/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. */ /* * Plugin library for PCI Express and PCI (SHPC) hotplug controller */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CFGA_PLUGIN_LIB #include #include #include #include #include #include #include #include #include #include #include "../../../../uts/common/sys/hotplug/pci/pcie_hp.h" #include "../../../../common/pci/pci_strings.h" #include extern const struct pci_class_strings_s class_pci[]; extern int class_pci_items; #define MSG_HOTPLUG_DISABLED \ "Error: hotplug service is probably not running, " \ "please use 'svcadm enable hotplug' to enable the service. " \ "See cfgadm_shp(1M) for more details." #define DEVICES_DIR "/devices" #define SLASH "/" #define GET_DYN(a) (strstr((a), CFGA_DYN_SEP)) /* * Set the version number */ int cfga_version = CFGA_HSL_V2; #ifdef DEBUG #define SHP_DBG 1 #endif #if !defined(TEXT_DOMAIN) #define TEXT_DOMAIN "SYS_TEST" #endif /* * DEBUGING LEVEL * * External routines: 1 - 2 * Internal routines: 3 - 4 */ #ifdef SHP_DBG int shp_debug = 1; #define DBG(level, args) \ { if (shp_debug >= (level)) printf args; } #define DBG_F(level, args) \ { if (shp_debug >= (level)) fprintf args; } #else #define DBG(level, args) /* nothing */ #define DBG_F(level, args) /* nothing */ #endif #define CMD_ACQUIRE 0 #define CMD_GETSTAT 1 #define CMD_LIST 2 #define CMD_SLOT_CONNECT 3 #define CMD_SLOT_DISCONNECT 4 #define CMD_SLOT_CONFIGURE 5 #define CMD_SLOT_UNCONFIGURE 6 #define CMD_SLOT_INSERT 7 #define CMD_SLOT_REMOVE 8 #define CMD_OPEN 9 #define CMD_FSTAT 10 #define ERR_CMD_INVAL 11 #define ERR_AP_INVAL 12 #define ERR_AP_ERR 13 #define ERR_OPT_INVAL 14 static char * cfga_errstrs[] = { /* n */ "acquire ", /* n */ "get-status ", /* n */ "list ", /* n */ "connect ", /* n */ "disconnect ", /* n */ "configure ", /* n */ "unconfigure ", /* n */ "insert ", /* n */ "remove ", /* n */ "open ", /* n */ "fstat ", /* y */ "invalid command ", /* y */ "invalid attachment point ", /* y */ "invalid transition ", /* y */ "invalid option ", NULL }; #define HELP_HEADER 1 #define HELP_CONFIG 2 #define HELP_ENABLE_SLOT 3 #define HELP_DISABLE_SLOT 4 #define HELP_ENABLE_AUTOCONF 5 #define HELP_DISABLE_AUTOCONF 6 #define HELP_LED_CNTRL 7 #define HELP_UNKNOWN 8 #define SUCCESS 9 #define FAILED 10 #define UNKNOWN 11 #define MAXLINE 256 extern int errno; static void cfga_err(char **errstring, ...); static cfga_err_t fix_ap_name(char *ap_log_id, const char *ap_id, char *slot_name, char **errstring); static cfga_err_t check_options(const char *options); static void cfga_msg(struct cfga_msg *msgp, const char *str); static char *findlink(char *ap_phys_id); static char * cfga_strs[] = { NULL, "\nPCI hotplug specific commands:", "\t-c [connect|disconnect|configure|unconfigure|insert|remove] " "ap_id [ap_id...]", "\t-x enable_slot ap_id [ap_id...]", "\t-x disable_slot ap_id [ap_id...]", "\t-x enable_autoconfig ap_id [ap_id...]", "\t-x disable_autoconfig ap_id [ap_id...]", "\t-x led[=[fault|power|active|attn],mode=[on|off|blink]] ap_id [ap_id...]", "\tunknown command or option: ", "success ", "failed ", "unknown", NULL }; #define MAX_FORMAT 80 #define ENABLE_SLOT 0 #define DISABLE_SLOT 1 #define ENABLE_AUTOCNF 2 #define DISABLE_AUTOCNF 3 #define LED 4 #define MODE 5 typedef enum { PCIEHPC_FAULT_LED, PCIEHPC_POWER_LED, PCIEHPC_ATTN_LED, PCIEHPC_ACTIVE_LED} pciehpc_led_t; typedef enum { PCIEHPC_BOARD_UNKNOWN, PCIEHPC_BOARD_PCI_HOTPLUG } pciehpc_board_type_t; /* * Board Type */ static char * board_strs[] = { /* n */ "???", /* PCIEHPC_BOARD_UNKNOWN */ /* n */ "hp", /* PCIEHPC_BOARD_PCI_HOTPLUG */ /* n */ NULL }; /* * HW functions */ static char * func_strs[] = { /* n */ "enable_slot", /* n */ "disable_slot", /* n */ "enable_autoconfig", /* n */ "disable_autoconfig", /* n */ "led", /* n */ "mode", /* n */ NULL }; /* * LED strings */ static char * led_strs[] = { /* n */ "fault", /* PCIEHPC_FAULT_LED */ /* n */ "power", /* PCIEHPC_POWER_LED */ /* n */ "attn", /* PCIEHPC_ATTN_LED */ /* n */ "active", /* PCIEHPC_ACTIVE_LED */ /* n */ NULL }; static char * led_strs2[] = { /* n */ PCIEHPC_PROP_LED_FAULT, /* PCIEHPC_FAULT_LED */ /* n */ PCIEHPC_PROP_LED_POWER, /* PCIEHPC_POWER_LED */ /* n */ PCIEHPC_PROP_LED_ATTN, /* PCIEHPC_ATTN_LED */ /* n */ PCIEHPC_PROP_LED_ACTIVE, /* PCIEHPC_ACTIVE_LED */ /* n */ NULL }; #define FAULT 0 #define POWER 1 #define ATTN 2 #define ACTIVE 3 static char * mode_strs[] = { /* n */ "off", /* OFF */ /* n */ "on", /* ON */ /* n */ "blink", /* BLINK */ /* n */ NULL }; #define OFF 0 #define ON 1 #define BLINK 2 #define cfga_errstrs(i) cfga_errstrs[(i)] #define cfga_eid(a, b) (((a) << 8) + (b)) #define MAXDEVS 32 typedef enum { SOLARIS_SLT_NAME, PROM_SLT_NAME } slt_name_src_t; struct searcharg { char *devpath; char slotnames[MAXDEVS][MAXNAMELEN]; int minor; di_prom_handle_t promp; slt_name_src_t slt_name_src; }; static void *private_check; /* * Return the corresponding hp node for a given ap_id, it is the caller's * responsibility to call hp_fini() to free the snapshot. */ static cfga_err_t physpath2node(const char *physpath, char **errstring, hp_node_t *nodep) { char *rpath; char *cp; hp_node_t node; size_t len; char *errmsg; if (getuid() != 0 && geteuid() != 0) return (CFGA_ERROR); if ((rpath = malloc(strlen(physpath) + 1)) == NULL) return (CFGA_ERROR); (void) strcpy(rpath, physpath); /* Remove devices prefix (if any) */ len = strlen(DEVICES_DIR); if (strncmp(rpath, DEVICES_DIR SLASH, len + strlen(SLASH)) == 0) { (void) memmove(rpath, rpath + len, strlen(rpath + len) + 1); } /* Remove dynamic component if any */ if ((cp = GET_DYN(rpath)) != NULL) { *cp = '\0'; } /* Remove minor name (if any) */ if ((cp = strrchr(rpath, ':')) == NULL) { free(rpath); return (CFGA_INVAL); } *cp = '\0'; cp++; DBG(1, ("rpath=%s,cp=%s\n", rpath, cp)); if ((node = hp_init(rpath, cp, 0)) == NULL) { if (errno == EBADF) { /* No reponse to operations on the door file. */ assert(errstring != NULL); *errstring = strdup(MSG_HOTPLUG_DISABLED); free(rpath); return (CFGA_NOTSUPP); } free(rpath); return (CFGA_ERROR); } free(rpath); *nodep = node; return (CFGA_OK); } typedef struct error_size_cb_arg { size_t rsrc_width; size_t info_width; int cnt; } error_size_cb_arg_t; /* * Callback function for hp_traverse(), to sum up the * maximum length for error message display. */ static int error_sizeup_cb(hp_node_t node, void *arg) { error_size_cb_arg_t *sizearg = (error_size_cb_arg_t *)arg; size_t len; /* Only process USAGE nodes */ if (hp_type(node) != HP_NODE_USAGE) return (HP_WALK_CONTINUE); sizearg->cnt++; /* size up resource name */ len = strlen(hp_name(node)); if (sizearg->rsrc_width < len) sizearg->rsrc_width = len; /* size up usage description */ len = strlen(hp_usage(node)); if (sizearg->info_width < len) sizearg->info_width = len; return (HP_WALK_CONTINUE); } typedef struct error_sum_cb_arg { char **table; char *format; } error_sum_cb_arg_t; /* * Callback function for hp_traverse(), to add the error * message to the table. */ static int error_sumup_cb(hp_node_t node, void *arg) { error_sum_cb_arg_t *sumarg = (error_sum_cb_arg_t *)arg; char **table = sumarg->table; char *format = sumarg->format; /* Only process USAGE nodes */ if (hp_type(node) != HP_NODE_USAGE) return (HP_WALK_CONTINUE); (void) strcat(*table, "\n"); (void) sprintf(&((*table)[strlen(*table)]), format, hp_name(node), hp_usage(node)); return (HP_WALK_CONTINUE); } /* * Takes an opaque rcm_info_t pointer and a character pointer, and appends * the rcm_info_t data in the form of a table to the given character pointer. */ static void pci_rcm_info_table(hp_node_t node, char **table) { int i; size_t w; size_t width = 0; size_t w_rsrc = 0; size_t w_info = 0; size_t table_size = 0; uint_t tuples = 0; char *rsrc; char *info; char *newtable; static char format[MAX_FORMAT]; const char *infostr; error_size_cb_arg_t sizearg; error_sum_cb_arg_t sumarg; /* Protect against invalid arguments */ if (table == NULL) return; /* Set localized table header strings */ rsrc = dgettext(TEXT_DOMAIN, "Resource"); info = dgettext(TEXT_DOMAIN, "Information"); /* A first pass, to size up the RCM information */ sizearg.rsrc_width = strlen(rsrc); sizearg.info_width = strlen(info); sizearg.cnt = 0; (void) hp_traverse(node, &sizearg, error_sizeup_cb); /* If nothing was sized up above, stop early */ if (sizearg.cnt == 0) return; w_rsrc = sizearg.rsrc_width; w_info = sizearg.info_width; tuples = sizearg.cnt; /* Adjust column widths for column headings */ if ((w = strlen(rsrc)) > w_rsrc) w_rsrc = w; else if ((w_rsrc - w) % 2) w_rsrc++; if ((w = strlen(info)) > w_info) w_info = w; else if ((w_info - w) % 2) w_info++; /* * Compute the total line width of each line, * accounting for intercolumn spacing. */ width = w_info + w_rsrc + 4; /* Allocate space for the table */ table_size = (2 + tuples) * (width + 1) + 