/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library for binary polynomial field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila , Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ #include "ec2.h" #include "mplogic.h" #include "mp_gf2m.h" #ifndef _KERNEL #include #endif /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py) { if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) { return MP_YES; } else { return MP_NO; } } /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py) { mp_zero(px); mp_zero(py); return MP_OKAY; } /* Computes R = P + Q based on IEEE P1363 A.10.2. Elliptic curve points P, * Q, and R can all be identical. Uses affine coordinates. */ mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int lambda, tempx, tempy; MP_DIGITS(&lambda) = 0; MP_DIGITS(&tempx) = 0; MP_DIGITS(&tempy) = 0; MP_CHECKOK(mp_init(&lambda, FLAG(px))); MP_CHECKOK(mp_init(&tempx, FLAG(px))); MP_CHECKOK(mp_init(&tempy, FLAG(px))); /* if P = inf, then R = Q */ if (ec_GF2m_pt_is_inf_aff(px, py) == 0) { MP_CHECKOK(mp_copy(qx, rx)); MP_CHECKOK(mp_copy(qy, ry)); res = MP_OKAY; goto CLEANUP; } /* if Q = inf, then R = P */ if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) { MP_CHECKOK(mp_copy(px, rx)); MP_CHECKOK(mp_copy(py, ry)); res = MP_OKAY; goto CLEANUP; } /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2 * + lambda + px + qx */ if (mp_cmp(px, qx) != 0) { MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth)); MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_div(&tempy, &tempx, &lambda, group->meth)); MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempx, &lambda, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempx, &group->curvea, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempx, px, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempx, qx, &tempx, group->meth)); } else { /* if py != qy or qx = 0, then R = inf */ if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) { mp_zero(rx); mp_zero(ry); res = MP_OKAY; goto CLEANUP; } /* lambda = qx + qy / qx */ MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth)); MP_CHECKOK(group->meth-> field_add(&lambda, qx, &lambda, group->meth)); /* tempx = a + lambda^2 + lambda */ MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempx, &lambda, &tempx, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempx, &group->curvea, &tempx, group->meth)); } /* ry = (qx + tempx) * lambda + tempx + qy */ MP_CHECKOK(group->meth->field_add(qx, &tempx, &tempy, group->meth)); MP_CHECKOK(group->meth-> field_mul(&tempy, &lambda, &tempy, group->meth)); MP_CHECKOK(group->meth-> field_add(&tempy, &tempx, &tempy, group->meth)); MP_CHECKOK(group->meth->field_add(&tempy, qy, ry, group->meth)); /* rx = tempx */ MP_CHECKOK(mp_copy(&tempx, rx)); CLEANUP: mp_clear(&lambda); mp_clear(&tempx); mp_clear(&tempy); return res; } /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be * identical. Uses affine coordinates. */ mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int nqy; MP_DIGITS(&nqy) = 0; MP_CHECKOK(mp_init(&nqy, FLAG(px))); /* nqy = qx+qy */ MP_CHECKOK(group->meth->field_add(qx, qy, &nqy, group->meth)); MP_CHECKOK(group->point_add(px, py, qx, &nqy, rx, ry, group)); CLEANUP: mp_clear(&nqy); return res; } /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses * affine coordinates. */ mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group) { return group->point_add(px, py, px, py, rx, ry, group); } /* by default, this routine is unused and thus doesn't need to be compiled */ #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and * R can be identical. Uses affine coordinates. */ mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group) { mp_err res = MP_OKAY; mp_int k, k3, qx, qy, sx, sy; int b1, b3, i, l; MP_DIGITS(&k) = 0; MP_DIGITS(&k3) = 0; MP_DIGITS(&qx) = 0; MP_DIGITS(&qy) = 0; MP_DIGITS(&sx) = 0; MP_DIGITS(&sy) = 0; MP_CHECKOK(mp_init(&k)); MP_CHECKOK(mp_init(&k3)); MP_CHECKOK(mp_init(&qx)); MP_CHECKOK(mp_init(&qy)); MP_CHECKOK(mp_init(&sx)); MP_CHECKOK(mp_init(&sy)); /* if