/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila , Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ /* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for * code implementation. */ #include "mpi.h" #include "mplogic.h" #include "mpi-priv.h" #include "ecl-priv.h" #include "ecp.h" #ifndef _KERNEL #include #include #endif /* Construct a generic GFMethod for arithmetic over prime fields with * irreducible irr. */ GFMethod * GFMethod_consGFp_mont(const mp_int *irr) { mp_err res = MP_OKAY; int i; GFMethod *meth = NULL; mp_mont_modulus *mmm; meth = GFMethod_consGFp(irr); if (meth == NULL) return NULL; #ifdef _KERNEL mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus), FLAG(irr)); #else mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus)); #endif if (mmm == NULL) { res = MP_MEM; goto CLEANUP; } meth->field_mul = &ec_GFp_mul_mont; meth->field_sqr = &ec_GFp_sqr_mont; meth->field_div = &ec_GFp_div_mont; meth->field_enc = &ec_GFp_enc_mont; meth->field_dec = &ec_GFp_dec_mont; meth->extra1 = mmm; meth->extra2 = NULL; meth->extra_free = &ec_GFp_extra_free_mont; mmm->N = meth->irr; i = mpl_significant_bits(&meth->irr); i += MP_DIGIT_BIT - 1; mmm->b = i - i % MP_DIGIT_BIT; mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0)); CLEANUP: if (res != MP_OKAY) { GFMethod_free(meth); return NULL; } return meth; } /* Wrapper functions for generic prime field arithmetic. */ /* Field multiplication using Montgomery reduction. */ mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; #ifdef MP_MONT_USE_MP_MUL /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont * is not implemented and we have to use mp_mul and s_mp_redc directly */ MP_CHECKOK(mp_mul(a, b, r)); MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); #else mp_int s; MP_DIGITS(&s) = 0; /* s_mp_mul_mont doesn't allow source and destination to be the same */ if ((a == r) || (b == r)) { MP_CHECKOK(mp_init(&s, FLAG(a))); MP_CHECKOK(s_mp_mul_mont (a, b, &s, (mp_mont_modulus *) meth->extra1)); MP_CHECKOK(mp_copy(&s, r)); mp_clear(&s); } else { return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1); } #endif CLEANUP: return res; } /* Field squaring using Montgomery reduction. */ mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { return ec_GFp_mul_mont(a, a, r, meth); } /* Field division using Montgomery reduction. */ mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; /* if A=aZ represents a encoded in montgomery coordinates with Z and # * and \ respectively represent multiplication and division in * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv = * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */ MP_CHECKOK(ec_GFp_div(a, b, r, meth)); MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); if (a == NULL) { MP_CHECKOK(ec_GFp_enc_mont(r, r, meth)); } CLEANUP: return res; } /* Encode a field element in Montgomery form. See s_mp_to_mont in * mpi/mpmontg.c */ mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_mont_modulus *mmm; mp_err res = MP_OKAY; mmm = (mp_mont_modulus *) meth->extra1; MP_CHECKOK(mpl_lsh(a, r, mmm->b)); MP_CHECKOK(mp_mod(r, &mmm->N, r)); CLEANUP: return res; } /* Decode a field element from Montgomery form. */ mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; if (a != r) { MP_CHECKOK(mp_copy(a, r)); } MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1)); CLEANUP: return res; } /* Free the memory allocated to the extra fields of Montgomery GFMethod * object. */ void ec_GFp_extra_free_mont(GFMethod *meth) { if (meth->extra1 != NULL) { #ifdef _KERNEL kmem_free(meth->extra1, sizeof(mp_mont_modulus)); #else free(meth->extra1); #endif meth->extra1 = NULL; } }