < (n - 9); i++) { /* acc <- 10 * acc + next digit */ acc = (acc << 1) + (acc << 3) + s[i] - '0'; } th = 1.0e9 * (double)acc; /* this will be exact */ acc = s[n - 9] - '0'; for (i = n - 8; i < n; i++) { /* acc <- 10 * acc + next digit */ acc = (acc << 1) + (acc << 3) + s[i] - '0'; } tl = (double)acc; /* add and indicate whether or not the sum is exact */ t = th + tl; *pe = ((t - th) == tl)? 0 : 1; } return (t); } static union { int i[2]; double d; } C[] = { #ifdef _LITTLE_ENDIAN { 0x00000000, 0x3cc40000 }, #else { 0x3cc40000, 0x00000000 }, /* 5 * 2^-53 */ #endif }; #define five2m53 C[0].d static int __fast_decimal_to_single(single *px, decimal_mode *pm, decimal_record *pd, fp_exception_field_type *ps) { double dds, delta, ddsplus, ddsminus, df1; int n, exp, rounded, e; float f1, f2; __ieee_flags_type fb; if (pm->rd != fp_nearest) return (0); exp = pd->exponent; if (pd->ndigits <= 18) { rounded = 0; n = pd->ndigits; } else { rounded = 1; n = 18; exp += pd->ndigits - 18; } /* * exp must be in the range of the table, and the result * must not underflow or overflow. */ if (exp < -__TBL_TENS_MAX || exp + n < -36 || exp + n > 38) return (0); __get_ieee_flags(&fb); dds = __digits_to_double(pd->ds, n, &e); if (e != 0) rounded = 1; if (exp > 0) { /* small positive exponent */ if (exp > __TBL_TENS_EXACT) rounded = 1; if (rounded) { dds *= __tbl_tens[exp]; } else { dds = __mul_set(dds, __tbl_tens[exp], &e); if (e) rounded = 1; } } else if (exp < 0) { /* small negative exponent */ if (-exp > __TBL_TENS_EXACT) rounded = 1; if (rounded) { dds /= __tbl_tens[-exp]; } else { dds = __div_set(dds, __tbl_tens[-exp], &e); if (e) rounded = 1; } } /* * At this point dds may have four rounding errors due to * (i) truncation of pd->ds to 18 digits, (ii) inexact con- * version of pd->ds to binary, (iii) scaling by a power of * ten that is not exactly representable, and (iv) roundoff * error in the multiplication. Below we will incur one more * rounding error when we add or subtract delta and dds. We * construct delta so that even after this last rounding error, * ddsplus is an upper bound on the exact value and ddsminus * is a lower bound. Then as long as both of these quantities * round to the same single precision number, that number * will be the correctly rounded single precision result. * (If any rounding errors have been committed, then we must * also be certain that the result can't be exact.) */ delta = five2m53 * dds; ddsplus = dds + delta; ddsminus = dds - delta; f1 = (float)(ddsplus); f2 = (float)(ddsminus); df1 = f1; __set_ieee_flags(&fb); if (f1 != f2) return (0); if (rounded) { /* * If ddsminus <= f1 <= ddsplus, the result might be * exact; we have to convert the long way to be sure. */ if (ddsminus <= df1 && df1 <= ddsplus) return (0); *ps = (1 << fp_inexact); } else { *ps = (df1 == dds)? 0 : (1 << fp_inexact); } *px = (pd->sign)? -f1 : f1; return (1); } /* * Attempt conversion to double using floating-point arithmetic. * Return 1 if it works (at most one rounding error), 0 if it doesn't. */ static int __fast_decimal_to_double(double *px, decimal_mode *pm, decimal_record *pd, fp_exception_field_type *ps) { double dds; int e; __ieee_flags_type fb; if (pm->rd != fp_nearest || pd->ndigits > 18 || pd->exponent > __TBL_TENS_EXACT || pd->exponent < -__TBL_TENS_EXACT) return (0); __get_ieee_flags(&fb); dds = __digits_to_double(pd->ds, pd->ndigits, &e); if (e != 0) { __set_ieee_flags(&fb); return (0); } if (pd->exponent > 0) dds = __mul_set(dds, __tbl_tens[pd->exponent], &e); else if (pd->exponent < 0) dds = __div_set(dds, __tbl_tens[-pd->exponent], &e); *px = (pd->sign)? -dds : dds; *ps = (e)? (1 << fp_inexact) : 0; __set_ieee_flags(&fb); return (1); } /* PUBLIC FUNCTIONS */ /* * The following routines convert the decimal record *pd to a floating * point value *px observing the rounding mode specified in pm->rd and * passing back any floating point exceptions that occur in *ps. * * pd->sign and pd->fpclass are always taken into account. pd->exponent * and pd->ds are used