/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * _X_cplx_div_rx(a, w) returns a / w with infinities handled * according to C99. * * If a and w are both finite and w is nonzero, _X_cplx_div_rx de- * livers the complex quotient q according to the usual formula: let * c = Re(w), and d = Im(w); then q = x + I * y where x = (a * c) / r * and y = (-a * d) / r with r = c * c + d * d. This implementation * scales to avoid premature underflow or overflow. * * If a is neither NaN nor zero and w is zero, or if a is infinite * and w is finite and nonzero, _X_cplx_div_rx delivers an infinite * result. If a is finite and w is infinite, _X_cplx_div_rx delivers * a zero result. * * If a and w are both zero or both infinite, or if either a or w is * NaN, _X_cplx_div_rx delivers NaN + I * NaN. C99 doesn't specify * these cases. * * This implementation can raise spurious underflow, overflow, in- * valid operation, inexact, and division-by-zero exceptions. C99 * allows this. */ #if !defined(i386) && !defined(__i386) && !defined(__amd64) #error This code is for x86 only #endif /* * scl[i].e = 2^(4080*(4-i)) for i = 0, ..., 9 */ static const union { unsigned int i[3]; long double e; } scl[9] = { { 0, 0x80000000, 0x7fbf }, { 0, 0x80000000, 0x6fcf }, { 0, 0x80000000, 0x5fdf }, { 0, 0x80000000, 0x4fef }, { 0, 0x80000000, 0x3fff }, { 0, 0x80000000, 0x300f }, { 0, 0x80000000, 0x201f }, { 0, 0x80000000, 0x102f }, { 0, 0x80000000, 0x003f } }; /* * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise */ static int testinfl(long double x) { union { int i[3]; long double e; } xx; xx.e = x; if ((xx.i[2] & 0x7fff) != 0x7fff || ((xx.i[1] << 1) | xx.i[0]) != 0) return (0); return (1 | ((xx.i[2] << 16) >> 31)); } long double _Complex _X_cplx_div_rx(long double a, long double _Complex w) { long double _Complex v; union { int i[3]; long double e; } aa, cc, dd; long double c, d, sc, sd, r; int ea, ec, ed, ew, i, j; /* * The following is equivalent to * * c = creall(*w); d = cimagl(*w); */ c = ((long double *)&w)[0]; d = ((long double *)&w)[1]; /* extract exponents to estimate |z| and |w| */ aa.e = a; ea = aa.i[2] & 0x7fff; cc.e = c; dd.e = d; ec = cc.i[2] & 0x7fff; ed = dd.i[2] & 0x7fff; ew = (ec > ed)? ec : ed; /* check for special cases */ if (ew >= 0x7fff) { /* w is inf or nan */ i = testinfl(c); j = testinfl(d); if (i | j) { /* w is infinite */ c = ((cc.i[2] << 16) < 0)? -0.0f : 0.0f; d = ((dd.i[2] << 16) < 0)? -0.0f : 0.0f; } else /* w is nan */ a += c + d; ((long double *)&v)[0] = a * c; ((long double *)&v)[1] = -a * d; return (v); } if (ew == 0 && (cc.i[1] | cc.i[0] | dd.i[1] | dd.i[0]) == 0) { /* w is zero; multiply a by 1/Re(w) - I * Im(w) */ c = 1.0f / c; i = testinfl(a); if (i) { /* a is infinite */ a = i; } ((long double *)&v)[0] = a * c; ((long double *)&v)[1] = (a == 0.0f)? a * c : -a * d; return (v); } if (ea >= 0x7fff) { /* a is inf or nan */ ((long double *)&v)[0] = a * c; ((long double *)&v)[1] = -a * d; return (v); } /* * Compute the real and imaginary parts of the quotient, * scaling to avoid overflow or underflow. */ ew = (ew - 0x3800) >> 12; sc = c * scl[ew + 4].e; sd = d * scl[ew + 4].e; r = sc * sc + sd * sd; ea = (ea - 0x3800) >> 12; a = (a * scl[ea + 4].e) / r; ea -= (ew + ew); ec = (ec - 0x3800) >> 12; c = (c * scl[ec + 4].e) * a; ec += ea; ed = (ed - 0x3800) >> 12; d = -(d * scl[ed + 4].e) * a; ed += ea; /* compensate for scaling */ sc = scl[3].e; /* 2^4080 */ if (ec < 0) { ec = -ec; sc = scl[5].e; /* 2^-4080 */ } while (ec--) c *= sc; sd = scl[3].e; if (ed < 0) { ed = -ed; sd = scl[5].e; } while (ed--) d *= sd; ((long double *)&v)[0] = c; ((long double *)&v)[1] = d; return (v); }