n = 0 then r = inf */ if (mp_cmp_z(n) == 0) { mp_zero(rx); mp_zero(ry); res = MP_OKAY; goto CLEANUP; } /* Q = P, k = n */ MP_CHECKOK(mp_copy(px, &qx)); MP_CHECKOK(mp_copy(py, &qy)); MP_CHECKOK(mp_copy(n, &k)); /* if n < 0 then Q = -Q, k = -k */ if (mp_cmp_z(n) < 0) { MP_CHECKOK(group->meth->field_add(&qx, &qy, &qy, group->meth)); MP_CHECKOK(mp_neg(&k, &k)); } #ifdef ECL_DEBUG /* basic double and add method */ l = mpl_significant_bits(&k) - 1; MP_CHECKOK(mp_copy(&qx, &sx)); MP_CHECKOK(mp_copy(&qy, &sy)); for (i = l - 1; i >= 0; i--) { /* S = 2S */ MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); /* if k_i = 1, then S = S + Q */ if (mpl_get_bit(&k, i) != 0) { MP_CHECKOK(group-> point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); } } #else /* double and add/subtract method from * standard */ /* k3 = 3 * k */ MP_CHECKOK(mp_set_int(&k3, 3)); MP_CHECKOK(mp_mul(&k, &k3, &k3)); /* S = Q */ MP_CHECKOK(mp_copy(&qx, &sx)); MP_CHECKOK(mp_copy(&qy, &sy)); /* l = index of high order bit in binary representation of 3*k */ l = mpl_significant_bits(&k3) - 1; /* for i = l-1 downto 1 */ for (i = l - 1; i >= 1; i--) { /* S = 2S */ MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group)); b3 = MP_GET_BIT(&k3, i); b1 = MP_GET_BIT(&k, i); /* if k3_i = 1 and k_i = 0, then S = S + Q */ if ((b3 == 1) && (b1 == 0)) { MP_CHECKOK(group-> point_add(&sx, &sy, &qx, &qy, &sx, &sy, group)); /* if k3_i = 0 and k_i = 1, then S = S - Q */ } else if ((b3 == 0) && (b1 == 1)) { MP_CHECKOK(group-> point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group)); } } #endif /* output S */ MP_CHECKOK(mp_copy(&sx, rx)); MP_CHECKOK(mp_copy(&sy, ry)); CLEANUP: mp_clear(&k); mp_clear(&k3); mp_clear(&qx); mp_clear(&qy); mp_clear(&sx); mp_clear(&sy); return res; } #endif /* Validates a point on a GF2m curve. */ mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group) { mp_err res = MP_NO; mp_int accl, accr, tmp, pxt, pyt; MP_DIGITS(&accl) = 0; MP_DIGITS(&accr) = 0; MP_DIGITS(&tmp) = 0; MP_DIGITS(&pxt) = 0; MP_DIGITS(&pyt) = 0; MP_CHECKOK(mp_init(&accl, FLAG(px))); MP_CHECKOK(mp_init(&accr, FLAG(px))); MP_CHECKOK(mp_init(&tmp, FLAG(px))); MP_CHECKOK(mp_init(&pxt, FLAG(px))); MP_CHECKOK(mp_init(&pyt, FLAG(px))); /* 1: Verify that publicValue is not the point at infinity */ if (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES) { res = MP_NO; goto CLEANUP; } /* 2: Verify that the coordinates of publicValue are elements * of the field. */ if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) || (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) { res = MP_NO; goto CLEANUP; } /* 3: Verify that publicValue is on the curve. */ if (group->meth->field_enc) { group->meth->field_enc(px, &pxt, group->meth); group->meth->field_enc(py, &pyt, group->meth); } else { mp_copy(px, &pxt); mp_copy(py, &pyt); } /* left-hand side: y^2 + x*y */ MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) ); MP_CHECKOK( group->meth->field_mul(&pxt, &pyt, &tmp, group->meth) ); MP_CHECKOK( group->meth->field_add(&accl, &tmp, &accl, group->meth) ); /* right-hand side: x^3 + a*x^2 + b */ MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) ); MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) ); MP_CHECKOK( group->meth->field_mul(&group->curvea, &tmp, &tmp, group->meth) ); MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) ); MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) ); /* check LHS - RHS == 0 */ MP_CHECKOK( group->meth->field_add(&accl, &accr, &accr, group->meth) ); if (mp_cmp_z(&accr) != 0) { res = MP_NO; goto CLEANUP; } /* 4: Verify that the order of the curve times the publicValue * is the point at infinity. */ MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) ); if (ec_GF2m_pt_is_inf_aff(&pxt, &pyt) != MP_YES) { res = MP_NO; goto CLEANUP; } res = MP_YES; CLEANUP: mp_clear(&accl); mp_clear(&accr); mp_clear(&tmp); mp_clear(&pxt); mp_clear(&pyt); return res; }