2; if (*table == NULL) { /* zero fill for the strcat() call below */ *table = calloc(table_size, sizeof (char)); if (*table == NULL) return; } else { newtable = realloc(*table, strlen(*table) + table_size); if (newtable == NULL) return; else *table = newtable; } /* Place a table header into the string */ /* The resource header */ (void) strcat(*table, "\n"); w = strlen(rsrc); for (i = 0; i < ((w_rsrc - w) / 2); i++) (void) strcat(*table, " "); (void) strcat(*table, rsrc); for (i = 0; i < ((w_rsrc - w) / 2); i++) (void) strcat(*table, " "); /* The information header */ (void) strcat(*table, " "); w = strlen(info); for (i = 0; i < ((w_info - w) / 2); i++) (void) strcat(*table, " "); (void) strcat(*table, info); for (i = 0; i < ((w_info - w) / 2); i++) (void) strcat(*table, " "); /* Underline the headers */ (void) strcat(*table, "\n"); for (i = 0; i < w_rsrc; i++) (void) strcat(*table, "-"); (void) strcat(*table, " "); for (i = 0; i < w_info; i++) (void) strcat(*table, "-"); /* Construct the format string */ (void) snprintf(format, MAX_FORMAT, "%%-%ds %%-%ds", (int)w_rsrc, (int)w_info); /* Add the tuples to the table string */ sumarg.table = table; sumarg.format = format; (void) hp_traverse(node, &sumarg, error_sumup_cb); } /* * Figure out the target kernel state for a given cfgadm * change-state operation. */ static cfga_err_t cfga_target_state(cfga_cmd_t state_change_cmd, int *state) { switch (state_change_cmd) { case CFGA_CMD_CONNECT: *state = DDI_HP_CN_STATE_POWERED; break; case CFGA_CMD_DISCONNECT: *state = DDI_HP_CN_STATE_PRESENT; break; case CFGA_CMD_CONFIGURE: *state = DDI_HP_CN_STATE_ENABLED; break; case CFGA_CMD_UNCONFIGURE: *state = DDI_HP_CN_STATE_POWERED; break; default: return (CFGA_ERROR); } return (CFGA_OK); } /* * Translate kernel state to cfgadm receptacle state and occupant state. */ static cfga_err_t cfga_get_state(hp_node_t connector, ap_rstate_t *rs, ap_ostate_t *os) { int state; hp_node_t port; state = hp_state(connector); /* Receptacle state */ switch (state) { case DDI_HP_CN_STATE_EMPTY: *rs = AP_RSTATE_EMPTY; break; case DDI_HP_CN_STATE_PRESENT: *rs = AP_RSTATE_DISCONNECTED; break; case DDI_HP_CN_STATE_POWERED: case DDI_HP_CN_STATE_ENABLED: *rs = AP_RSTATE_CONNECTED; break; /* * Connector state can only be one of * Empty, Present, Powered, Enabled. */ default: return (CFGA_ERROR); } /* * Occupant state */ port = hp_child(connector); while (port != NULL) { DBG(1, ("cfga_get_state:(%x)\n", hp_state(port))); /* * Mark occupant state as "configured" if at least one of the * associated ports is at state "offline" or above. Driver * attach ("online" state) is not necessary here. */ if (hp_state(port) >= DDI_HP_CN_STATE_OFFLINE) break; port = hp_sibling(port); } if (port != NULL) *os = AP_OSTATE_CONFIGURED; else *os = AP_OSTATE_UNCONFIGURED; return (CFGA_OK); } /* * Transitional Diagram: * * empty unconfigure * (remove) ^| (physically insert card) * |V * disconnect configure * "-c DISCONNECT" ^| "-c CONNECT" * |V "-c CONFIGURE" * connect unconfigure -> connect configure * <- * "-c UNCONFIGURE" * */ /*ARGSUSED*/ cfga_err_t cfga_change_state(cfga_cmd_t state_change_cmd, const char *ap_id, const char *options, struct cfga_confirm *confp, struct cfga_msg *msgp, char **errstring, cfga_flags_t flags) { int rv, state, new_state; uint_t hpflags = 0; hp_node_t node; hp_node_t results = NULL; if ((rv = check_options(options)) != CFGA_OK) { return (rv); } if (errstring != NULL) *errstring = NULL; rv = CFGA_OK; DBG(1, ("cfga_change_state:(%s)\n", ap_id)); rv = physpath2node(ap_id, errstring, &node); if (rv != CFGA_OK) return (rv); /* * Check for the FORCE flag. It is only used * for DISCONNECT or UNCONFIGURE state changes. */ if (flags & CFGA_FLAG_FORCE) hpflags |= HPFORCE; state = hp_state(node); /* * Which state should we drive to ? */ if ((state_change_cmd != CFGA_CMD_LOAD) && (state_change_cmd != CFGA_CMD_UNLOAD)) { if (cfga_target_state(state_change_cmd, &new_state) != CFGA_OK) { hp_fini(node); return (CFGA_ERROR); } } DBG(1, ("cfga_change_state: state is %d\n", state)); switch (state_change_cmd) { case CFGA_CMD_CONNECT: DBG(1, ("connect\n")); if (state == DDI_HP_CN_STATE_EMPTY) { cfga_err(errstring, ERR_AP_ERR, 0); rv = CFGA_INVAL; } else if (state == DDI_HP_CN_STATE_PRESENT) { /* Connect the slot */ if (hp_set_state(node, 0, new_state, &results) != 0) { rv = CFGA_ERROR; cfga_err(errstring, CMD_SLOT_CONNECT, 0); } } break; case