#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # sha1_block procedure for x86_64. # # It was brought to my attention that on EM64T compiler-generated code # was far behind 32-bit assembler implementation. This is unlike on # Opteron where compiler-generated code was only 15% behind 32-bit # assembler, which originally made it hard to motivate the effort. # There was suggestion to mechanically translate 32-bit code, but I # dismissed it, reasoning that x86_64 offers enough register bank # capacity to fully utilize SHA-1 parallelism. Therefore this fresh # implementation:-) However! While 64-bit code does performs better # on Opteron, I failed to beat 32-bit assembler on EM64T core. Well, # x86_64 does offer larger *addressable* bank, but out-of-order core # reaches for even more registers through dynamic aliasing, and EM64T # core must have managed to run-time optimize even 32-bit code just as # good as 64-bit one. Performance improvement is summarized in the # following table: # # gcc 3.4 32-bit asm cycles/byte # Opteron +45% +20% 6.8 # Xeon P4 +65% +0% 9.9 # Core2 +60% +10% 7.0 # # OpenSolaris OS modifications # # Sun elects to use this software under the BSD license. # # This source originates from OpenSSL file sha1-x86_64.pl at # ftp://ftp.openssl.org/snapshot/openssl-0.9.8-stable-SNAP-20080131.tar.gz # (presumably for future OpenSSL release 0.9.8h), with these changes: # # 1. Added perl "use strict" and declared variables. # # 2. Added OpenSolaris ENTRY_NP/SET_SIZE macros from # /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards. # # 3. Added perl function &lea_offset_eax_register_register() to handle # Solaris as(1) bug. # # 4. Removed x86_64-xlate.pl script (not needed for as(1) or gas(1) assemblers). # use strict; my ($code, $ctx, $inp, $num, $xi, $t0, $t1, $i, @V, $A, $B, $C, $D, $E, $T); my $output = shift; open STDOUT,">$output"; sub lea_offset_eax_register_register # Workaround for a Solaris "gas" assembler bug where compiling the source # errors out and does not generate a valid "lea" instruction. Specifically, # &lea OFFSET(%eax, SOURCE_REGISTER),DESTINATION_REGISTER # # For Solaris as, "as -a32" must be used to compile this. # For Solaris gas 2.15, this errors out with this message: # Error: `0x5a827999(%eax,%r11d)' is not a valid 64 bit base/index expression # # This should be fixed in Solaris gas 2.16. # It assembles with the Linux "as --64" gas 2.17 assembler and runs OK. # # For the ONBLD NV tools, the aw wrapper script fails when -a32 is used: # /ws/onnv-tools/onbld/bin/i386/aw -xarch=amd64 -P -a32 -o lea.o lea.s # aw: as->gas mapping failed at or near arg '-a32' # # For more information, see CRs 6644870 and 6628627. { use Switch; my ($offset, $reg_src, $reg_dest) = @_; # Failed "lea" instruction. # This instruction errors out from the Solaris as assembler. # It assembles with the Linux "as --64" assembler and runs OK. $code .= " /lea $offset(%eax,$reg_src),$reg_dest\n"; # Workaround # This workaround hand-generates hex machine code for lea. $code .= " / Solaris as assembly bug CR 6628627 errors out for\n"; $code .= " / the above, so we specify the machine code in hex:\n"; $code .= " .byte 0x67 / lea\n"; switch ($reg_src) { case "%ebp" { switch ($reg_dest) { case "%r11d" { $code .= " .byte 0x44,0x8d,0x9c,0x28 " . "/ (%eax,$reg_src),$reg_dest\n"; } else { $code .= "Unknown register $reg_dest\n"; } } } case "%edi" { switch ($reg_dest) { case "%ebp" { $code .= " .byte 0x8d,0xac,0x38 " . "/ (%eax,$reg_src),$reg_dest\n"; } else { $code .= "Unknown register $reg_dest\n"; } } } case "%edx" { switch ($reg_dest) { case "%esi" { $code .= " .byte 0x8d,0xb4,0x10 " . "/ (%eax,$reg_src),$reg_dest\n"; } else { $code .= "Unknown register $reg_dest\n"; } } } case "%esi" { switch ($reg_dest) { case "%edi" { $code .= " .byte 0x8d,0xbc,0x30 " . "/ (%eax,$reg_src),$reg_dest\n"; } else { $code .= "Unknown register $reg_dest\n"; } } } case "%r11d" { switch ($reg_dest) { case "%r12d" { $code .= " .byte 0x46,0x8d,0xa4,0x18 " . "/ (%eax,$reg_src),$reg_dest\n"; } else { $code .