/* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Cleaned-up and optimized version of MD5, based on the reference * implementation provided in RFC 1321. See RSA Copyright information * below. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm */ /* * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. */ #include <sys/types.h> #include <sys/md5.h> #include <sys/md5_consts.h> /* MD5_CONST() optimization */ #include "md5_byteswap.h" #if !defined(_KERNEL) || defined(_BOOT) #include <strings.h> #endif /* !_KERNEL || _BOOT */ #ifdef _KERNEL #include <sys/systm.h> #endif /* _KERNEL */ static void Encode(uint8_t *, const uint32_t *, size_t); #if !defined(__amd64) static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *, const uint8_t [64]); #else void md5_block_asm_host_order(MD5_CTX *ctx, const void *inpp, unsigned int input_length_in_blocks); #endif /* !defined(__amd64) */ static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; /* * F, G, H and I are the basic MD5 functions. */ #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) #define G(b, c, d) (((b) & (d)) | ((c) & (~d))) #define H(b, c, d) ((b) ^ (c) ^ (d)) #define I(b, c, d) ((c) ^ ((b) | (~d))) /* * ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) \ (((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n)))) /* * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. * Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } /* * Loading 32-bit constants on a RISC is expensive since it involves both a * `sethi' and an `or'. thus, we instead have the compiler generate `ld's to * load the constants from an array called `md5_consts'. however, on intel * (and other CISC processors), it is cheaper to load the constant * directly. thus, the c code in MD5Transform() uses the macro MD5_CONST() * which either expands to a constant or an array reference, depending on the * architecture the code is being compiled for. * * Right now, i386 and amd64 are the CISC exceptions. * If we get another CISC ISA, we'll have to change the ifdef. */ #if defined(__i386) || defined(__amd64) #define MD5_CONST(x) (MD5_CONST_ ## x) #define MD5_CONST_e(x) MD5_CONST(x) #define MD5_CONST_o(x) MD5_CONST(x) #else /* * sparc/RISC optimization: * * while it is somewhat counter-intuitive, on sparc (and presumably other RISC * machines), it is more efficient to place all the constants used in this * function in an array and load the values out of the array than to manually * load the constants. this is because setting a register to a 32-bit value * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit * value from memory only takes one `ld' (or `lduw' on v9). while this * increases memory usage, the compiler can find enough other things to do * while waiting to keep the pipeline does not stall. additionally, it is * likely that many of these constants are cached so that later accesses do * not even go out to the bus. * * this array is declared `static' to keep the compiler from having to * bcopy() this array onto the stack frame of MD5Transform() each time it is * called -- which is unacceptably expensive. * * the `const' is to ensure that callers are good citizens and do not try to * munge the array. since these routines are going to be called from inside * multithreaded kernelland, this is a good safety check. -- `constants' will * end up in .rodata. * * unfortunately, loading from an array in this manner hurts performance under * intel (and presumably other CISC machines). so, there is a macro, * MD5_CONST(), used in MD5Transform(), that either expands to a reference to * this array, or to the actual constant, depending on what platform this code * is compiled for. */ #ifdef sun4v /* * Going to load these consts in 8B chunks, so need to enforce 8B alignment */ /* CSTYLED */ #pragma align 64 (md5_consts) #define _MD5_CHECK_ALIGNMENT #endif /* sun4v */ static const uint32_t md5_consts[] = { MD5_CONST_0, MD5_CONST_1, MD5_CONST_2, MD5_CONST_3, MD5_CONST_4, MD5_CONST_5, MD5_CONST_6, MD5_CONST_7, MD5_CONST_8, MD5_CONST_9, MD5_CONST_10, MD5_CONST_11, MD5_CONST_12, MD5_CONST_13, MD5_CONST_14, MD5_CONST_15, MD5_CONST_16, MD5_CONST_17, MD5_CONST_18, MD5_CONST_19, MD5_CONST_20, MD5_CONST_21, MD5_CONST_22, MD5_CONST_23, MD5_CONST_24, MD5_CONST_25, MD5_CONST_26, MD5_CONST_27, MD5_CONST_28, MD5_CONST_29, MD5_CONST_30, MD5_CONST_31, MD5_CONST_32, MD5_CONST_33, MD5_CONST_34, MD5_CONST_35, MD5_CONST_36, MD5_CONST_37, MD5_CONST_38, MD5_CONST_39, MD5_CONST_40, MD5_CONST_41, MD5_CONST_42, MD5_CONST_43, MD5_CONST_44, MD5_CONST_45, MD5_CONST_46, MD5_CONST_47, MD5_CONST_48, MD5_CONST_49, MD5_CONST_50, MD5_CONST_51, MD5_CONST_52, MD5_CONST_53, MD5_CONST_54, MD5_CONST_55, MD5_CONST_56, MD5_CONST_57, MD5_CONST_58, MD5_CONST_59, MD5_CONST_60, MD5_CONST_61, MD5_CONST_62, MD5_CONST_63 }; #ifdef sun4v /* * To reduce the number of loads, load consts in 64-bit * chunks and then split. * * No need to mask upper 32-bits, as just interested in * low 32-bits (saves an & operation and means that this * optimization doesn't increases the icount. */ #define MD5_CONST_e(x) (md5_consts64[x/2] >> 32) #define MD5_CONST_o(x) (md5_consts64[x/2]) #else #define MD5_CONST_e(x) (md5_consts[x]) #define MD5_CONST_o(x) (md5_consts[x]) #endif /* sun4v */ #endif /* * MD5Init() * * purpose: initializes the md5 context and begins and md5 digest operation * input: MD5_CTX * : the