CFGA_CMD_DISCONNECT: DBG(1, ("disconnect\n")); if (state == DDI_HP_CN_STATE_EMPTY) { cfga_err(errstring, ERR_AP_ERR, 0); rv = CFGA_INVAL; } else if (state > DDI_HP_CN_STATE_PRESENT) { /* Disconnect the slot */ rv = hp_set_state(node, hpflags, new_state, &results); if (rv != 0) { if (rv == EBUSY) rv = CFGA_BUSY; else rv = CFGA_ERROR; if (results) { pci_rcm_info_table(results, errstring); hp_fini(results); } else { cfga_err(errstring, CMD_SLOT_DISCONNECT, 0); } } } break; case CFGA_CMD_CONFIGURE: /* * for multi-func device we allow multiple * configure on the same slot because one * func can be configured and other one won't */ DBG(1, ("configure\n")); if (state == DDI_HP_CN_STATE_EMPTY) { cfga_err(errstring, ERR_AP_ERR, 0); rv = CFGA_INVAL; } else if (hp_set_state(node, 0, new_state, &results) != 0) { rv = CFGA_ERROR; cfga_err(errstring, CMD_SLOT_CONFIGURE, 0); } break; case CFGA_CMD_UNCONFIGURE: DBG(1, ("unconfigure\n")); if (state == DDI_HP_CN_STATE_EMPTY) { cfga_err(errstring, ERR_AP_ERR, 0); rv = CFGA_INVAL; } else if (state >= DDI_HP_CN_STATE_ENABLED) { rv = hp_set_state(node, hpflags, new_state, &results); if (rv != 0) { if (rv == EBUSY) rv = CFGA_BUSY; else rv = CFGA_ERROR; if (results) { pci_rcm_info_table(results, errstring); hp_fini(results); } else { cfga_err(errstring, CMD_SLOT_UNCONFIGURE, 0); } } } DBG(1, ("unconfigure rv:(%i)\n", rv)); break; case CFGA_CMD_LOAD: /* do nothing, just produce error msg as is */ if (state < DDI_HP_CN_STATE_POWERED) { rv = CFGA_ERROR; cfga_err(errstring, CMD_SLOT_INSERT, 0); } else { cfga_err(errstring, ERR_AP_ERR, 0); rv = CFGA_INVAL; } break; case CFGA_CMD_UNLOAD: /* do nothing, just produce error msg as is */ if (state < DDI_HP_CN_STATE_POWERED) { rv = CFGA_ERROR; cfga_err(errstring, CMD_SLOT_REMOVE, 0); } else { cfga_err(errstring, ERR_AP_ERR, 0); rv = CFGA_INVAL; } break; default: rv = CFGA_OPNOTSUPP; break; } hp_fini(node); return (rv); } char * get_val_from_result(char *result) { char *tmp; tmp = strchr(result, '='); if (tmp == NULL) return (NULL); tmp++; return (tmp); } static cfga_err_t prt_led_mode(const char *ap_id, int repeat, char **errstring, struct cfga_msg *msgp) { pciehpc_led_t led; hp_node_t node; char *buff; char *buf; char *cp, line[MAXLINE]; char *tmp; char *format; char *result; int i, n, rv; int len = MAXLINE; pciehpc_led_t states[] = { PCIEHPC_POWER_LED, PCIEHPC_FAULT_LED, PCIEHPC_ATTN_LED, PCIEHPC_ACTIVE_LED }; DBG(1, ("prt_led_mod function\n")); if (!repeat) cfga_msg(msgp, "Ap_Id\t\t\tLed"); rv = physpath2node(ap_id, errstring, &node); if (rv != CFGA_OK) return (rv); if ((buff = malloc(MAXPATHLEN)) == NULL) { hp_fini(node); cfga_err(errstring, "malloc ", 0); return (CFGA_ERROR); } (void) memset(buff, 0, MAXPATHLEN); if (fix_ap_name(buff, ap_id, hp_name(node), errstring) != CFGA_OK) { hp_fini(node); free(buff); return (CFGA_ERROR); } cp = line; (void) snprintf(cp, len, "%s\t\t", buff); len -= strlen(cp); cp += strlen(cp); free(buff); n = sizeof (states)/sizeof (pciehpc_led_t); for (i = 0; i < n; i++) { led = states[i]; format = (i == n - 1) ? "%s=%s" : "%s=%s,"; if (hp_get_private(node, led_strs2[led], &result) != 0) { (void) snprintf(cp, len, format, led_strs[led], cfga_strs[UNKNOWN]); len -= strlen(cp); cp += strlen(cp); DBG(1, ("%s:%s\n", led_strs[led], cfga_strs[UNKNOWN])); } else { /* * hp_get_private() will return back things like * "led_fault=off", transform it to cfgadm desired * format. */ tmp = get_val_from_result(result); if (tmp == NULL) { free(result); hp_fini(node); return (CFGA_ERROR); } (void) snprintf(cp, len, format, led_strs[led], tmp); len -= strlen(cp); cp += strlen(cp); DBG(1, ("%s:%s\n", led_strs[led], tmp)); free(result); } } cfga_msg(msgp, line); /* print the message */ hp_fini(node); return (CFGA_OK); } /*ARGSUSED*/ cfga_err_t cfga_private_func(const char *function, const char *ap_id, const char *options, struct cfga_confirm *confp, struct cfga_msg *msgp, char **errstring, cfga_flags_t flags) { char *str; int len, fd, i = 0, repeat = 0; char buf[MAXNAMELEN]; char ptr; cfga_err_t rv; char *led, *mode; hp_node_t node; char *result; DBG(1, ("cfgadm_private_func: ap_id:%s\n", ap_id)); DBG(2, (" options: %s\n", (options == NULL)?"null":options)); DBG(2, (" confp: %x\n", confp)); DBG(2, (" cfga_msg: %x\n", cfga_msg)); DBG(2, (" flag: %d\n", flags)); if ((rv = check_options(options)) != CFGA_OK) { return (rv); } if (private_check == confp) repeat = 1; else private_check = (void*)confp; for (i = 0, str = func_strs[i], len = strlen(str); func_strs[i] != NULL; i++) { str = func_strs[i]; len = strlen(str); if (strncmp(function, str, len) == 0) break; } switch (i) { case ENABLE_SLOT: case DISABLE_SLOT: /* pass through */ case ENABLE_AUTOCNF: case DISABLE_AUTOCNF: /* no action needed */ return (CFGA_OK); break; case LED: /* set mode */ ptr = function[len++]; if (ptr == '=') { str = (char *)function; for (str = (str+len++), i = 0; *str != ','; i++, str++) { if (i == (MAXNAMELEN - 1)) break; buf[i] = *str; DBG_F(2, (stdout, "%c\n", buf[i])); } buf[i] = '\0'; str++; DBG(2, ("buf = %s\n", buf)); /* ACTIVE=3,ATTN=2,POWER=1,FAULT=0 */ if (strcmp(buf, led_strs[POWER]) == 0) led = PCIEHPC_PROP_LED_POWER; else if (strcmp(buf, led_strs[FAULT]) == 0) led = PCIEHPC_PROP_LED_FAULT; else if (strcmp(buf, led_strs[ATTN]) == 0) led = PCIEHPC_PROP_LED_ATTN; else if (strcmp(buf, led_strs[ACTIVE]) == 0) led = PCIEHPC_PROP_LED_ACTIVE; else return (CFGA_INVAL); len = strlen(func_strs[MODE]); if ((strncmp(str, func_strs[MODE], len) == 0) && (*(str+(len)) == '=')) { for (str = (str+(++len)), i = 0; *str != NULL; i++, str++) { buf[i] = *str; } } buf[i] = '\0'; DBG(2, ("buf_mode= %s\n", buf)); /* ON = 1, OFF = 0 */ if (strcmp(buf, mode_strs[ON]) == 0) mode = PCIEHPC_PROP_VALUE_ON; else if (strcmp(buf, mode_strs[OFF]) == 0) mode = PCIEHPC_PROP_VALUE_OFF; else if (strcmp(buf, mode_strs[BLINK]) == 0) mode = PCIEHPC_PROP_VALUE_BLINK; else return (CFGA_INVAL); /* sendin */ memset(buf, 0, sizeof (buf)); snprintf(buf, sizeof (buf), "%s=%s", led, mode); buf[MAXNAMELEN - 1] = '\0'; break; } else if (ptr == '\0') { /* print mode */ DBG(1, ("Print mode\n")); return (prt_led_mode(ap_id, repeat, errstring, msgp)); } default: DBG(1, ("default\n")); errno = EINVAL; return (CFGA_INVAL); } rv = physpath2node(ap_id, errstring, &node); if (rv != CFGA_OK) return (rv); if (hp_set_private(node, buf, &result) != 0) { hp_fini(node); return (CFGA_ERROR); } hp_fini(node); return (CFGA_OK); } /*ARGSUSED*/ cfga_err_t cfga_test(const char *ap_id, const char *options, struct cfga_msg *msgp, char **errstring, cfga_flags_t flags) { cfga_err_t rv; if (errstring != NULL) *errstring = NULL; if ((rv = check_options(options)) != CFGA_OK) { return (rv); } DBG(1, ("cfga_test:(%s)\n", ap_id)); /* will need to implement pci CTRL command */ return (CFGA_NOTSUPP); } /* * The slot-names property describes the external labeling of add-in slots. * This property is an encoded array, an integer followed by a list of * strings. The return value from di_prop_lookup_ints for slot-names is -1. * The expected return value should be the number of elements. * Di_prop_decode_common does not decode encoded data from software, * such as the solaris device tree, unlike from the prom. * Di_prop_decode_common takes the size of the encoded data and mods * it with the size of int. The size of the encoded data for slot-names is 9 * and the size of int is 4, yielding a non zero result. A value of -1 is used * to indicate that the number of elements can not be determined. * Di_prop_decode_common can be modified to decode encoded data from the solaris * device tree. */ static int fixup_slotname(int rval, int *intp, struct searcharg *slotarg) { if ((slotarg->slt_name_src == PROM_SLT_NAME) && (rval == -1)) { return (DI_WALK_TERMINATE); } else { int i; char *tmptr = (char *)(intp+1); DBG(1, ("slot-bitmask: %x \n", *intp)); rval = (rval -1) * 4; for (i = 0; i <= slotarg->minor; i++) { DBG(2, ("curr slot-name: %s \n", tmptr)); if (i >= MAXDEVS) return (DI_WALK_TERMINATE); if ((*intp >> i) & 1) { /* assign tmptr */ DBG(2, ("slot-name: %s \n", tmptr)); if (i == slotarg->minor) (void) strcpy(slotarg->slotnames[i], tmptr); /* wind tmptr to next \0 */ while (*tmptr != '\0') { tmptr++; } tmptr++; } else { /* point at unknown string */ if (i == slotarg->minor) (void) strcpy(slotarg->slotnames[i], "unknown"); } } } return (DI_WALK_TERMINATE); } static int find_slotname(di_node_t din, di_minor_t dim, void *arg) { struct searcharg *slotarg = (struct searcharg *)arg; di_prom_handle_t ph = (di_prom_handle_t)slotarg->promp; di_prom_prop_t prom_prop; di_prop_t solaris_prop; int *intp, rval; char *devname; char fulldevname[MAXNAMELEN]; slotarg->minor = dim->dev_minor % 256; DBG(2, ("minor number:(%i)\n", slotarg->minor)); DBG(2, ("hot plug slots found so far:(%i)\n", 0)); if ((devname = di_devfs_path(din)) != NULL) { (void) snprintf(fulldevname, MAXNAMELEN, "/devices%s:%s", devname, di_minor_name(dim)); di_devfs_path_free(devname); } if (strcmp(fulldevname, slotarg->devpath) == 0) { /* * Check the Solaris device tree first * in the case of a DR operation */ solaris_prop = di_prop_hw_next(din, DI_PROP_NIL); while (solaris_prop != DI_PROP_NIL) { if (strcmp("slot-names", di_prop_name(solaris_prop)) == 0) { rval = di_prop_lookup_ints(DDI_DEV_T_ANY, din, di_prop_name(solaris_prop), &intp); slotarg->slt_name_src = SOLARIS_SLT_NAME; return (fixup_slotname(rval, intp, slotarg)); } solaris_prop = di_prop_hw_next(din, solaris_prop); } /* * Check the prom device tree which is populated at boot. * If this fails, give up and set the slot name to null. */ prom_prop = di_prom_prop_next(ph, din, DI_PROM_PROP_NIL); while (prom_prop != DI_PROM_PROP_NIL) { if (strcmp("slot-names", di_prom_prop_name(prom_prop)) == 0) { rval = di_prom_prop_lookup_ints(ph, din, di_prom_prop_name(prom_prop), &intp); slotarg->slt_name_src = PROM_SLT_NAME; return (fixup_slotname(rval, intp, slotarg)); } prom_prop = di_prom_prop_next(ph, din, prom_prop); } *slotarg->slotnames[slotarg->minor] = '\0'; return (DI_WALK_TERMINATE); } else return (DI_WALK_CONTINUE); } static int find_physical_slot_names(const char *devcomp, struct searcharg *slotarg) { di_node_t root_node; DBG(1, ("find_physical_slot_names\n")); if ((root_node = di_init("/", DINFOCPYALL|DINFOPATH)) == DI_NODE_NIL) { DBG(1, ("di_init() failed\n")); return (-1); } slotarg->devpath = (char *)devcomp; if ((slotarg->promp = di_prom_init()) == DI_PROM_HANDLE_NIL) { DBG(1, ("di_prom_init() failed\n")); di_fini(root_node); return (-1); } (void) di_walk_minor(root_node, "ddi_ctl:attachment_point:pci", 0, (void *)slotarg, find_slotname); di_prom_fini(slotarg->promp); di_fini(root_node); if (slotarg->slotnames[0] != NULL) return (0); else return (-1); } static void get_type(const char *boardtype, const char *cardtype, char *buf) { /* for type string assembly in get_type() */ #define TPCT(s) (void) strlcat(buf, (s), CFGA_TYPE_LEN) int i; if (strcmp(cardtype, "unknown") == 0) { TPCT("unknown"); return; } TPCT(cardtype); TPCT("/"); if (strcmp(boardtype, PCIEHPC_PROP_VALUE_PCIHOTPLUG) == 0) TPCT(board_strs[PCIEHPC_BOARD_PCI_HOTPLUG]); else TPCT(board_strs[PCIEHPC_BOARD_UNKNOWN]); } /* * call-back function for di_devlink_walk * if the link lives in /dev/cfg copy its name */ static int found_devlink(di_devlink_t link, void *ap_log_id) { if (strncmp("/dev/cfg/", di_devlink_path(link), 9) == 0) { /* copy everything but /dev/cfg/ */ (void) strcpy((char *)ap_log_id, di_devlink_path(link) + 9); DBG(1, ("found_devlink: %s\n", (char *)ap_log_id)); return (DI_WALK_TERMINATE); } return (DI_WALK_CONTINUE); } /* * Walk throught the cached /dev link tree looking for links to the ap * if none are found return an error */ static cfga_err_t check_devlinks(char *ap_log_id, const char *ap_id) { di_devlink_handle_t hdl; DBG(1, ("check_devlinks: %s\n", ap_id)); hdl = di_devlink_init(NULL, 0); if (strncmp("/devices/", ap_id, 9) == 0) { /* ap_id is a valid minor_path with /devices prepended */ (void) di_devlink_walk(hdl, NULL, ap_id + 8, DI_PRIMARY_LINK, (void *)ap_log_id, found_devlink); } else { DBG(1, ("check_devlinks: invalid ap_id: %s\n", ap_id)); return (CFGA_ERROR); } (void) di_devlink_fini(&hdl); if (ap_log_id[0] != '\0') return (CFGA_OK); else return (CFGA_ERROR); } /* * most of this is needed to compensate for * differences between various platforms */ static cfga_err_t fix_ap_name(char *ap_log_id, const char *ap_id, char *slot_name, char **errstring) { char *buf; char *tmp; char *ptr; di_node_t ap_node; ap_log_id[0] = '\0'; if (check_devlinks(ap_log_id, ap_id) == CFGA_OK) return (CFGA_OK); DBG(1, ("fix_ap_name: %s\n", ap_id)); if ((buf = malloc(strlen(ap_id) + 1)) == NULL) { DBG(1, ("malloc failed\n")); return (CFGA_ERROR); } (void) strcpy(buf, ap_id); tmp = buf + sizeof ("/devices") - 1; ptr = strchr(tmp, ':'); ptr[0] = '\0'; DBG(1, ("fix_ap_name: %s\n", tmp)); ap_node = di_init(tmp, DINFOMINOR); if (ap_node == DI_NODE_NIL) { cfga_err(errstring, "di_init ", 0); DBG(1, ("fix_ap_name: failed to snapshot node\n")); return (CFGA_ERROR); } (void) snprintf(ap_log_id, strlen(ap_id) + 1, "%s%i:%s", di_driver_name(ap_node), di_instance(ap_node), slot_name); DBG(1, ("fix_ap_name: %s\n", ap_log_id)); di_fini(ap_node); free(buf); return (CFGA_OK); } static int findlink_cb(di_devlink_t devlink, void *arg) { (*(char **)arg) = strdup(di_devlink_path(devlink)); return (DI_WALK_TERMINATE); } /* * returns an allocated string containing the full path to the devlink for * in the devlink database; we expect only one devlink per * so we return the first encountered */ static char * findlink(char *ap_phys_id) { di_devlink_handle_t hdl; char *path = NULL; hdl = di_devlink_init(NULL, 0); if (strncmp("/devices/", ap_phys_id, 9) == 0) ap_phys_id += 8; (void) di_devlink_walk(hdl, "^cfg/.