= "Unknown register $reg_dest\n"; } } } case "%r12d" { switch ($reg_dest) { case "%edx" { $code .= " .byte 0x42,0x8d,0x94,0x20 " . "/ (%eax,$reg_src),$reg_dest\n"; } else { $code .= "Unknown register $reg_dest\n"; } } } else { $code .= "Unknown register $reg_src\n"; } } $code .= " .long $offset / offset\n"; } # # void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t blocks); # # Arguments: $ctx="%rdi"; # 1st arg $inp="%rsi"; # 2nd arg $num="%rdx"; # 3rd arg # reassign arguments in order to produce more compact code $ctx="%r8"; $inp="%r9"; $num="%r10"; # Temporaries: $xi="%eax"; $t0="%ebx"; $t1="%ecx"; # State information from SHA-1 context: $A="%edx"; $B="%esi"; $C="%edi"; $D="%ebp"; $E="%r11d"; # Temporary: $T="%r12d"; @V=($A,$B,$C,$D,$E,$T); sub PROLOGUE { my $func=shift; $code.=<<___; ENTRY_NP($func) push %rbx push %rbp push %r12 mov %rsp,%rax mov %rdi,$ctx # reassigned argument sub \$`8+16*4`,%rsp mov %rsi,$inp # reassigned argument and \$-64,%rsp mov %rdx,$num # reassigned argument mov %rax,`16*4`(%rsp) mov 0($ctx),$A mov 4($ctx),$B mov 8($ctx),$C mov 12($ctx),$D mov 16($ctx),$E ___ } sub EPILOGUE { my $func=shift; $code.=<<___; mov `16*4`(%rsp),%rsp pop %r12 pop %rbp pop %rbx ret SET_SIZE($func) ___ } sub BODY_00_19 { my ($i,$a,$b,$c,$d,$e,$f,$host)=@_; my $j=$i+1; $code.=<<___ if ($i==0); mov `4*$i`($inp),$xi `"bswap $xi" if(!defined($host))` mov $xi,`4*$i`(%rsp) ___ &lea_offset_eax_register_register("0x5a827999", $e, $f) if ($i < 15); $code.=<<___ if ($i<15); /lea 0x5a827999($xi,$e),$f mov $c,$t0 mov `4*$j`($inp),$xi mov $a,$e xor $d,$t0 `"bswap $xi" if(!defined($host))` rol \$5,$e and $b,$t0 mov $xi,`4*$j`(%rsp) add $e,$f xor $d,$t0 rol \$30,$b add $t0,$f ___ &lea_offset_eax_register_register("0x5a827999", $e, $f) if ($i >= 15); $code.=<<___ if ($i>=15); /lea 0x5a827999($xi,$e),$f mov `4*($j%16)`(%rsp),$xi mov $c,$t0 mov $a,$e xor `4*(($j+2)%16)`(%rsp),$xi xor $d,$t0 rol \$5,$e xor `4*(($j+8)%16)`(%rsp),$xi and $b,$t0 add $e,$f xor `4*(($j+13)%16)`(%rsp),$xi xor $d,$t0 rol \$30,$b add $t0,$f rol \$1,$xi mov $xi,`4*($j%16)`(%rsp) ___ } sub BODY_20_39 { my ($i,$a,$b,$c,$d,$e,$f)=@_; my $j=$i+1; my $K=($i<40)?0x6ed9eba1:0xca62c1d6; &lea_offset_eax_register_register($K, $e, $f) if ($i < 79); $code.=<<___ if ($i<79); /lea $K($xi,$e),$f mov `4*($j%16)`(%rsp),$xi mov $c,$t0 mov $a,$e xor `4*(($j+2)%16)`(%rsp),$xi xor $b,$t0 rol \$5,$e xor `4*(($j+8)%16)`(%rsp),$xi xor $d,$t0 add $e,$f xor `4*(($j+13)%16)`(%rsp),$xi rol \$30,$b add $t0,$f rol \$1,$xi ___ $code.=<<___ if ($i<76); mov $xi,`4*($j%16)`(%rsp) ___ &lea_offset_eax_register_register($K, $e, $f) if ($i == 79); $code.=<<___ if ($i==79); /lea $K($xi,$e),$f mov $c,$t0 mov $a,$e xor $b,$t0 rol \$5,$e xor $d,$t0 add $e,$f rol \$30,$b add $t0,$f ___ } sub BODY_40_59 { my ($i,$a,$b,$c,$d,$e,$f)=@_; my $j=$i+1; &lea_offset_eax_register_register("0x8f1bbcdc", $e, $f); $code.=<<___; /lea 0x8f1bbcdc($xi,$e),$f mov `4*($j%16)`(%rsp),$xi mov $b,$t0 mov $b,$t1 xor `4*(($j+2)%16)`(%rsp),$xi mov $a,$e and $c,$t0 xor `4*(($j+8)%16)`(%rsp),$xi or $c,$t1 rol \$5,$e xor `4*(($j+13)%16)`(%rsp),$xi and $d,$t1 add $e,$f rol \$1,$xi or $t1,$t0 rol \$30,$b mov $xi,`4*($j%16)`(%rsp) add $t0,$f ___ } $code=<<___; #if !defined(lint) && !defined(__lint) .ident "%Z%%M% %I% %E% SMI" #include ___ &PROLOGUE("sha1_block_data_order"); $code.=".align 4\n.Lloop:\n"; for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } $code.=<<___; / Update and save state information in SHA-1 context add 0($ctx),$E add 4($ctx),$T add 8($ctx),$A add 12($ctx),$B add 16($ctx),$C mov $E,0($ctx) mov $T,4($ctx) mov $A,8($ctx) mov $B,12($ctx) mov $C,16($ctx) xchg $E,$A # mov $E,$A xchg $T,$B # mov $T,$B xchg $E,$C # mov $A,$C xchg $T,$D # mov $B,$D # mov $C,$E lea `16*4`($inp),$inp sub \$1,$num jnz .Lloop ___ &EPILOGUE("sha1_block_data_order"); $code.=<<___; .asciz "SHA1 block transform for x86_64, CRYPTOGAMS by " #else /* LINTED */ /* Nothing to be linted in this file--it's pure assembly source. */ #endif /* !lint && !__lint */ ___ #################################################################### $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT;