/* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * The basic framework for this code came from the reference * implementation for MD5. That implementation is Copyright (C) * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. * * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm * Not as fast as one would like -- further optimizations are encouraged * and appreciated. */ #if defined(_STANDALONE) #include #include #define _RESTRICT_KYWD restrict #else #if !defined(_KERNEL) && !defined(_BOOT) #include #include #include #include #include #endif /* !_KERNEL && !_BOOT */ #endif /* _STANDALONE */ #include #if !defined(_STANDALONE) #include #endif #include #include #include #include #include #if defined(_STANDALONE) #include #define HAVE_HTONL #if _BYTE_ORDER == _LITTLE_ENDIAN #undef _BIG_ENDIAN #else #undef _LITTLE_ENDIAN #endif #else #ifdef _LITTLE_ENDIAN #include #define HAVE_HTONL #endif #endif /* _STANDALONE */ #ifdef _BOOT #define bcopy(_s, _d, _l) ((void) memcpy((_d), (_s), (_l))) #define bzero(_m, _l) ((void) memset((_m), 0, (_l))) #endif static void Encode(uint8_t *, const uint32_t *, size_t); #if defined(__sparc) #define SHA1_TRANSFORM(ctx, in) \ SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \ (ctx)->state[3], (ctx)->state[4], (ctx), (in)) static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, SHA1_CTX *, const uint8_t [64]); #elif defined(__amd64) #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1) #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \ (in), (num)) void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks); #else #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in)) static void SHA1Transform(SHA1_CTX *, const uint8_t [64]); #endif static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; /* * F, G, and H are the basic SHA1 functions. */ #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) #define G(b, c, d) ((b) ^ (c) ^ (d)) #define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d))) /* * SHA1Init() * * purpose: initializes the sha1 context and begins and sha1 digest operation * input: SHA1_CTX * : the context to initializes. * output: void */ void SHA1Init(SHA1_CTX *ctx) { ctx->count[0] = ctx->count[1] = 0; /* * load magic initialization constants. Tell lint * that these constants are unsigned by using U. */ ctx->state[0] = 0x67452301U; ctx->state[1] = 0xefcdab89U; ctx->state[2] = 0x98badcfeU; ctx->state[3] = 0x10325476U; ctx->state[4] = 0xc3d2e1f0U; } #ifdef VIS_SHA1 #ifdef _KERNEL #include #include #include /* the alignment for block stores to save fp registers */ #define VIS_ALIGN (64) extern int sha1_savefp(kfpu_t *, int); extern void sha1_restorefp(kfpu_t *); uint32_t vis_sha1_svfp_threshold = 128; #endif /* _KERNEL */ /* * VIS SHA-1 consts. */ static uint64_t VIS[] = { 0x8000000080000000ULL, 0x0002000200020002ULL, 0x5a8279996ed9eba1ULL, 0x8f1bbcdcca62c1d6ULL, 0x012389ab456789abULL}; extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *); /* * SHA1Update() * * purpose: continues an sha1 digest operation, using the message block * to update the context. * input: SHA1_CTX * : the context to update * void * : the message block * size_t : the length of the message block in bytes * output: void */ void SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) { size_t i, buf_index, buf_len; uint64_t X0[40], input64[8]; const uint8_t *input = inptr; uint32_t il; #ifdef _KERNEL int usevis = 0; #else int usevis = 1; #endif /* _KERNEL */ /* check for noop */ if (input_len == 0) return; /* compute number of bytes mod 64 */ buf_index = (ctx->count[1] >> 3) & 0x3F; /* * Extract low 32 bits of input_len; when we adjust * count[0] we must fold in the carry from the * addition of the low bits along with the nonzero * upper bits (if any) from input_len. */ il = input_len & UINT32_MAX; il = il << 3; /* update number of bits */ if ((ctx->count[1] += il) < il) ctx->count[0]++; ctx->count[0] += (input_len >> 29); buf_len = 64 - buf_index; /* transform as many times as possible */ i = 0; if (input_len >= buf_len) { #ifdef _KERNEL kfpu_t *fpu; if (fpu_exists) { uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN]; size_t len = (input_len + buf_index) & ~0x3f; int svfp_ok; fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64); svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0); usevis = fpu_exists && sha1_savefp(fpu, svfp_ok); } else { usevis = 0; } #endif /* _KERNEL */ /* * general optimization: * * only do initial bcopy() and SHA1Transform() if * buf_index != 0. if buf_index == 0, we're just * wasting our time doing the bcopy() since there * wasn't any data left over from a previous call to * SHA1Update(). */ if (buf_index) { bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); if (usevis) { SHA1TransformVIS(X0, ctx->buf_un.buf32, &ctx->state[0], VIS); } else { SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); } i = buf_len; } /* * VIS SHA-1: uses the VIS 1.0 instructions to accelerate * SHA-1 processing. This is achieved by "offloading" the * computation of the message schedule (MS) to the VIS units. * This allows the VIS computation of the message schedule * to be performed in parallel with the standard