/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * ZFS syseventd module. * * The purpose of this module is to identify when devices are added to the * system, and appropriately online or replace the affected vdevs. * * When a device is added to the system: * * 1. Search for any vdevs whose devid matches that of the newly added * device. * * 2. If no vdevs are found, then search for any vdevs whose devfs path * matches that of the new device. * * 3. If no vdevs match by either method, then ignore the event. * * 4. Attempt to online the device with a flag to indicate that it should * be unspared when resilvering completes. If this succeeds, then the * same device was inserted and we should continue normally. * * 5. If the pool does not have the 'autoreplace' property set, attempt to * online the device again without the unspare flag, which will * generate a FMA fault. * * 6. If the pool has the 'autoreplace' property set, and the matching vdev * is a whole disk, then label the new disk and attempt a 'zpool * replace'. * * The module responds to EC_DEV_ADD events for both disks and lofi devices, * with the latter used for testing. The special ESC_ZFS_VDEV_CHECK event * indicates that a device failed to open during pool load, but the autoreplace * property was set. In this case, we deferred the associated FMA fault until * our module had a chance to process the autoreplace logic. If the device * could not be replaced, then the second online attempt will trigger the FMA * fault that we skipped earlier. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386) || defined(__amd64) #define PHYS_PATH ":q" #define RAW_SLICE "p0" #elif defined(__sparc) #define PHYS_PATH ":c" #define RAW_SLICE "s2" #else #error Unknown architecture #endif typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); libzfs_handle_t *g_zfshdl; /* * The device associated with the given vdev (either by devid or physical path) * has been added to the system. If 'isdisk' is set, then we only attempt a * replacement if it's a whole disk. This also implies that we should label the * disk first. * * First, we attempt to online the device (making sure to undo any spare * operation when finished). If this succeeds, then we're done. If it fails, * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, * but that the label was not what we expected. If the 'autoreplace' property * is not set, then we relabel the disk (if specified), and attempt a 'zpool * replace'. If the online is successful, but the new state is something else * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of * race, and we should avoid attempting to relabel the disk. */ static void zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk) { char *path; vdev_state_t newstate; nvlist_t *nvroot, *newvd; uint64_t wholedisk = 0ULL; char *physpath = NULL; char rawpath[PATH_MAX], fullpath[PATH_MAX]; size_t len; if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) return; (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); /* * We should have a way to online a device by guid. With the current * interface, we are forced to chop off the 's0' for whole disks. */ (void) strlcpy(fullpath, path, sizeof (fullpath)); if (wholedisk) fullpath[strlen(fullpath) - 2] = '\0'; /* * Attempt to online the device. It would be nice to online this by * GUID, but the current interface only supports lookup by path. */ if (zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 && (newstate == VDEV_STATE_HEALTHY || newstate == VDEV_STATE_DEGRADED)) return; /* * If the pool doesn't have the autoreplace property set, then attempt a * true online (without the unspare flag), which will trigger a FMA * fault. */ if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || (isdisk && !wholedisk)) { (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); return; } if (isdisk) { /* * If this is a request to label a whole disk, then attempt to * write out the label. Before we can label the disk, we need * access to a raw node. Ideally, we'd like to walk the devinfo * tree and find a raw node from the corresponding parent node. * This is overly complicated, and since we know how we labeled * this device in the first place, we know it's save to switch * from /dev/dsk to /dev/rdsk and append the backup slice. * * If any part of this process fails, then do a force online to * trigger a ZFS fault for the device (and any hot spare * replacement). */ if (strncmp(path, "/dev/dsk/", 9) != 0) { (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); return; } (void) strlcpy(rawpath, path + 9, sizeof (rawpath)); len = strlen(rawpath); rawpath[len - 2] = '\0'; if (zpool_label_disk(g_zfshdl, zhp, rawpath) != 0) { (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); return; } } /* * Cosntruct the root vdev to pass to zpool_vdev_attach(). While adding * the entire vdev structure is harmless, we construct a reduced set of * path/physpath/wholedisk to keep it simple. */ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) return; if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { nvlist_free(nvroot); return; } if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || (physpath != NULL && nvlist_add_string(newvd, ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd, 1) != 0) { nvlist_free(newvd); nvlist_free(nvroot); return; } nvlist_free(newvd); (void) zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE); nvlist_free(nvroot); } /* * Utility functions to find a vdev matching given criteria. */ typedef struct dev_data { const char *dd_compare; const char *dd_prop; zfs_process_func_t dd_func; boolean_t dd_found; boolean_t dd_isdisk; uint64_t dd_pool_guid; uint64_t dd_vdev_guid; } dev_data_t; static void zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) { dev_data_t *dp = data; char *path; uint_t c, children; nvlist_t **child; size_t len; uint64_t guid; /* * First iterate over any children. */ if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) zfs_iter_vdev(zhp, child[c], data); return; } if (dp->dd_vdev_guid != 0) { if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != