/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library for prime field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila , Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ #ifndef _ECP_H #define _ECP_H #include "ecl-priv.h" /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py); /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py); /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, * qy). Uses affine coordinates. */ mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = P - Q. Uses affine coordinates. */ mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = 2P. Uses affine coordinates. */ mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); /* Validates a point on a GFp curve. */ mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); #ifdef ECL_ENABLE_GFP_PT_MUL_AFF /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the prime that * determines the field GFp. Uses affine coordinates. */ mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif /* Converts a point P(px, py) from affine coordinates to Jacobian * projective coordinates R(rx, ry, rz). */ mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); /* Converts a point P(px, py, pz) from Jacobian projective coordinates to * affine coordinates R(rx, ry). */ mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz, mp_int *rx, mp_int *ry, const ECGroup *group); /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian * coordinates. */ mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz); /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian * coordinates. */ mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz); /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is * (qx, qy, qz). Uses Jacobian coordinates. */ mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); /* Computes R = 2P. Uses Jacobian coordinates. */ mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); #ifdef ECL_ENABLE_GFP_PT_MUL_JAC /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the prime that * determines the field GFp. Uses Jacobian coordinates. */ mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif /* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator * (base point) of the group of points on the elliptic curve. Allows k1 = * NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine * coordinates. Input and output values are assumed to be NOT * field-encoded and are in affine form. */ mp_err ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic * curve points P and R can be identical. Uses mixed Modified-Jacobian * co-ordinates for doubling and Chudnovsky Jacobian coordinates for * additions. Assumes input is already field-encoded using field_enc, and * returns output that is still field-encoded. Uses 5-bit window NAF * method (algorithm 11) for scalar-point multiplication from Brown, * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic * Curves Over Prime Fields. */ mp_err ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif /* _ECP_H */