when pd->fpclass is fp_normal or fp_subnormal. * In these cases, pd->ds must contain a null-terminated string of one * or more ASCII digits, the first of which is not zero, and pd->ndigits * must equal the length of this string. If m is the integer represented * by the string pd->ds, then *px will be set to a correctly rounded * approximation to * * -1**(pd->sign) * m * 10**(pd->exponent) * * (If pd->more != 0 then additional nonzero digits are assumed to follow * those in pd->ds, so m is effectively replaced by m + epsilon in the * expression above.) * * For example, if pd->exponent == -2 and pd->ds holds "1234", then *px * will be a correctly rounded approximation to 12.34. * * Note that the only mode that matters is the rounding direction pm->rd; * pm->df and pm->ndigits are never used. */ /* maximum decimal exponent we need to consider */ #define SINGLE_MAXE 47 #define DOUBLE_MAXE 326 #define EXTENDED_MAXE 4968 #define QUAD_MAXE 4968 void decimal_to_single(single *px, decimal_mode *pm, decimal_record *pd, fp_exception_field_type *ps) { single_equivalence *kluge; unpacked u; fp_exception_field_type ef; int i; /* special values */ kluge = (single_equivalence *)px; switch (pd->fpclass) { case fp_zero: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0; kluge->f.msw.significand = 0; *ps = 0; return; case fp_infinity: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0xff; kluge->f.msw.significand = 0; *ps = 0; return; case fp_quiet: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0xff; kluge->f.msw.significand = 0x7fffff; *ps = 0; return; case fp_signaling: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0xff; kluge->f.msw.significand = 0x3fffff; *ps = 0; return; } /* numeric values */ ef = 0; if (pd->exponent + pd->ndigits > SINGLE_MAXE) { /* result must overflow */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = 0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else if (pd->exponent + pd->ndigits < -SINGLE_MAXE) { /* result must underflow completely */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = -0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else { /* result may be in range */ if (__fast_decimal_to_single(px, pm, pd, &ef) == 1) { *ps = ef; if (ef != 0) __base_conversion_set_exception(ef); return; } __decimal_to_unpacked(&u, pd, 24); } __pack_single(&u, px, pm->rd, &ef); *ps = ef; if (ef != 0) __base_conversion_set_exception(ef); } void decimal_to_double(double *px, decimal_mode *pm, decimal_record *pd, fp_exception_field_type *ps) { double_equivalence *kluge; unpacked u; fp_exception_field_type ef; int i; /* special values */ kluge = (double_equivalence *)px; switch (pd->fpclass) { case fp_zero: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0; kluge->f.msw.significand = 0; kluge->f.significand2 = 0; *ps = 0; return; case fp_infinity: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7ff; kluge->f.msw.significand = 0; kluge->f.significand2 = 0; *ps = 0; return; case fp_quiet: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7ff; kluge->f.msw.significand = 0xfffff; kluge->f.significand2 = 0xffffffff; *ps = 0; return; case fp_signaling: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7ff; kluge->f.msw.significand = 0x7ffff; kluge->f.significand2 = 0xffffffff; *ps = 0; return; } /* numeric values */ ef = 0; if (pd->exponent + pd->ndigits > DOUBLE_MAXE) { /* result must overflow */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = 0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else if (pd->exponent + pd->ndigits < -DOUBLE_MAXE) { /* result must underflow completely */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = -0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else { /* result may be in range */ if (__fast_decimal_to_double(px, pm, pd, &ef) == 1) { *ps = ef; if (ef != 0) __base_conversion_set_exception(ef); return; } __decimal_to_unpacked(&u, pd, 53); } __pack_double(&u, px, pm->rd, &ef); *ps = ef; if (ef != 0) __base_conversion_set_exception(ef); } void decimal_to_extended(extended *px, decimal_mode *pm, decimal_record *pd, fp_exception_field_type *ps) { extended_equivalence *kluge; unpacked u; double_equivalence dd; fp_exception_field_type ef; int i; /* special values */ kluge = (extended_equivalence *)px; switch (pd->fpclass) { case fp_zero: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0; kluge->f.significand = 0; kluge->f.significand2 = 0; *ps = 0; return; case fp_infinity: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7fff; kluge->f.significand = 0x80000000; kluge->f.significand2 = 0; *ps = 0; return; case fp_quiet: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7fff; kluge->f.significand = 0xffffffff; kluge->f.significand2 = 0xffffffff; *ps = 0; return; case fp_signaling: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7fff; kluge->f.significand = 0xbfffffff; kluge->f.significand2 = 0xffffffff; *ps = 0; return; } /* numeric values */ ef = 0; if (pd->exponent + pd->ndigits > EXTENDED_MAXE) { /* result must overflow */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = 0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else if (pd->exponent + pd->ndigits < -EXTENDED_MAXE) { /* result must underflow completely */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = -0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else { /* result may be in range */ if (__fast_decimal_to_double(&dd.x, pm, pd, &ef) == 1 && ef == 0) { u.sign = dd.f.msw.sign; u.fpclass = fp_normal; u.exponent = dd.f.msw.exponent - DOUBLE_BIAS; u.significand[0] = ((0x100000 | dd.f.msw.significand) << 11) | (dd.f.significand2 >> 21); u.significand[1] = dd.f.significand2 << 11; for (i = 2; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else { __decimal_to_unpacked(&u, pd, 64); } } __pack_extended(&u, px, pm->rd, &ef); *ps = ef; if (ef != 0) __base_conversion_set_exception(ef); } void decimal_to_quadruple(quadruple *px, decimal_mode *pm, decimal_record *pd, fp_exception_field_type *ps) { quadruple_equivalence *kluge; unpacked u; double_equivalence dd; fp_exception_field_type ef; int i; /* special values */ kluge = (quadruple_equivalence *)px; switch (pd->fpclass) { case fp_zero: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0; kluge->f.msw.significand = 0; kluge->f.significand2 = 0; kluge->f.significand3 = 0; kluge->f.significand4 = 0; *ps = 0; return; case fp_infinity: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7fff; kluge->f.msw.significand = 0; kluge->f.significand2 = 0; kluge->f.significand3 = 0; kluge->f.significand4 = 0; *ps = 0; return; case fp_quiet: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7fff; kluge->f.msw.significand = 0xffff; kluge->f.significand2 = 0xffffffff; kluge->f.significand3 = 0xffffffff; kluge->f.significand4 = 0xffffffff; *ps = 0; return; case fp_signaling: kluge->f.msw.sign = (pd->sign)? 1 : 0; kluge->f.msw.exponent = 0x7fff; kluge->f.msw.significand = 0x7fff; kluge->f.significand2 = 0xffffffff; kluge->f.significand3 = 0xffffffff; kluge->f.significand4 = 0xffffffff; *ps = 0; return; } /* numeric values */ ef = 0; if (pd->exponent + pd->ndigits > QUAD_MAXE) { /* result must overflow */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = 0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else if (pd->exponent + pd->ndigits < -QUAD_MAXE) { /* result must underflow completely */ u.sign = (pd->sign != 0); u.fpclass = fp_normal; u.exponent = -0x000fffff; u.significand[0] = 0x80000000; for (i = 1; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else { /* result may be in range */ if (__fast_decimal_to_double(&dd.x, pm, pd, &ef) == 1 && ef == 0) { u.sign = dd.f.msw.sign; u.fpclass = fp_normal; u.exponent = dd.f.msw.exponent - DOUBLE_BIAS; u.significand[0] = ((0x100000 | dd.f.msw.significand) << 11) | (dd.f.significand2 >> 21); u.significand[1] = dd.f.significand2 << 11; for (i = 2; i < UNPACKED_SIZE; i++) u.significand[i] = 0; } else { __decimal_to_unpacked(&u, pd, 113); } } __pack_quadruple(&u, px, pm->rd, &ef); *ps = ef; if (ef != 0) __base_conversion_set_exception(ef); }