context to initialize. * output: void */ void MD5Init(MD5_CTX *ctx) { ctx->count[0] = ctx->count[1] = 0; /* load magic initialization constants */ ctx->state[0] = MD5_INIT_CONST_1; ctx->state[1] = MD5_INIT_CONST_2; ctx->state[2] = MD5_INIT_CONST_3; ctx->state[3] = MD5_INIT_CONST_4; } /* * MD5Update() * * purpose: continues an md5 digest operation, using the message block * to update the context. * input: MD5_CTX * : the context to update * uint8_t * : the message block * uint32_t : the length of the message block in bytes * output: void * * MD5 crunches in 64-byte blocks. All numeric constants here are related to * that property of MD5. */ void MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len) { uint32_t i, buf_index, buf_len; #ifdef sun4v uint32_t old_asi; #endif /* sun4v */ #if defined(__amd64) uint32_t block_count; #endif /* !defined(__amd64) */ const unsigned char *input = (const unsigned char *)inpp; /* compute (number of bytes computed so far) mod 64 */ buf_index = (ctx->count[0] >> 3) & 0x3F; /* update number of bits hashed into this MD5 computation so far */ if ((ctx->count[0] += (input_len << 3)) < (input_len << 3)) ctx->count[1]++; ctx->count[1] += (input_len >> 29); buf_len = 64 - buf_index; /* transform as many times as possible */ i = 0; if (input_len >= buf_len) { /* * general optimization: * * only do initial bcopy() and MD5Transform() if * buf_index != 0. if buf_index == 0, we're just * wasting our time doing the bcopy() since there * wasn't any data left over from a previous call to * MD5Update(). */ #ifdef sun4v /* * For N1 use %asi register. However, costly to repeatedly set * in MD5Transform. Therefore, set once here. * Should probably restore the old value afterwards... */ old_asi = get_little(); set_little(0x88); #endif /* sun4v */ if (buf_index) { bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); #if !defined(__amd64) MD5Transform(ctx->state[0], ctx->state[1], ctx->state[2], ctx->state[3], ctx, ctx->buf_un.buf8); #else md5_block_asm_host_order(ctx, ctx->buf_un.buf8, 1); #endif /* !defined(__amd64) */ i = buf_len; } #if !defined(__amd64) for (; i + 63 < input_len; i += 64) MD5Transform(ctx->state[0], ctx->state[1], ctx->state[2], ctx->state[3], ctx, &input[i]); #else block_count = (input_len - i) >> 6; if (block_count > 0) { md5_block_asm_host_order(ctx, &input[i], block_count); i += block_count << 6; } #endif /* !defined(__amd64) */ #ifdef sun4v /* * Restore old %ASI value */ set_little(old_asi); #endif /* sun4v */ /* * general optimization: * * if i and input_len are the same, return now instead * of calling bcopy(), since the bcopy() in this * case will be an expensive nop. */ if (input_len == i) return; buf_index = 0; } /* buffer remaining input */ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); } /* * MD5Final() * * purpose: ends an md5 digest operation, finalizing the message digest and * zeroing the context. * input: uchar_t * : a buffer to store the digest in * : The function actually uses void* because many * : callers pass things other than uchar_t here. * MD5_CTX * : the context to finalize, save, and zero * output: void */ void MD5Final(void *digest, MD5_CTX *ctx) { uint8_t bitcount_le[sizeof (ctx->count)]; uint32_t index = (ctx->count[0] >> 3) & 0x3f; /* store bit count, little endian */ Encode(bitcount_le, ctx->count, sizeof (bitcount_le)); /* pad out to 56 mod 64 */ MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); /* append length (before padding) */ MD5Update(ctx, bitcount_le, sizeof (bitcount_le)); /* store state in digest */ Encode(digest, ctx->state, sizeof (ctx->state)); /* zeroize sensitive information */ bzero(ctx, sizeof (*ctx)); } #ifndef _KERNEL void md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen) { MD5_CTX context; MD5Init(&context); MD5Update(&context, input, inlen); MD5Final(output, &context); } #endif /* !_KERNEL */ #if !defined(__amd64) /* * sparc register window optimization: * * `a', `b', `c', and `d' are passed into MD5Transform explicitly * since it increases the number of registers available to the * compiler. under this scheme, these variables can be held in * %i0 - %i3, which leaves more local and out registers available. */ /* * MD5Transform() * * purpose: md5 transformation -- updates the digest based on `block' * input: uint32_t : bytes 1 - 4 of the digest * uint32_t : bytes 5 - 8 of the digest * uint32_t : bytes 9 - 12 of the digest * uint32_t : bytes 12 - 16 of the digest * MD5_CTX * : the context to update * uint8_t [64]: the block to use to update the digest * output: void */ static void MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, MD5_CTX *ctx, const uint8_t block[64]) { /* * general optimization: * * use individual integers instead of using an array. this is a * win, although the amount it wins by seems to vary quite a bit. */ register uint32_t x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7; register uint32_t x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15; #ifdef sun4v unsigned long long *md5_consts64; /* LINTED E_BAD_PTR_CAST_ALIGN */ md5_consts64 = (unsigned long long *) md5_consts; #endif /* sun4v */ /* * general optimization: * * the compiler (at least SC4.2/5.x) generates better code if * variable use is localized. in this case, swapping the integers in * this order allows `x_0 'to be swapped nearest to its first use in * FF(), and