integer * processing of the remainder of the SHA-1 computation. * performance by up to around 1.37X, compared to an optimized * integer-only implementation. * * The VIS implementation of SHA1Transform has a different API * to the standard integer version: * * void SHA1TransformVIS( * uint64_t *, // Pointer to MS for ith block * uint32_t *, // Pointer to ith block of message data * uint32_t *, // Pointer to SHA state i.e ctx->state * uint64_t *, // Pointer to various VIS constants * ) * * Note: the message data must by 4-byte aligned. * * Function requires VIS 1.0 support. * * Handling is provided to deal with arbitrary byte alingment * of the input data but the performance gains are reduced * for alignments other than 4-bytes. */ if (usevis) { if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) { /* * Main processing loop - input misaligned */ for (; i + 63 < input_len; i += 64) { bcopy(&input[i], input64, 64); SHA1TransformVIS(X0, (uint32_t *)input64, &ctx->state[0], VIS); } } else { /* * Main processing loop - input 8-byte aligned */ for (; i + 63 < input_len; i += 64) { SHA1TransformVIS(X0, /* LINTED E_BAD_PTR_CAST_ALIGN */ (uint32_t *)&input[i], /* CSTYLED */ &ctx->state[0], VIS); } } #ifdef _KERNEL sha1_restorefp(fpu); #endif /* _KERNEL */ } else { for (; i + 63 < input_len; i += 64) { SHA1_TRANSFORM(ctx, &input[i]); } } /* * general optimization: * * if i and input_len are the same, return now instead * of calling bcopy(), since the bcopy() in this case * will be an expensive nop. */ if (input_len == i) return; buf_index = 0; } /* buffer remaining input */ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); } #else /* VIS_SHA1 */ void SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) { size_t i, buf_index, buf_len; const uint8_t *input = inptr; uint32_t il; #if defined(__amd64) size_t block_count; #endif /* __amd64 */ /* check for noop */ if (input_len == 0) return; /* compute number of bytes mod 64 */ buf_index = (ctx->count[1] >> 3) & 0x3F; /* * Extract low 32 bits of input_len; when we adjust * count[0] we must fold in the carry from the * addition of the low bits along with the nonzero * upper bits (if any) from input_len. */ il = input_len & UINT32_MAX; il = il << 3; /* update number of bits */ if ((ctx->count[1] += il) < il) ctx->count[0]++; ctx->count[0] += (input_len >> 29); buf_len = 64 - buf_index; /* transform as many times as possible */ i = 0; if (input_len >= buf_len) { /* * general optimization: * * only do initial bcopy() and SHA1Transform() if * buf_index != 0. if buf_index == 0, we're just * wasting our time doing the bcopy() since there * wasn't any data left over from a previous call to * SHA1Update(). */ if (buf_index) { bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); i = buf_len; } #if !defined(__amd64) for (; i + 63 < input_len; i += 64) SHA1_TRANSFORM(ctx, &input[i]); #else block_count = (input_len - i) >> 6; if (block_count > 0) { SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count); i += block_count << 6; } #endif /* !__amd64 */ /* * general optimization: * * if i and input_len are the same, return now instead * of calling bcopy(), since the bcopy() in this case * will be an expensive nop. */ if (input_len == i) return; buf_index = 0; } /* buffer remaining input */ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); } #endif /* VIS_SHA1 */ /* * SHA1Final() * * purpose: ends an sha1 digest operation, finalizing the message digest and * zeroing the context. * input: uchar_t * : A buffer to store the digest. * : The function actually uses void* because many * : callers pass things other than uchar_t here. * SHA1_CTX * : the context to finalize, save, and zero * output: void */ void SHA1Final(void *digest, SHA1_CTX *ctx) { uint8_t bitcount_be[sizeof (ctx->count)]; uint32_t index = (ctx->count[1] >> 3) & 0x3f; /* store bit count, big endian */ Encode(bitcount_be, ctx->count, sizeof (bitcount_be)); /* pad out to 56 mod 64 */ SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); /* append length (before padding) */ SHA1Update(ctx, bitcount_be, sizeof (bitcount_be)); /* store state in digest */ Encode(digest, ctx->state, sizeof (ctx->state)); /* zeroize sensitive information */ bzero(ctx, sizeof (*ctx)); } #if !defined(__amd64) /* * ROTATE_LEFT rotates x left n bits. */ #if defined(__GNUC__) && defined(_LP64) static __inline__ uint64_t ROTATE_LEFT(uint64_t value, uint32_t n) { uint32_t t32; t32 = (uint32_t)value; return ((t32 << n) | (t32 >> (32 - n))); } #else #define ROTATE_LEFT(x, n) \ (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n)))) #endif typedef uint32_t sha1word; /* * sparc optimization: * * on the sparc, we can load big endian 32-bit data easily. note that * special care must be taken to ensure the address is 32-bit aligned. * in the interest of speed, we don't check to make sure, since * careful programming can guarantee this for us. */ #if defined(_BIG_ENDIAN) #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) #elif defined(HAVE_HTONL) #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) #else /* little endian -- will work on big endian, but slowly */ #define LOAD_BIG_32(addr) \ (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) #endif /* _BIG_ENDIAN */ /* * SHA1Transform() */ #if defined(W_ARRAY) #define W(n) w[n] #else /* !defined(W_ARRAY) */ #define W(n) w_ ## n #endif /* !defined(W_ARRAY) */ #if defined(__sparc) /* * sparc register window optimization: * * `a', `b', `c', `d', and `e' are passed into SHA1Transform * explicitly since it increases the number of registers available to * the compiler. under this scheme, these variables can be held in * %i0 - %i4, which leaves more local and out registers available. * * purpose: sha1 transformation -- updates the digest based on `block' * input: uint32_t : bytes 1 - 4 of the digest * uint32_t : bytes 5 - 8 of the digest * uint32_t : bytes 9 - 12 of the digest * uint32_t : bytes 12 - 16 of the digest * uint32_t : bytes 16 - 20 of the digest * SHA1_CTX * : the context to update * uint8_t [64]: the block to use to update the digest * output: void */ void SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, SHA1_CTX *ctx, const uint8_t blk[64]) { /* * sparc optimization: * * while it is somewhat counter-intuitive, on sparc, it is * more efficient to place all the constants used in this * function in an array and load the values out of the array * than to manually load the constants. this is because * setting a register to a 32-bit value takes two ops in most * cases: a `sethi' and an `or', but loading a 32-bit value * from memory only takes one `ld' (or `lduw' on v9). while * this increases memory usage, the compiler can find enough * other things to do while waiting to keep the pipeline does * not stall. additionally, it is likely that many of these * constants are cached so that later accesses do not even go * out to the bus. * * this array is declared `static' to keep the compiler from * having to bcopy() this array onto the stack frame of * SHA1Transform() each time it is called -- which is * unacceptably expensive. * * the `const' is to ensure that callers are good citizens and * do not try to munge the array. since these routines are * going to be called from inside multithreaded kernelland, * this is a good safety check. -- `sha1_consts' will end up in * .rodata. * * unfortunately, loading from an array in this manner hurts * performance under Intel. So, there is a macro, * SHA1_CONST(), used in SHA1Transform(), that either expands to * a reference to this array, or to the actual constant, * depending on what platform this code is compiled for. */ static const uint32_t sha1_consts[] = { SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3 }; /* * general optimization: * * use individual integers instead of using an array. this is a * win, although the amount it wins by seems to vary quite a bit. */ uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; /* * sparc optimization: * * if `block' is already aligned on a 4-byte boundary, use * LOAD_BIG_32() directly. otherwise, bcopy() into a * buffer that *is* aligned on a 4-byte boundary and then do * the LOAD_BIG_32() on that buffer. benchmarks have shown * that using the bcopy() is better than loading the bytes * individually and doing the endian-swap by hand. * * even though it's quite tempting to assign to do: * * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32)); * * and only have one set of LOAD_BIG_32()'s, the compiler * *does not* like that, so please resist the urge. */ if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15); w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14); w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13); w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12); w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11); w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10); w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9); w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8); w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7); w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6); w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5); w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4); w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3); w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2); w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1); w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0); } else { /* LINTED E_BAD_PTR_CAST_ALIGN */ w_15 = LOAD_BIG_32(blk + 60); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_14 = LOAD_BIG_32(blk + 56); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_13 = LOAD_BIG_32(blk + 52); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_12 = LOAD_BIG_32(blk + 48); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_11 = LOAD_BIG_32(blk + 44); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_10 = LOAD_BIG_32(blk + 40); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_9 = LOAD_BIG_32(blk + 36); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_8 = LOAD_BIG_32(blk + 32); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_7 = LOAD_BIG_32(blk + 28); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_6 = LOAD_BIG_32(blk + 24); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_5 = LOAD_BIG_32(blk + 20); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_4 = LOAD_BIG_32(blk + 16); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_3 = LOAD_BIG_32(blk + 12); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_2 = LOAD_BIG_32(blk + 8); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_1 = LOAD_BIG_32(blk + 4); /* LINTED E_BAD_PTR_CAST_ALIGN */ w_0 = LOAD_BIG_32(blk + 0); } #else /* !defined(__sparc) */ void /* CSTYLED */ SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64]) { /* CSTYLED */ sha1word a = ctx->state[0]; sha1word b = ctx->state[1]; sha1word c = ctx->state[2]; sha1word d = ctx->state[3]; sha1word e = ctx->state[4]; #if defined(W_ARRAY) sha1word w[16]; #else /* !defined(W_ARRAY) */ sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; #endif /* !defined(W_ARRAY) */ W(0) = LOAD_BIG_32((void *)(blk + 0)); W(1) = LOAD_BIG_32((void *)(blk + 4)); W(2) = LOAD_BIG_32((void *)(blk + 8)); W(3) = LOAD_BIG_32((void *)(blk + 12)); W(4) = LOAD_BIG_32((void *)(blk + 16)); W(5) = LOAD_BIG_32((void *)(blk + 20)); W(6) = LOAD_BIG_32((void *)(blk + 24)); W(7) = LOAD_BIG_32((void *)(blk + 28)); W(8) = LOAD_BIG_32((void *)(blk + 32)); W(9) = LOAD_BIG_32((void *)(blk + 36)); W(10) = LOAD_BIG_32((void *)(blk + 40)); W(11) = LOAD_BIG_32((void *)(blk + 44)); W(12) = LOAD_BIG_32((void *)(blk + 48)); W(13) = LOAD_BIG_32((void *)(blk + 52)); W(14) = LOAD_BIG_32((void *)(blk + 56)); W(15) = LOAD_BIG_32((void *)(blk + 60)); #endif /* !defined(__sparc) */ /* * general optimization: * * even though this approach is described in the standard as * being slower algorithmically, it is 30-40% faster than the * "faster" version under SPARC, because this version has more * of the constraints specified at compile-time and uses fewer * variables (and therefore has better register utilization) * than its "speedier" brother. (i've tried both, trust me) * * for either method given in the spec, there is an "assignment" * phase where the following takes place: * * tmp = (main_computation); * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp; * * we can make the algorithm go faster by not doing this work, * but just pretending that `d' is now `e', etc. this works * really well and obviates the need for a temporary variable. * however, we still explicitly perform the rotate action, * since it is cheaper on SPARC to do it once than to have to * do it over and over again. */ /* round 1 */ e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */ b = ROTATE_LEFT(b, 30); d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */ a = ROTATE_LEFT(a, 30); c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */ e = ROTATE_LEFT(e, 30); b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */ d = ROTATE_LEFT(d, 30); a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */ c = ROTATE_LEFT(c, 30); e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */ b = ROTATE_LEFT(b, 30); d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */ a = ROTATE_LEFT(a, 30); c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */ e = ROTATE_LEFT(e, 30); b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */ d = ROTATE_LEFT(d, 30); a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */ c = ROTATE_LEFT(c, 30); e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */ b = ROTATE_LEFT(b, 30); d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */ a = ROTATE_LEFT(a, 30); c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */ e = ROTATE_LEFT(e, 30); b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */ d = ROTATE_LEFT(d, 30); a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */ c = ROTATE_LEFT(c, 30); e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */ b = ROTATE_LEFT(b, 30); W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */ d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0); a = ROTATE_LEFT(a, 30); W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */ c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0); e = ROTATE_LEFT(e, 30); W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */ b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0); d = ROTATE_LEFT(d, 30); W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */ a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0); c = ROTATE_LEFT(c, 30); /* round 2 */ W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1); b = ROTATE_LEFT(b, 30); W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1); a = ROTATE_LEFT(a, 30); W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1); e = ROTATE_LEFT(e, 30); W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1); d = ROTATE_LEFT(d, 30); W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1); c = ROTATE_LEFT(c, 30); W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1); b = ROTATE_LEFT(b, 30); W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1); a = ROTATE_LEFT(a, 30); W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1); e = ROTATE_LEFT(e, 30); W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1); d = ROTATE_LEFT(d, 30); W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1); c = ROTATE_LEFT(c, 30); W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1); b = ROTATE_LEFT(b, 30); W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1); a = ROTATE_LEFT(a, 30); W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1); e = ROTATE_LEFT(e, 30); W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1); d = ROTATE_LEFT(d, 30); W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1); c = ROTATE_LEFT(c, 30); W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1); b = ROTATE_LEFT(b, 30); W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1); a = ROTATE_LEFT(a, 30); W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1); e = ROTATE_LEFT(e, 30); W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1); d = ROTATE_LEFT(d, 30); W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1); c = ROTATE_LEFT(c, 30); /* round 3 */ W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2); b = ROTATE_LEFT(b, 30); W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2); a = ROTATE_LEFT(a, 30); W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2); e = ROTATE_LEFT(e, 30); W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2); d = ROTATE_LEFT(d, 30); W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2); c = ROTATE_LEFT(c, 30); W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2); b = ROTATE_LEFT(b, 30); W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2); a = ROTATE_LEFT(a, 30); W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2); e = ROTATE_LEFT(e, 30); W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2); d = ROTATE_LEFT(d, 30); W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2); c = ROTATE_LEFT(c, 30); W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2); b = ROTATE_LEFT(b, 30); W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2); a = ROTATE_LEFT(a, 30); W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2); e = ROTATE_LEFT(e, 30); W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2); d = ROTATE_LEFT(d, 30); W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2); c = ROTATE_LEFT(c, 30); W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2); b = ROTATE_LEFT(b, 30); W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2); a = ROTATE_LEFT(a, 30); W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2); e = ROTATE_LEFT(e, 30); W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2); d = ROTATE_LEFT(d, 30); W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2); c = ROTATE_LEFT(c, 30); /* round 4 */ W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3); b = ROTATE_LEFT(b, 30); W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3); a = ROTATE_LEFT(a, 30); W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3); e = ROTATE_LEFT(e, 30); W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3); d = ROTATE_LEFT(d, 30); W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3); c = ROTATE_LEFT(c, 30); W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3); b = ROTATE_LEFT(b, 30); W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3); a = ROTATE_LEFT(a, 30); W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3); e = ROTATE_LEFT(e, 30); W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3); d = ROTATE_LEFT(d, 30); W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3); c = ROTATE_LEFT(c, 30); W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3); b = ROTATE_LEFT(b, 30); W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3); a = ROTATE_LEFT(a, 30); W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3); e = ROTATE_LEFT(e, 30); W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3); d = ROTATE_LEFT(d, 30); W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3); c = ROTATE_LEFT(c, 30); W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3); b = ROTATE_LEFT(b, 30); W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3); a = ROTATE_LEFT(a, 30); W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3); e = ROTATE_LEFT(e, 30); W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3); d = ROTATE_LEFT(d, 30); W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */ ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) + SHA1_CONST(3); ctx->state[1] += b; ctx->state[2] += ROTATE_LEFT(c, 30); ctx->state[3] += d; ctx->state[4] += e; /* zeroize sensitive information */ W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0; W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0; } #endif /* !__amd64 */ /* * Encode() * * purpose: to convert a list of numbers from little endian to big endian * input: uint8_t * : place to store the converted big endian numbers * uint32_t * : place to get numbers to convert from * size_t : the length of the input in bytes * output: void */ static void Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, size_t len) { size_t i, j; #if defined(__sparc) if (IS_P2ALIGNED(output, sizeof (uint32_t))) { for (i = 0, j = 0; j < len; i++, j += 4) { /* LINTED E_BAD_PTR_CAST_ALIGN */ *((uint32_t *)(output + j)) = input[i]; } } else { #endif /* little endian -- will work on big endian, but slowly */ for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (input[i] >> 24) & 0xff; output[j + 1] = (input[i] >> 16) & 0xff; output[j + 2] = (input[i] >> 8) & 0xff; output[j + 3] = input[i] & 0xff; } #if defined(__sparc) } #endif }