/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Stephen Fung <fungstep@hotmail.com> and * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ #include "mpi.h" #include "mp_gf2m.h" #include "ecl-priv.h" #include "mpi-priv.h" #ifndef _KERNEL #include <stdlib.h> #endif /* Allocate memory for a new GFMethod object. */ GFMethod * GFMethod_new(int kmflag) { mp_err res = MP_OKAY; GFMethod *meth; #ifdef _KERNEL meth = (GFMethod *) kmem_alloc(sizeof(GFMethod), kmflag); #else meth = (GFMethod *) malloc(sizeof(GFMethod)); if (meth == NULL) return NULL; #endif meth->constructed = MP_YES; MP_DIGITS(&meth->irr) = 0; meth->extra_free = NULL; MP_CHECKOK(mp_init(&meth->irr, kmflag)); CLEANUP: if (res != MP_OKAY) { GFMethod_free(meth); return NULL; } return meth; } /* Construct a generic GFMethod for arithmetic over prime fields with * irreducible irr. */ GFMethod * GFMethod_consGFp(const mp_int *irr) { mp_err res = MP_OKAY; GFMethod *meth = NULL; meth = GFMethod_new(FLAG(irr)); if (meth == NULL) return NULL; MP_CHECKOK(mp_copy(irr, &meth->irr)); meth->irr_arr[0] = mpl_significant_bits(irr); meth->irr_arr[1] = meth->irr_arr[2] = meth->irr_arr[3] = meth->irr_arr[4] = 0; switch(MP_USED(&meth->irr)) { /* maybe we need 1 and 2 words here as well?*/ case 3: meth->field_add = &ec_GFp_add_3; meth->field_sub = &ec_GFp_sub_3; break; case 4: meth->field_add = &ec_GFp_add_4; meth->field_sub = &ec_GFp_sub_4; break; case 5: meth->field_add = &ec_GFp_add_5; meth->field_sub = &ec_GFp_sub_5; break; case 6: meth->field_add = &ec_GFp_add_6; meth->field_sub = &ec_GFp_sub_6; break; default: meth->field_add = &ec_GFp_add; meth->field_sub = &ec_GFp_sub; } meth->field_neg = &ec_GFp_neg; meth->field_mod = &ec_GFp_mod; meth->field_mul = &ec_GFp_mul; meth->field_sqr = &ec_GFp_sqr; meth->field_div = &ec_GFp_div; meth->field_enc = NULL; meth->field_dec = NULL; meth->extra1 = NULL; meth->extra2 = NULL; meth->extra_free = NULL; CLEANUP: if (res != MP_OKAY) { GFMethod_free(meth); return NULL; } return meth; } /* Construct a generic GFMethod for arithmetic over binary polynomial * fields with irreducible irr that has array representation irr_arr (see * ecl-priv.h for description of the representation). If irr_arr is NULL, * then it is constructed from the bitstring representation. */ GFMethod * GFMethod_consGF2m(const mp_int *irr, const unsigned int irr_arr[5]) { mp_err res = MP_OKAY; int ret; GFMethod *meth = NULL; meth = GFMethod_new(FLAG(irr)); if (meth == NULL) return NULL; MP_CHECKOK(mp_copy(irr, &meth->irr)); if (irr_arr != NULL) { /* Irreducible polynomials are either trinomials or pentanomials. */ meth->irr_arr[0] = irr_arr[0]; meth->irr_arr[1] = irr_arr[1]; meth->irr_arr[2] = irr_arr[2]; if (irr_arr[2] > 0) { meth->irr_arr[3] = irr_arr[3]; meth->irr_arr[4] = irr_arr[4]; } else { meth->irr_arr[3] = meth->irr_arr[4] = 0; } } else { ret = mp_bpoly2arr(irr, meth->irr_arr, 5); /* Irreducible polynomials are either trinomials or pentanomials. */ if ((ret != 5) && (ret != 3)) { res = MP_UNDEF; goto CLEANUP; } } meth->field_add = &ec_GF2m_add; meth->field_neg = &ec_GF2m_neg; meth->field_sub = &ec_GF2m_add; meth->field_mod = &ec_GF2m_mod; meth->field_mul = &ec_GF2m_mul; meth->field_sqr = &ec_GF2m_sqr; meth->field_div = &ec_GF2m_div; meth->field_enc = NULL; meth->field_dec = NULL; meth->extra1 = NULL; meth->extra2 = NULL; meth->extra_free = NULL; CLEANUP: if (res != MP_OKAY) { GFMethod_free(meth); return NULL; } return meth; } /* Free the memory allocated (if any) to a GFMethod object. */ void GFMethod_free(GFMethod *meth) { if (meth == NULL) return; if (meth->constructed == MP_NO) return; mp_clear(&meth->irr); if (meth->extra_free != NULL) meth->extra_free(meth); #ifdef _KERNEL kmem_free(meth, sizeof(GFMethod)); #else free(meth); #endif } /* Wrapper functions for generic prime field arithmetic. */ /* Add two field elements. Assumes that 0 <= a, b < meth->irr */ mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a + b (mod p) */ mp_err res; if ((res = mp_add(a, b, r)) != MP_OKAY) { return res; } if (mp_cmp(r, &meth->irr) >= 0) { return mp_sub(r, &meth->irr, r); } return res; } /* Negates a field element. Assumes that 0 <= a < meth->irr */ mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth) { /* PRE: 0 <= a < p = meth->irr POST: 0 <= r < p, r = -a (mod p) */ if (mp_cmp_z(a) == 0) { mp_zero(r); return MP_OKAY; } return mp_sub(&meth->irr, a, r); } /* Subtracts two field elements. Assumes that 0 <= a, b < meth->irr */ mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a - b (mod p) */ res = mp_sub(a, b, r); if (res == MP_RANGE) { MP_CHECKOK(mp_sub(b, a, r)); if (mp_cmp_z(r) < 0) { MP_CHECKOK(mp_add(r, &meth->irr, r)); } MP_CHECKOK(ec_GFp_neg(r, r, meth)); } if (mp_cmp_z(r) < 0) { MP_CHECKOK(mp_add(r, &meth->irr, r)); } CLEANUP: return res; } /* * Inline adds for small curve lengths. */ /* 3 words */ mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit a0 = 0, a1 = 0, a2 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0; mp_digit carry; switch(MP_USED(a)) { case 3: a2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: a1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: a0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 3: r2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(b,0); } #ifndef MPI_AMD64_ADD MP_ADD_CARRY(a0, r0, r0, 0, carry); MP_ADD_CARRY(a1, r1, r1, carry, carry); MP_ADD_CARRY(a2, r2, r2, carry, carry); #else __asm__ ( "xorq %3,%3 \n\t" "addq %4,%0 \n\t" "adcq %5,%1 \n\t" "adcq %6,%2 \n\t" "adcq $0,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry) : "r" (a0), "r" (a1), "r" (a2), "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif MP_CHECKOK(s_mp_pad(r, 3)); MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 3; /* Do quick 'subract' if we've gone over * (add the 2's complement of the curve field) */ a2 = MP_DIGIT(&meth->irr,2); if (carry || r2 > a2 || ((r2 == a2) && mp_cmp(r,&meth->irr) != MP_LT)) { a1 = MP_DIGIT(&meth->irr,1); a0 = MP_DIGIT(&meth->irr,0); #ifndef MPI_AMD64_ADD MP_SUB_BORROW(r0, a0, r0, 0, carry); MP_SUB_BORROW(r1, a1, r1, carry, carry); MP_SUB_BORROW(r2, a2, r2, carry, carry); #else __asm__ ( "subq %3,%0 \n\t" "sbbq %4,%1 \n\t" "sbbq %5,%2 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2) : "r" (a0), "r" (a1), "r" (a2), "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; } s_mp_clamp(r); CLEANUP: return res; } /* 4 words */ mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0; mp_digit carry; switch(MP_USED(a)) { case 4: a3 = MP_DIGIT(a,3); /* FALLTHROUGH */ case 3: a2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: a1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: a0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 