/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library for binary polynomial field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Douglas Stebila , Sun Microsystems Laboratories * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ #ifndef _EC2_H #define _EC2_H #include "ecl-priv.h" /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py); /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py); /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, * qy). Uses affine coordinates. */ mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = P - Q. Uses affine coordinates. */ mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, const ECGroup *group); /* Computes R = 2P. Uses affine coordinates. */ mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); /* Validates a point on a GF2m curve. */ mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); /* by default, this routine is unused and thus doesn't need to be compiled */ #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the irreducible that * determines the field GF2m. Uses affine coordinates. */ mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the irreducible that * determines the field GF2m. Uses Montgomery projective coordinates. */ mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #ifdef ECL_ENABLE_GF2M_PROJ /* Converts a point P(px, py) from affine coordinates to projective * coordinates R(rx, ry, rz). */ mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); /* Converts a point P(px, py, pz) from projective coordinates to affine * coordinates R(rx, ry). */ mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py, const mp_int *pz, mp_int *rx, mp_int *ry, const ECGroup *group); /* Checks if point P(px, py, pz) is at infinity. Uses projective * coordinates. */ mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py, const mp_int *pz); /* Sets P(px, py, pz) to be the point at infinity. Uses projective * coordinates. */ mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz); /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is * (qx, qy, qz). Uses projective coordinates. */ mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py, const mp_int *pz, const mp_int *qx, const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); /* Computes R = 2P. Uses projective coordinates. */ mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py, const mp_int *pz, mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group); /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters * a, b and p are the elliptic curve coefficients and the prime that * determines the field GF2m. Uses projective coordinates. */ mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry, const ECGroup *group); #endif #endif /* _EC2_H */