/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library for prime field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ #include "ecp.h" #include "mpi.h" #include "mplogic.h" #include "mpi-priv.h" #ifndef _KERNEL #include #endif /* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r. * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to * Elliptic Curve Cryptography. */ mp_err ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; int a_bits = mpl_significant_bits(a); int i; /* m1, m2 are statically-allocated mp_int of exactly the size we need */ mp_int m[10]; #ifdef ECL_THIRTY_TWO_BIT mp_digit s[10][12]; for (i = 0; i < 10; i++) { MP_SIGN(&m[i]) = MP_ZPOS; MP_ALLOC(&m[i]) = 12; MP_USED(&m[i]) = 12; MP_DIGITS(&m[i]) = s[i]; } #else mp_digit s[10][6]; for (i = 0; i < 10; i++) { MP_SIGN(&m[i]) = MP_ZPOS; MP_ALLOC(&m[i]) = 6; MP_USED(&m[i]) = 6; MP_DIGITS(&m[i]) = s[i]; } #endif #ifdef ECL_THIRTY_TWO_BIT /* for polynomials larger than twice the field size or polynomials * not using all words, use regular reduction */ if ((a_bits > 768) || (a_bits <= 736)) { MP_CHECKOK(mp_mod(a, &meth->irr, r)); } else { for (i = 0; i < 12; i++) { s[0][i] = MP_DIGIT(a, i); } s[1][0] = 0; s[1][1] = 0; s[1][2] = 0; s[1][3] = 0; s[1][4] = MP_DIGIT(a, 21); s[1][5] = MP_DIGIT(a, 22); s[1][6] = MP_DIGIT(a, 23); s[1][7] = 0; s[1][8] = 0; s[1][9] = 0; s[1][10] = 0; s[1][11] = 0; for (i = 0; i < 12; i++) { s[2][i] = MP_DIGIT(a, i+12); } s[3][0] = MP_DIGIT(a, 21); s[3][1] = MP_DIGIT(a, 22); s[3][2] = MP_DIGIT(a, 23); for (i = 3; i < 12; i++) { s[3][i] = MP_DIGIT(a, i+9); } s[4][0] = 0; s[4][1] = MP_DIGIT(a, 23); s[4][2] = 0; s[4][3] = MP_DIGIT(a, 20); for (i = 4; i < 12; i++) { s[4][i] = MP_DIGIT(a, i+8); } s[5][0] = 0; s[5][1] = 0; s[5][2] = 0; s[5][3] = 0; s[5][4] = MP_DIGIT(a, 20); s[5][5] = MP_DIGIT(a, 21); s[5][6] = MP_DIGIT(a, 22); s[5][7] = MP_DIGIT(a, 23); s[5][8] = 0; s[5][9] = 0; s[5][10] = 0; s[5][11] = 0; s[6][0] = MP_DIGIT(a, 20); s[6][1] = 0; s[6][2] = 0; s[6][3] = MP_DIGIT(a, 21); s[6][4] = MP_DIGIT(a, 22); s[6][5] = MP_DIGIT(a, 23); s[6][6] = 0; s[6][7] = 0; s[6][8] = 0; s[6][9] = 0; s[6][10] = 0; s[6][11] = 0; s[7][0] = MP_DIGIT(a, 23); for (i = 1; i < 12; i++) { s[7][i] = MP_DIGIT(a, i+11); } s[8][0] = 0; s[8][1] = MP_DIGIT(a, 20); s[8][2] = MP_DIGIT(a, 21); s[8][3] = MP_DIGIT(a, 22); s[8][4] = MP_DIGIT(a, 23); s[8][5] = 0; s[8][6] = 0; s[8][7] = 0; s[8][8] = 0; s[8][9] = 0; s[8][10] = 0; s[8][11] = 0; s[9][0] = 0; s[9][1] = 0; s[9][2] = 0; s[9][3] = MP_DIGIT(a, 23); s[9][4] = MP_DIGIT(a, 23); s[9][5] = 0; s[9][6] = 0; s[9][7] = 0; s[9][8] = 0; s[9][9] = 0; s[9][10] = 0; s[9][11] = 0; MP_CHECKOK(mp_add(&m[0], &m[1], r)); MP_CHECKOK(mp_add(r, &m[1], r)); MP_CHECKOK(mp_add(r, &m[2], r)); MP_CHECKOK(mp_add(r, &m[3], r)); MP_CHECKOK(mp_add(r, &m[4], r)); MP_CHECKOK(mp_add(r, &m[5], r)); MP_CHECKOK(mp_add(r, &m[6], r)); MP_CHECKOK(mp_sub(r, &m[7], r)); MP_CHECKOK(mp_sub(r, &m[8], r)); MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); s_mp_clamp(r); } #else /* for polynomials larger than twice the field size or polynomials * not using all words, use regular reduction */ if ((a_bits > 768) || (a_bits <= 736)) { MP_CHECKOK(mp_mod(a, &meth->irr, r)); } else { for (i = 0; i < 6; i++) { s[0][i] = MP_DIGIT(a, i); } s[1][0] = 0; s[1][1] = 0; s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); s[1][3] = MP_DIGIT(a, 11) >> 32; s[1][4] = 0; s[1][5] = 0; for (i = 0; i < 6; i++) { s[2][i] = MP_DIGIT(a, i+6); } s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); for (i = 2; i < 6; i++) { s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32); } s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32; s[4][1] = MP_DIGIT(a, 10) << 32; for (i = 2; i < 6; i++) { s[4][i] = MP_DIGIT(a, i+4); } s[5][0] = 0; s[5][1] = 0; s[5][2] = MP_DIGIT(a, 10); s[5][3] = MP_DIGIT(a, 11); s[5][4] = 0; s[5][5] = 0; s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32; s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32; s[6][2] = MP_DIGIT(a, 11); s[6][3] = 0; s[6][4] = 0; s[6][5] = 0; s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32); for (i = 1; i < 6; i++) { s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32); } s[8][0] = MP_DIGIT(a, 10) << 32; s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32); s[8][2] = MP_DIGIT(a, 11) >> 32; s[8][3] = 0; s[8][4] = 0; s[8][5] = 0; s[9][0] = 0; s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32; s[9][2] = MP_DIGIT(a, 11) >> 32; s[9][3] = 0; s[9][4] = 0; s[9][5] = 0; MP_CHECKOK(mp_add(&m[0], &m[1], r)); MP_CHECKOK(mp_add(r, &m[1], r)); MP_CHECKOK(mp_add(r, &m[2], r)); MP_CHECKOK(mp_add(r, &m[3], r)); MP_CHECKOK(mp_add(r, &m[4], r)); MP_CHECKOK(mp_add(r, &m[5], r)); MP_CHECKOK(mp_add(r, &m[6], r)); MP_CHECKOK(mp_sub(r, &m[7], r)); MP_CHECKOK(mp_sub(r, &m[8], r)); MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r)); s_mp_clamp(r); } #endif CLEANUP: return res; } /* Compute the square of polynomial a, reduce modulo p384. Store the * result in r. r could be a. Uses optimized modular reduction for p384. */ mp_err ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_sqr(a, r)); MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); CLEANUP: return res; } /* Compute the product of two polynomials a and b, reduce modulo p384. * Store the result in r. r could be a or b; a could be b. Uses * optimized modular reduction for p384. */ mp_err ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; MP_CHECKOK(mp_mul(a, b, r)); MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth)); CLEANUP: return res; } /* Wire in fast field arithmetic and precomputation of base point for * named curves. */ mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName name) { if (name == ECCurve_NIST_P384) { group->meth->field_mod = &ec_GFp_nistp384_mod; group->meth->field_mul = &ec_GFp_nistp384_mul; group->meth->field_sqr = &ec_GFp_nistp384_sqr; } return MP_OKAY; }