dp->dd_vdev_guid) return; } else { len = strlen(dp->dd_compare); if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || strncmp(dp->dd_compare, path, len) != 0) return; /* * Normally, we want to have an exact match for the comparison * string. However, we allow substring matches in the following * cases: * * : This is a devpath, and the target is one * of its children. * * This is a devid for a whole disk, and * the target is one of its children. */ if (path[len] != '\0' && path[len] != ':' && path[len - 1] != '/') return; } (dp->dd_func)(zhp, nvl, dp->dd_isdisk); } static int zfs_iter_pool(zpool_handle_t *zhp, void *data) { nvlist_t *config, *nvl; dev_data_t *dp = data; uint64_t pool_guid; if ((config = zpool_get_config(zhp, NULL)) != NULL) { if (dp->dd_pool_guid == 0 || (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { (void) nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl); zfs_iter_vdev(zhp, nvl, data); } } zpool_close(zhp); return (0); } /* * Given a physical device path, iterate over all (pool, vdev) pairs which * correspond to the given path. */ static boolean_t devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) { dev_data_t data = { 0 }; data.dd_compare = devpath; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; data.dd_found = B_FALSE; data.dd_isdisk = wholedisk; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); } /* * Given a /devices path, lookup the corresponding devid for each minor node, * and find any vdevs with matching devids. Doing this straight up would be * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of * the fact that each devid ends with "/". Once we find any valid * minor node, we chop off the portion after the last slash, and then search for * matching vdevs, which is O(vdevs in system). */ static boolean_t devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) { size_t len = strlen(devpath) + sizeof ("/devices") + sizeof (PHYS_PATH) - 1; char *fullpath; int fd; ddi_devid_t devid; char *devidstr, *fulldevid; dev_data_t data = { 0 }; /* * Try to open a known minor node. */ fullpath = alloca(len); (void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH); if ((fd = open(fullpath, O_RDONLY)) < 0) return (B_FALSE); /* * Determine the devid as a string, with no trailing slash for the minor * node. */ if (devid_get(fd, &devid) != 0) { (void) close(fd); return (B_FALSE); } (void) close(fd); if ((devidstr = devid_str_encode(devid, NULL)) == NULL) { devid_free(devid); return (B_FALSE); } len = strlen(devidstr) + 2; fulldevid = alloca(len); (void) snprintf(fulldevid, len, "%s/", devidstr); data.dd_compare = fulldevid; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_DEVID; data.dd_found = B_FALSE; data.dd_isdisk = wholedisk; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); devid_str_free(devidstr); return (data.dd_found); } /* * This function is called when we receive a devfs add event. This can be * either a disk event or a lofi event, and the behavior is slightly different * depending on which it is. */ static int zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi) { char *devpath, *devname; char path[PATH_MAX], realpath[PATH_MAX]; char *colon, *raw; int ret; /* * The main unit of operation is the physical device path. For disks, * this is the device node, as all minor nodes are affected. For lofi * devices, this includes the minor path. Unfortunately, this isn't * represented in the DEV_PHYS_PATH for various reasons. */ if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath) != 0) return (-1); /* * If this is a lofi device, then also get the minor instance name. * Unfortunately, the current payload doesn't include an easy way to get * this information. So we cheat by resolving the 'dev_name' (which * refers to the raw device) and taking the portion between ':(*),raw'. */ (void) strlcpy(realpath, devpath, sizeof (realpath)); if (is_lofi) { if (nvlist_lookup_string(nvl, DEV_NAME, &devname) == 0 && (ret = resolvepath(devname, path, sizeof (path))) > 0) { path[ret] = '\0'; colon = strchr(path, ':'); if (colon != NULL) raw = strstr(colon + 1, ",raw"); if (colon != NULL && raw != NULL) { *raw = '\0'; (void) snprintf(realpath, sizeof (realpath), "%s%s", devpath, colon); *raw = ','; } } } /* * Iterate over all vdevs with a matching devid, and then those with a * matching /devices path. For disks, we only want to pay attention to * vdevs marked as whole disks. For lofi, we don't care (because we're * matching an exact minor name). */ if (!devid_iter(realpath, zfs_process_add, !is_lofi)) (void) devpath_iter(realpath, zfs_process_add, !is_lofi); return (0); } /* * Called when we receive a VDEV_CHECK event, which indicates a device could not * be opened during initial pool open, but the autoreplace property was set on * the pool. In this case, we treat it as if it were an add event. */ static int zfs_deliver_check(nvlist_t *nvl) { dev_data_t data = { 0 }; if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &data.dd_pool_guid) != 0 || nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &data.dd_vdev_guid) != 0) return (0); data.dd_isdisk = B_TRUE; data.dd_func = zfs_process_add; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (0); } /*ARGSUSED*/ static int zfs_deliver_event(sysevent_t *ev, int unused) { const char *class = sysevent_get_class_name(ev); const char *subclass = sysevent_get_subclass_name(ev); nvlist_t *nvl; int ret; boolean_t is_lofi, is_check; if (strcmp(class, EC_DEV_ADD) == 0) { /* * We're mainly interested in disk additions, but we also listen * for new lofi devices, to allow for simplified testing. */ if (strcmp(subclass, ESC_DISK) == 0) is_lofi = B_FALSE; else if (strcmp(subclass, ESC_LOFI) == 0) is_lofi = B_TRUE; else return (0); is_check = B_FALSE; } else if (strcmp(class, EC_ZFS) == 0 && strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { /* * This event signifies that a device failed to open during pool * load, but the 'autoreplace' property was set, so we should * pretend it's just been added. */ is_check = B_TRUE; } else { return (0); } if (sysevent_get_attr_list(ev, &nvl) != 0) return (-1); if (is_check) ret = zfs_deliver_check(nvl); else ret = zfs_deliver_add(nvl, is_lofi); nvlist_free(nvl); return (ret); } static struct slm_mod_ops zfs_mod_ops = { SE_MAJOR_VERSION, SE_MINOR_VERSION, 10, zfs_deliver_event }; struct slm_mod_ops * slm_init() { if ((g_zfshdl = libzfs_init()) == NULL) return (NULL); return (&zfs_mod_ops); } void slm_fini() { }