4: r3 = MP_DIGIT(b,3); /* FALLTHROUGH */ case 3: r2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(b,0); } #ifndef MPI_AMD64_ADD MP_ADD_CARRY(a0, r0, r0, 0, carry); MP_ADD_CARRY(a1, r1, r1, carry, carry); MP_ADD_CARRY(a2, r2, r2, carry, carry); MP_ADD_CARRY(a3, r3, r3, carry, carry); #else __asm__ ( "xorq %4,%4 \n\t" "addq %5,%0 \n\t" "adcq %6,%1 \n\t" "adcq %7,%2 \n\t" "adcq %8,%3 \n\t" "adcq $0,%4 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(carry) : "r" (a0), "r" (a1), "r" (a2), "r" (a3), "0" (r0), "1" (r1), "2" (r2), "3" (r3) : "%cc" ); #endif MP_CHECKOK(s_mp_pad(r, 4)); MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 4; /* Do quick 'subract' if we've gone over * (add the 2's complement of the curve field) */ a3 = MP_DIGIT(&meth->irr,3); if (carry || r3 > a3 || ((r3 == a3) && mp_cmp(r,&meth->irr) != MP_LT)) { a2 = MP_DIGIT(&meth->irr,2); a1 = MP_DIGIT(&meth->irr,1); a0 = MP_DIGIT(&meth->irr,0); #ifndef MPI_AMD64_ADD MP_SUB_BORROW(r0, a0, r0, 0, carry); MP_SUB_BORROW(r1, a1, r1, carry, carry); MP_SUB_BORROW(r2, a2, r2, carry, carry); MP_SUB_BORROW(r3, a3, r3, carry, carry); #else __asm__ ( "subq %4,%0 \n\t" "sbbq %5,%1 \n\t" "sbbq %6,%2 \n\t" "sbbq %7,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3) : "r" (a0), "r" (a1), "r" (a2), "r" (a3), "0" (r0), "1" (r1), "2" (r2), "3" (r3) : "%cc" ); #endif MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; } s_mp_clamp(r); CLEANUP: return res; } /* 5 words */ mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0; mp_digit carry; switch(MP_USED(a)) { case 5: a4 = MP_DIGIT(a,4); /* FALLTHROUGH */ case 4: a3 = MP_DIGIT(a,3); /* FALLTHROUGH */ case 3: a2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: a1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: a0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 5: r4 = MP_DIGIT(b,4); /* FALLTHROUGH */ case 4: r3 = MP_DIGIT(b,3); /* FALLTHROUGH */ case 3: r2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(b,0); } MP_ADD_CARRY(a0, r0, r0, 0, carry); MP_ADD_CARRY(a1, r1, r1, carry, carry); MP_ADD_CARRY(a2, r2, r2, carry, carry); MP_ADD_CARRY(a3, r3, r3, carry, carry); MP_ADD_CARRY(a4, r4, r4, carry, carry); MP_CHECKOK(s_mp_pad(r, 5)); MP_DIGIT(r, 4) = r4; MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 5; /* Do quick 'subract' if we've gone over * (add the 2's complement of the curve field) */ a4 = MP_DIGIT(&meth->irr,4); if (carry || r4 > a4 || ((r4 == a4) && mp_cmp(r,&meth->irr) != MP_LT)) { a3 = MP_DIGIT(&meth->irr,3); a2 = MP_DIGIT(&meth->irr,2); a1 = MP_DIGIT(&meth->irr,1); a0 = MP_DIGIT(&meth->irr,0); MP_SUB_BORROW(r0, a0, r0, 0, carry); MP_SUB_BORROW(r1, a1, r1, carry, carry); MP_SUB_BORROW(r2, a2, r2, carry, carry); MP_SUB_BORROW(r3, a3, r3, carry, carry); MP_SUB_BORROW(r4, a4, r4, carry, carry); MP_DIGIT(r, 4) = r4; MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; } s_mp_clamp(r); CLEANUP: return res; } /* 6 words */ mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0; mp_digit carry; switch(MP_USED(a)) { case 6: a5 = MP_DIGIT(a,5); /* FALLTHROUGH */ case 5: a4 = MP_DIGIT(a,4); /* FALLTHROUGH */ case 4: a3 = MP_DIGIT(a,3); /* FALLTHROUGH */ case 3: a2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: a1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: a0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 