likewise for `x_1' and up. note that the compiler * prefers this to doing each swap right before the FF() that * uses it. */ /* * sparc v9/v8plus optimization: * * if `block' is already aligned on a 4-byte boundary, use the * optimized load_little_32() directly. otherwise, bcopy() * into a buffer that *is* aligned on a 4-byte boundary and * then do the load_little_32() on that buffer. benchmarks * have shown that using the bcopy() is better than loading * the bytes individually and doing the endian-swap by hand. * * even though it's quite tempting to assign to do: * * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); * * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least * SC4.2/5.x) *does not* like that, so please resist the urge. */ #ifdef _MD5_CHECK_ALIGNMENT if ((uintptr_t)block & 0x3) { /* not 4-byte aligned? */ bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); #ifdef sun4v x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32); x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32); x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32); x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32); x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32); x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32); x_9 = LOAD_LITTLE_32_9(ctx->buf_un.buf32); x_8 = LOAD_LITTLE_32_8(ctx->buf_un.buf32); x_7 = LOAD_LITTLE_32_7(ctx->buf_un.buf32); x_6 = LOAD_LITTLE_32_6(ctx->buf_un.buf32); x_5 = LOAD_LITTLE_32_5(ctx->buf_un.buf32); x_4 = LOAD_LITTLE_32_4(ctx->buf_un.buf32); x_3 = LOAD_LITTLE_32_3(ctx->buf_un.buf32); x_2 = LOAD_LITTLE_32_2(ctx->buf_un.buf32); x_1 = LOAD_LITTLE_32_1(ctx->buf_un.buf32); x_0 = LOAD_LITTLE_32_0(ctx->buf_un.buf32); #else x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15); x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14); x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13); x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12); x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11); x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10); x_9 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 9); x_8 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 8); x_7 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 7); x_6 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 6); x_5 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 5); x_4 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 4); x_3 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 3); x_2 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 2); x_1 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 1); x_0 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 0); #endif /* sun4v */ } else #endif { #ifdef sun4v /* LINTED E_BAD_PTR_CAST_ALIGN */ x_15 = LOAD_LITTLE_32_f(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_14 = LOAD_LITTLE_32_e(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_13 = LOAD_LITTLE_32_d(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_12 = LOAD_LITTLE_32_c(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_11 = LOAD_LITTLE_32_b(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_10 = LOAD_LITTLE_32_a(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_9 = LOAD_LITTLE_32_9(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_8 = LOAD_LITTLE_32_8(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_7 = LOAD_LITTLE_32_7(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_6 = LOAD_LITTLE_32_6(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_5 = LOAD_LITTLE_32_5(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_4 = LOAD_LITTLE_32_4(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_3 = LOAD_LITTLE_32_3(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_2 = LOAD_LITTLE_32_2(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_1 = LOAD_LITTLE_32_1(block); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_0 = LOAD_LITTLE_32_0(block); #else /* LINTED E_BAD_PTR_CAST_ALIGN */ x_15 = LOAD_LITTLE_32(block + 60); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_14 = LOAD_LITTLE_32(block + 56); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_13 = LOAD_LITTLE_32(block + 52); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_12 = LOAD_LITTLE_32(block + 48); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_11 = LOAD_LITTLE_32(block + 44); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_10 = LOAD_LITTLE_32(block + 40); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_9 = LOAD_LITTLE_32(block + 36); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_8 = LOAD_LITTLE_32(block + 32); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_7 = LOAD_LITTLE_32(block + 28); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_6 = LOAD_LITTLE_32(block + 24); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_5 = LOAD_LITTLE_32(block + 20); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_4 = LOAD_LITTLE_32(block + 16); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_3 = LOAD_LITTLE_32(block + 12); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_2 = LOAD_LITTLE_32(block + 8); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_1 = LOAD_LITTLE_32(block + 4); /* LINTED E_BAD_PTR_CAST_ALIGN */ x_0 = LOAD_LITTLE_32(block + 0); #endif /* sun4v */ } /* round 1 */ FF(a, b, c, d, x_0, MD5_SHIFT_11, MD5_CONST_e(0)); /* 1 */ FF(d, a, b, c, x_1, MD5_SHIFT_12, MD5_CONST_o(1)); /* 2 */ FF(c, d, a, b, x_2, MD5_SHIFT_13, MD5_CONST_e(2)); /* 3 */ FF(b, c, d, a, x_3, MD5_SHIFT_14, MD5_CONST_o(3)); /* 4 */ FF(a, b, c, d, x_4, MD5_SHIFT_11, MD5_CONST_e(4)); /* 5 */ FF(d, a, b, c, x_5, MD5_SHIFT_12, MD5_CONST_o(5)); /* 6 */ FF(c, d, a, b, x_6, MD5_SHIFT_13, MD5_CONST_e(6)); /* 7 */ FF(b, c, d, a, x_7, MD5_SHIFT_14, MD5_CONST_o(7)); /* 8 */ FF(a, b, c, d, x_8, MD5_SHIFT_11, MD5_CONST_e(8)); /* 9 */ FF(d, a, b, c, x_9, MD5_SHIFT_12, MD5_CONST_o(9)); /* 10 */ FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */ FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */ FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */ FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */ FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */ FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */ /* round 2 */ GG(a, b, c, d, x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */ GG(d, a, b, c, x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */ GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */ GG(b, c, d, a, x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */ GG(a, b, c, d, x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */ GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */ GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */ GG(b, c, d, a, x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */ GG(a, b, c, d, x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */ GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */ GG(c, d, a, b, x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */ GG(b, c, d, a, x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */ GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */ GG(d, a, b, c, x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */ GG(c, d, a, b, x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */ GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */ /* round 3 */ HH(a, b, c, d, x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */ HH(d, a, b, c, x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */ HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */ HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */ HH(a, b, c, d, x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */ HH(d, a, b, c, x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */ HH(c, d, a, b, x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */ HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */ HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */ HH(d, a, b, c, x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */ HH(c, d, a, b, x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */ HH(b, c, d, a, x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */ HH(a, b, c, d, x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */ HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */ HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */ HH(b, c, d, a, x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */ /* round 4 */ II(a, b, c, d, x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */ II(d, a, b, c, x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */ II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */ II(b, c, d, a, x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */ II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */ II(d, a, b, c, x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */ II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */ II(b, c, d, a, x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */ II(a, b, c, d, x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */ II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */ II(c, d, a, b, x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */ II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */ II(a, b, c, d, x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */ II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */ II(c, d, a, b, x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */ II(b, c, d, a, x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */ ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; /* * zeroize sensitive information -- compiler will optimize * this out if everything is kept in registers */ x_0 = x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = x_8 = 0; x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0; } #endif /* !defined(__amd64) */ /* * Encode() * * purpose: to convert a list of numbers from big endian to little endian * input: uint8_t * : place to store the converted little endian numbers * uint32_t * : place to get numbers to convert from * size_t : the length of the input in bytes * output: void */ static void Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, size_t input_len) { size_t i, j; for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) { #ifdef _LITTLE_ENDIAN #ifdef _MD5_CHECK_ALIGNMENT if ((uintptr_t)output & 0x3) /* Not 4-byte aligned */ bcopy(input + i, output + j, 4); else *(uint32_t *)(output + j) = input[i]; #else /*LINTED E_BAD_PTR_CAST_ALIGN*/ *(uint32_t *)(output + j) = input[i]; #endif /* _MD5_CHECK_ALIGNMENT */ #else /* big endian -- will work on little endian, but slowly */ output[j] = input[i] & 0xff; output[j + 1] = (input[i] >> 8) & 0xff; output[j + 2] = (input[i] >> 16) & 0xff; output[j + 3] = (input[i] >> 24) & 0xff; #endif } }