+$", ap_phys_id, DI_PRIMARY_LINK, (void *)&path, findlink_cb); (void) di_devlink_fini(&hdl); return (path); } /* * returns CFGA_OK if it can succesfully retrieve the devlink info associated * with devlink for which will be returned through */ cfga_err_t get_dli(char *dlpath, char *ap_info, int ap_info_sz) { int fd; fd = di_dli_openr(dlpath); if (fd < 0) return (CFGA_ERROR); (void) read(fd, ap_info, ap_info_sz); ap_info[ap_info_sz - 1] = '\0'; di_dli_close(fd); return (CFGA_OK); } static cfga_err_t cfga_get_condition(hp_node_t node, ap_condition_t *cond) { char *condition; char *tmpc; cfga_err_t ret = CFGA_OK; /* "condition" bus specific commands */ if (hp_get_private(node, PCIEHPC_PROP_SLOT_CONDITION, &tmpc) != 0) { *cond = AP_COND_UNKNOWN; return (CFGA_ERROR); } condition = get_val_from_result(tmpc); if (strcmp(condition, PCIEHPC_PROP_COND_OK) == 0) *cond = AP_COND_OK; else if (strcmp(condition, PCIEHPC_PROP_COND_FAILING) == 0) *cond = AP_COND_FAILING; else if (strcmp(condition, PCIEHPC_PROP_COND_FAILED) == 0) *cond = AP_COND_FAILED; else if (strcmp(condition, PCIEHPC_PROP_COND_UNUSABLE) == 0) *cond = AP_COND_UNUSABLE; else if (strcmp(condition, PCIEHPC_PROP_COND_UNKNOWN) == 0) *cond = AP_COND_UNKNOWN; else ret = CFGA_ERROR; free(tmpc); return (ret); } /*ARGSUSED*/ cfga_err_t cfga_list_ext(const char *ap_id, cfga_list_data_t **cs, int *nlist, const char *options, const char *listopts, char **errstring, cfga_flags_t flags) { char *boardtype; char *cardtype; char *tmpb = NULL, *tmpc = NULL; struct searcharg slotname_arg; int fd; int rv = CFGA_OK; char *dlpath = NULL; hp_node_t node; ap_rstate_t rs; ap_ostate_t os; ap_condition_t cond; if ((rv = check_options(options)) != CFGA_OK) { return (rv); } if (errstring != NULL) *errstring = NULL; DBG(1, ("cfga_list_ext:(%s)\n", ap_id)); if (cs == NULL || nlist == NULL) { rv = CFGA_ERROR; return (rv); } *nlist = 1; if ((*cs = malloc(sizeof (cfga_list_data_t))) == NULL) { cfga_err(errstring, "malloc ", 0); DBG(1, ("malloc failed\n")); rv = CFGA_ERROR; return (rv); } (void) memset(*cs, 0, sizeof (cfga_list_data_t)); rv = physpath2node(ap_id, errstring, &node); if (rv != CFGA_OK) { DBG(1, ("physpath2node failed\n")); return (rv); } if (cfga_get_state(node, &rs, &os) != CFGA_OK) { DBG(1, ("cfga_get_state failed\n")); hp_fini(node); return (CFGA_ERROR); } switch (rs) { case AP_RSTATE_EMPTY: (*cs)->ap_r_state = CFGA_STAT_EMPTY; DBG(2, ("ap_rstate = CFGA_STAT_EMPTY\n")); break; case AP_RSTATE_DISCONNECTED: (*cs)->ap_r_state = CFGA_STAT_DISCONNECTED; DBG(2, ("ap_rstate = CFGA_STAT_DISCONNECTED\n")); break; case AP_RSTATE_CONNECTED: (*cs)->ap_r_state = CFGA_STAT_CONNECTED; DBG(2, ("ap_rstate = CFGA_STAT_CONNECTED\n")); break; default: cfga_err(errstring, CMD_GETSTAT, ap_id, 0); rv = CFGA_ERROR; hp_fini(node); return (rv); } switch (os) { case AP_OSTATE_CONFIGURED: (*cs)->ap_o_state = CFGA_STAT_CONFIGURED; DBG(2, ("ap_ostate = CFGA_STAT_CONFIGURED\n")); break; case AP_OSTATE_UNCONFIGURED: (*cs)->ap_o_state = CFGA_STAT_UNCONFIGURED; DBG(2, ("ap_ostate = CFGA_STAT_UNCONFIGURED\n")); break; default: cfga_err(errstring, CMD_GETSTAT, ap_id, 0); rv = CFGA_ERROR; hp_fini(node); return (rv); } (void) cfga_get_condition(node, &cond); switch (cond) { case AP_COND_OK: (*cs)->ap_cond = CFGA_COND_OK; DBG(2, ("ap_cond = CFGA_COND_OK\n")); break; case AP_COND_FAILING: (*cs)->ap_cond = CFGA_COND_FAILING; DBG(2, ("ap_cond = CFGA_COND_FAILING\n")); break; case AP_COND_FAILED: (*cs)->ap_cond = CFGA_COND_FAILED; DBG(2, ("ap_cond = CFGA_COND_FAILED\n")); break; case AP_COND_UNUSABLE: (*cs)->ap_cond = CFGA_COND_UNUSABLE; DBG(2, ("ap_cond = CFGA_COND_UNUSABLE\n")); break; case AP_COND_UNKNOWN: (*cs)->ap_cond = CFGA_COND_UNKNOWN; DBG(2, ("ap_cond = CFGA_COND_UNKNOW\n")); break; default: cfga_err(errstring, CMD_GETSTAT, ap_id, 0); rv = CFGA_ERROR; hp_fini(node); return (rv); } /* * We're not busy since the entrance into the kernel has been * sync'ed via libhotplug. */ (*cs)->ap_busy = 0; /* last change */ (*cs)->ap_status_time = hp_last_change(node); /* board type */ if (hp_get_private(node, PCIEHPC_PROP_BOARD_TYPE, &tmpb) != 0) boardtype = PCIEHPC_PROP_VALUE_UNKNOWN; else boardtype = get_val_from_result(tmpb); /* card type */ if (hp_get_private(node, PCIEHPC_PROP_CARD_TYPE, &tmpc) != 0) cardtype = PCIEHPC_PROP_VALUE_UNKNOWN; else cardtype = get_val_from_result(tmpc); /* logical ap_id */ rv = fix_ap_name((*cs)->ap_log_id, ap_id, hp_name(node), errstring); DBG(1, ("logical id: %s\n", (*cs)->ap_log_id)); /* physical ap_id */ (void) strcpy((*cs)->ap_phys_id, ap_id); /* physical path of AP */ /* information */ dlpath = findlink((*cs)->ap_phys_id); if (dlpath != NULL) { if (get_dli(dlpath, (*cs)->ap_info, sizeof ((*cs)->ap_info)) != CFGA_OK) (*cs)->ap_info[0] = '\0'; free(dlpath); } if ((*cs)->ap_log_id[0] == '\0') (void) strcpy((*cs)->ap_log_id, hp_name(node)); if ((*cs)->ap_info[0] == '\0') { /* slot_names of bus node */ if (find_physical_slot_names(ap_id, &slotname_arg) != -1) (void) strcpy((*cs)->ap_info, slotname_arg.slotnames[slotname_arg.minor]); } /* class_code/subclass/boardtype */ get_type(boardtype, cardtype, (*cs)->ap_type); DBG(1, ("cfga_list_ext return success\n")); rv = CFGA_OK; free(tmpb); free(tmpc); hp_fini(node); return (rv); } /* * This routine prints a single line of help message */ static void cfga_msg(struct cfga_msg *msgp, const char *str) { DBG(2, ("<%s>", str)); if (msgp == NULL || msgp->message_routine == NULL) return; (*msgp->message_routine)(msgp->appdata_ptr, str); (*msgp->message_routine)(msgp->appdata_ptr, "\n"); } static cfga_err_t check_options(const char *options) { struct cfga_msg *msgp = NULL; if (options) { cfga_msg(msgp, dgettext(TEXT_DOMAIN, cfga_strs[HELP_UNKNOWN])); cfga_msg(msgp, options); return (CFGA_INVAL); } return (CFGA_OK); } /*ARGSUSED*/ cfga_err_t cfga_help(struct cfga_msg *msgp, const char *options, cfga_flags_t flags) { if (options) { cfga_msg(msgp, dgettext(TEXT_DOMAIN, cfga_strs[HELP_UNKNOWN])); cfga_msg(msgp, options); } DBG(1, ("cfga_help\n")); cfga_msg(msgp, dgettext(TEXT_DOMAIN, cfga_strs[HELP_HEADER])); cfga_msg(msgp, cfga_strs[HELP_CONFIG]); cfga_msg(msgp, cfga_strs[HELP_ENABLE_SLOT]); cfga_msg(msgp, cfga_strs[HELP_DISABLE_SLOT]); cfga_msg(msgp, cfga_strs[HELP_ENABLE_AUTOCONF]); cfga_msg(msgp, cfga_strs[HELP_DISABLE_AUTOCONF]); cfga_msg(msgp, cfga_strs[HELP_LED_CNTRL]); return (CFGA_OK); } /* * cfga_err() accepts a variable number of message IDs and constructs * a corresponding error string which is returned via the errstring argument. * cfga_err() calls gettext() to internationalize proper messages. */ static void cfga_err(char **errstring, ...) { int a; int i; int n; int len; int flen; char *p; char *q; char *s[32]; char *failed; va_list ap; /* * If errstring is null it means user is not interested in getting * error status. So we don't do all the work */ if (errstring == NULL) { return; } va_start(ap, errstring); failed = dgettext(TEXT_DOMAIN, cfga_strs[FAILED]); flen = strlen(failed); for (n = len = 0; (a = va_arg(ap, int)) != 0; n++) { switch (a) { case CMD_GETSTAT: case CMD_LIST: case CMD_SLOT_CONNECT: case CMD_SLOT_DISCONNECT: case CMD_SLOT_CONFIGURE: case CMD_SLOT_UNCONFIGURE: p = cfga_errstrs(a); len += (strlen(p) + flen); s[n] = p; s[++n] = cfga_strs[FAILED]; DBG(2, ("<%s>", p)); DBG(2, (cfga_strs[FAILED])); break; case ERR_CMD_INVAL: case ERR_AP_INVAL: case ERR_OPT_INVAL: case ERR_AP_ERR: switch (a) { case ERR_CMD_INVAL: p = dgettext(TEXT_DOMAIN, cfga_errstrs[ERR_CMD_INVAL]); break; case ERR_AP_INVAL: p = dgettext(TEXT_DOMAIN, cfga_errstrs[ERR_AP_INVAL]); break; case ERR_OPT_INVAL: p = dgettext(TEXT_DOMAIN, cfga_errstrs[ERR_OPT_INVAL]); break; case ERR_AP_ERR: p = dgettext(TEXT_DOMAIN, cfga_errstrs[ERR_AP_ERR]); break; } if ((q = va_arg(ap, char *)) != NULL) { len += (strlen(p) + strlen(q)); s[n] = p; s[++n] = q; DBG(2, ("<%s>", p)); DBG(2, ("<%s>", q)); break; } else { len += strlen(p); s[n] = p; } DBG(2, ("<%s>", p)); break; default: n--; break; } } DBG(2, ("\n")); va_end(ap); if ((p = calloc(len + 1, 1)) == NULL) return; for (i = 0; i < n; i++) { (void) strlcat(p, s[i], len + 1); DBG(2, ("i:%d, %s\n", i, s[i])); } *errstring = p; DBG(2, ("%s\n", *errstring)); } /* * cfga_ap_id_cmp -- use default_ap_id_cmp() in libcfgadm */