6: r5 = MP_DIGIT(b,5); /* FALLTHROUGH */ case 5: r4 = MP_DIGIT(b,4); /* FALLTHROUGH */ case 4: r3 = MP_DIGIT(b,3); /* FALLTHROUGH */ case 3: r2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(b,0); } MP_ADD_CARRY(a0, r0, r0, 0, carry); MP_ADD_CARRY(a1, r1, r1, carry, carry); MP_ADD_CARRY(a2, r2, r2, carry, carry); MP_ADD_CARRY(a3, r3, r3, carry, carry); MP_ADD_CARRY(a4, r4, r4, carry, carry); MP_ADD_CARRY(a5, r5, r5, carry, carry); MP_CHECKOK(s_mp_pad(r, 6)); MP_DIGIT(r, 5) = r5; MP_DIGIT(r, 4) = r4; MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 6; /* Do quick 'subract' if we've gone over * (add the 2's complement of the curve field) */ a5 = MP_DIGIT(&meth->irr,5); if (carry || r5 > a5 || ((r5 == a5) && mp_cmp(r,&meth->irr) != MP_LT)) { a4 = MP_DIGIT(&meth->irr,4); a3 = MP_DIGIT(&meth->irr,3); a2 = MP_DIGIT(&meth->irr,2); a1 = MP_DIGIT(&meth->irr,1); a0 = MP_DIGIT(&meth->irr,0); MP_SUB_BORROW(r0, a0, r0, 0, carry); MP_SUB_BORROW(r1, a1, r1, carry, carry); MP_SUB_BORROW(r2, a2, r2, carry, carry); MP_SUB_BORROW(r3, a3, r3, carry, carry); MP_SUB_BORROW(r4, a4, r4, carry, carry); MP_SUB_BORROW(r5, a5, r5, carry, carry); MP_DIGIT(r, 5) = r5; MP_DIGIT(r, 4) = r4; MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; } s_mp_clamp(r); CLEANUP: return res; } /* * The following subraction functions do in-line subractions based * on our curve size. * * ... 3 words */ mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit b0 = 0, b1 = 0, b2 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0; mp_digit borrow; switch(MP_USED(a)) { case 3: r2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 3: b2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: b1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: b0 = MP_DIGIT(b,0); } #ifndef MPI_AMD64_ADD MP_SUB_BORROW(r0, b0, r0, 0, borrow); MP_SUB_BORROW(r1, b1, r1, borrow, borrow); MP_SUB_BORROW(r2, b2, r2, borrow, borrow); #else __asm__ ( "xorq %3,%3 \n\t" "subq %4,%0 \n\t" "sbbq %5,%1 \n\t" "sbbq %6,%2 \n\t" "adcq $0,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r" (borrow) : "r" (b0), "r" (b1), "r" (b2), "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif /* Do quick 'add' if we've gone under 0 * (subtract the 2's complement of the curve field) */ if (borrow) { b2 = MP_DIGIT(&meth->irr,2); b1 = MP_DIGIT(&meth->irr,1); b0 = MP_DIGIT(&meth->irr,0); #ifndef MPI_AMD64_ADD MP_ADD_CARRY(b0, r0, r0, 0, borrow); MP_ADD_CARRY(b1, r1, r1, borrow, borrow); MP_ADD_CARRY(b2, r2, r2, borrow, borrow); #else __asm__ ( "addq %3,%0 \n\t" "adcq %4,%1 \n\t" "adcq %5,%2 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2) : "r" (b0), "r" (b1), "r" (b2), "0" (r0), "1" (r1), "2" (r2) : "%cc" ); #endif } #ifdef MPI_AMD64_ADD /* compiler fakeout? */ if ((r2 == b0) && (r1 == b0) && (r0 == b0)) { MP_CHECKOK(s_mp_pad(r, 4)); } #endif MP_CHECKOK(s_mp_pad(r, 3)); MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 3; s_mp_clamp(r); CLEANUP: return res; } /* 4 words */ mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0; mp_digit borrow; switch(MP_USED(a)) { case 4: r3 = MP_DIGIT(a,3); /* FALLTHROUGH */ case 3: r2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 4: b3 = MP_DIGIT(b,3); /* FALLTHROUGH */ case 3: b2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: b1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: b0 = MP_DIGIT(b,0); } #ifndef MPI_AMD64_ADD MP_SUB_BORROW(r0, b0, r0, 0, borrow); MP_SUB_BORROW(r1, b1, r1, borrow, borrow); MP_SUB_BORROW(r2, b2, r2, borrow, borrow); MP_SUB_BORROW(r3, b3, r3, borrow, borrow); #else __asm__ ( "xorq %4,%4 \n\t" "subq %5,%0 \n\t" "sbbq %6,%1 \n\t" "sbbq %7,%2 \n\t" "sbbq %8,%3 \n\t" "adcq $0,%4 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r" (borrow) : "r" (b0), "r" (b1), "r" (b2), "r" (b3), "0" (r0), "1" (r1), "2" (r2), "3" (r3) : "%cc" ); #endif /* Do quick 'add' if we've gone under 0 * (subtract the 2's complement of the curve field) */ if (borrow) { b3 = MP_DIGIT(&meth->irr,3); b2 = MP_DIGIT(&meth->irr,2); b1 = MP_DIGIT(&meth->irr,1); b0 = MP_DIGIT(&meth->irr,0); #ifndef MPI_AMD64_ADD MP_ADD_CARRY(b0, r0, r0, 0, borrow); MP_ADD_CARRY(b1, r1, r1, borrow, borrow); MP_ADD_CARRY(b2, r2, r2, borrow, borrow); MP_ADD_CARRY(b3, r3, r3, borrow, borrow); #else __asm__ ( "addq %4,%0 \n\t" "adcq %5,%1 \n\t" "adcq %6,%2 \n\t" "adcq %7,%3 \n\t" : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3) : "r" (b0), "r" (b1), "r" (b2), "r" (b3), "0" (r0), "1" (r1), "2" (r2), "3" (r3) : "%cc" ); #endif } #ifdef MPI_AMD64_ADD /* compiler fakeout? */ if ((r3 == b0) && (r1 == b0) && (r0 == b0)) { MP_CHECKOK(s_mp_pad(r, 4)); } #endif MP_CHECKOK(s_mp_pad(r, 4)); MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 4; s_mp_clamp(r); CLEANUP: return res; } /* 5 words */ mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0; mp_digit borrow; switch(MP_USED(a)) { case 5: r4 = MP_DIGIT(a,4); /* FALLTHROUGH */ case 4: r3 = MP_DIGIT(a,3); /* FALLTHROUGH */ case 3: r2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 5: b4 = MP_DIGIT(b,4); /* FALLTHROUGH */ case 4: b3 = MP_DIGIT(b,3); /* FALLTHROUGH */ case 3: b2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: b1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: b0 = MP_DIGIT(b,0); } MP_SUB_BORROW(r0, b0, r0, 0, borrow); MP_SUB_BORROW(r1, b1, r1, borrow, borrow); MP_SUB_BORROW(r2, b2, r2, borrow, borrow); MP_SUB_BORROW(r3, b3, r3, borrow, borrow); MP_SUB_BORROW(r4, b4, r4, borrow, borrow); /* Do quick 'add' if we've gone under 0 * (subtract the 2's complement of the curve field) */ if (borrow) { b4 = MP_DIGIT(&meth->irr,4); b3 = MP_DIGIT(&meth->irr,3); b2 = MP_DIGIT(&meth->irr,2); b1 = MP_DIGIT(&meth->irr,1); b0 = MP_DIGIT(&meth->irr,0); MP_ADD_CARRY(b0, r0, r0, 0, borrow); MP_ADD_CARRY(b1, r1, r1, borrow, borrow); MP_ADD_CARRY(b2, r2, r2, borrow, borrow); MP_ADD_CARRY(b3, r3, r3, borrow, borrow); } MP_CHECKOK(s_mp_pad(r, 5)); MP_DIGIT(r, 4) = r4; MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 5; s_mp_clamp(r); CLEANUP: return res; } /* 6 words */ mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0; mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0; mp_digit borrow; switch(MP_USED(a)) { case 6: r5 = MP_DIGIT(a,5); /* FALLTHROUGH */ case 5: r4 = MP_DIGIT(a,4); /* FALLTHROUGH */ case 4: r3 = MP_DIGIT(a,3); /* FALLTHROUGH */ case 3: r2 = MP_DIGIT(a,2); /* FALLTHROUGH */ case 2: r1 = MP_DIGIT(a,1); /* FALLTHROUGH */ case 1: r0 = MP_DIGIT(a,0); } switch(MP_USED(b)) { case 6: b5 = MP_DIGIT(b,5); /* FALLTHROUGH */ case 5: b4 = MP_DIGIT(b,4); /* FALLTHROUGH */ case 4: b3 = MP_DIGIT(b,3); /* FALLTHROUGH */ case 3: b2 = MP_DIGIT(b,2); /* FALLTHROUGH */ case 2: b1 = MP_DIGIT(b,1); /* FALLTHROUGH */ case 1: b0 = MP_DIGIT(b,0); } MP_SUB_BORROW(r0, b0, r0, 0, borrow); MP_SUB_BORROW(r1, b1, r1, borrow, borrow); MP_SUB_BORROW(r2, b2, r2, borrow, borrow); MP_SUB_BORROW(r3, b3, r3, borrow, borrow); MP_SUB_BORROW(r4, b4, r4, borrow, borrow); MP_SUB_BORROW(r5, b5, r5, borrow, borrow); /* Do quick 'add' if we've gone under 0 * (subtract the 2's complement of the curve field) */ if (borrow) { b5 = MP_DIGIT(&meth->irr,5); b4 = MP_DIGIT(&meth->irr,4); b3 = MP_DIGIT(&meth->irr,3); b2 = MP_DIGIT(&meth->irr,2); b1 = MP_DIGIT(&meth->irr,1); b0 = MP_DIGIT(&meth->irr,0); MP_ADD_CARRY(b0, r0, r0, 0, borrow); MP_ADD_CARRY(b1, r1, r1, borrow, borrow); MP_ADD_CARRY(b2, r2, r2, borrow, borrow); MP_ADD_CARRY(b3, r3, r3, borrow, borrow); MP_ADD_CARRY(b4, r4, r4, borrow, borrow); } MP_CHECKOK(s_mp_pad(r, 6)); MP_DIGIT(r, 5) = r5; MP_DIGIT(r, 4) = r4; MP_DIGIT(r, 3) = r3; MP_DIGIT(r, 2) = r2; MP_DIGIT(r, 1) = r1; MP_DIGIT(r, 0) = r0; MP_SIGN(r) = MP_ZPOS; MP_USED(r) = 6; s_mp_clamp(r); CLEANUP: return res; } /* Reduces an integer to a field element. */ mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { return mp_mod(a, &meth->irr, r); } /* Multiplies two field elements. */ mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { return mp_mulmod(a, b, &meth->irr, r); } /* Squares a field element. */ mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { return mp_sqrmod(a, &meth->irr, r); } /* Divides two field elements. If a is NULL, then returns the inverse of * b. */ mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_int t; /* If a is NULL, then return the inverse of b, otherwise return a/b. */ if (a == NULL) { return mp_invmod(b, &meth->irr, r); } else { /* MPI doesn't support divmod, so we implement it using invmod and * mulmod. */ MP_CHECKOK(mp_init(&t, FLAG(b))); MP_CHECKOK(mp_invmod(b, &meth->irr, &t)); MP_CHECKOK(mp_mulmod(a, &t, &meth->irr, r)); CLEANUP: mp_clear(&t); return res; } } /* Wrapper functions for generic binary polynomial field arithmetic. */ /* Adds two field elements. */ mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { return mp_badd(a, b, r); } /* Negates a field element. Note that for binary polynomial fields, the * negation of a field element is the field element itself. */ mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth) { if (a == r) { return MP_OKAY; } else { return mp_copy(a, r); } } /* Reduces a binary polynomial to a field element. */ mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { return mp_bmod(a, meth->irr_arr, r); } /* Multiplies two field elements. */ mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { return mp_bmulmod(a, b, meth->irr_arr, r); } /* Squares a field element. */ mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { return mp_bsqrmod(a, meth->irr_arr, r); } /* Divides two field elements. If a is NULL, then returns the inverse of * b. */ mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_int t; /* If a is NULL, then return the inverse of b, otherwise return a/b. */ if (a == NULL) { /* The GF(2^m) portion of MPI doesn't support invmod, so we * compute 1/b. */ MP_CHECKOK(mp_init(&t, FLAG(b))); MP_CHECKOK(mp_set_int(&t, 1)); MP_CHECKOK(mp_bdivmod(&t, b, &meth->irr, meth->irr_arr, r)); CLEANUP: mp_clear(&t); return res; } else { return mp_bdivmod(a, b, &meth->irr, meth->irr_arr, r); } }