/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved. * Copyright (c) 2017, Joyent, Inc. * Copyright 2024 Oxide Computer Company * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SMBIOS_SUCCESS 0 #define SMBIOS_ERROR 1 #define SMBIOS_USAGE 2 static const char *g_pname; static int g_hdr; static int opt_e; static int opt_i = -1; static int opt_O; static int opt_s; static int opt_t = -1; static int opt_x; static boolean_t smbios_vergteq(smbios_version_t *v, uint_t major, uint_t minor) { if (v->smbv_major > major) return (B_TRUE); if (v->smbv_major == major && v->smbv_minor >= minor) return (B_TRUE); return (B_FALSE); } /*PRINTFLIKE2*/ static void smbios_warn(smbios_hdl_t *shp, const char *format, ...) { va_list ap; va_start(ap, format); (void) vfprintf(stderr, format, ap); va_end(ap); if (shp != NULL) { (void) fprintf(stderr, ": %s", smbios_errmsg(smbios_errno(shp))); } (void) fprintf(stderr, "\n"); } /*PRINTFLIKE2*/ static void oprintf(FILE *fp, const char *format, ...) { va_list ap; va_start(ap, format); (void) vfprintf(fp, format, ap); va_end(ap); } /*PRINTFLIKE3*/ static void desc_printf(const char *d, FILE *fp, const char *format, ...) { va_list ap; va_start(ap, format); (void) vfprintf(fp, format, ap); va_end(ap); if (d != NULL) (void) fprintf(fp, " (%s)\n", d); else (void) fprintf(fp, "\n"); } static void flag_printf(FILE *fp, const char *s, uint_t flags, size_t bits, const char *(*flag_name)(uint_t), const char *(*flag_desc)(uint_t)) { size_t i; oprintf(fp, " %s: 0x%x\n", s, flags); for (i = 0; i < bits; i++) { uint_t f = 1 << i; const char *n; if (!(flags & f)) continue; if ((n = flag_name(f)) != NULL) desc_printf(flag_desc(f), fp, "\t%s", n); else desc_printf(flag_desc(f), fp, "\t0x%x", f); } } static void flag64_printf(FILE *fp, const char *s, uint64_t flags, size_t bits, const char *(*flag_name)(uint64_t), const char *(*flag_desc)(uint64_t)) { size_t i; oprintf(fp, " %s: 0x%llx\n", s, (u_longlong_t)flags); for (i = 0; i < bits; i++) { u_longlong_t f = 1ULL << i; const char *n; if (!(flags & f)) continue; if ((n = flag_name(f)) != NULL) desc_printf(flag_desc(f), fp, "\t%s", n); else desc_printf(flag_desc(f), fp, "\t0x%llx", f); } } static void id_printf(FILE *fp, const char *s, id_t id) { switch (id) { case SMB_ID_NONE: oprintf(fp, "%sNone\n", s); break; case SMB_ID_NOTSUP: oprintf(fp, "%sNot Supported\n", s); break; default: oprintf(fp, "%s%u\n", s, (uint_t)id); } } static void jedec_print(FILE *fp, const char *desc, uint_t id) { const char *name; uint_t cont, vendor; /* * SMBIOS encodes data in the way that the underlying memory standard * does. In this case, the upper byte indicates the vendor that we care * about while the lower byte indicates the number of continuations that * are needed. libjedec indexes this based on zero (e.g. table 1 is zero * continuations), which is how the spec encodes it. We add one so that * we can match how the spec describes it. */ vendor = id >> 8; cont = id & 0x7f; name = libjedec_vendor_string(cont, vendor); if (name == NULL) { oprintf(fp, " %s: Bank: 0x%x Vendor: 0x%x\n", desc, cont + 1, vendor); } else { oprintf(fp, " %s: Bank: 0x%x Vendor: 0x%x (%s)\n", desc, cont + 1, vendor, name); } } /* * Convert an SMBIOS encoded JEDEDC component revision into its actual form. In * general, JEDEC revisions are single byte values; however, the SMBIOS fields * are two bytes wide. The byte that we care about is the "first" byte which * translates into the upper bits here. The revision is binary coded decimal * (BCD) represented with each nibble as major.minor. The major is the upper * nibble and the minor is the lower one. */ static void jedec_rev_print(FILE *fp, const char *desc, uint16_t raw_rev) { uint8_t rev = (uint8_t)bitx16(raw_rev, 15, 8); uint8_t maj = bitx8(rev, 7, 4); uint8_t min = bitx8(rev, 3, 0); oprintf(fp, " %s: %x.%x\n", desc, maj, min); } /* * Print a 128-bit data as a series of 16 hex digits. */ static void u128_print(FILE *fp, const char *desc, const uint8_t *data) { uint_t i; oprintf(fp, "%s: ", desc); for (i = 0; i < 16; i++) { oprintf(fp, " %02x", data[i]); } oprintf(fp, "\n"); } /* * Print a string that came from an SMBIOS table. We do this character by * character so we can potentially escape strings. */ static void str_print_label(FILE *fp, const char *header, const char *str, boolean_t label) { const char *c; oprintf(fp, header); if (label) { oprintf(fp, ": "); } for (c = str; *c != '\0'; c++) { if (isprint(*c)) { oprintf(fp, "%c", *c); } else { oprintf(fp, "\\x%02x", *c); } } oprintf(fp, "\n"); } static void str_print_nolabel(FILE *fp, const char *ws, const char *str) { return (str_print_label(fp, ws, str, B_FALSE)); } static void str_print(FILE *fp, const char *header, const char *str) { return (str_print_label(fp, header, str, B_TRUE)); } static int check_oem(smbios_hdl_t *shp) { int i; int cnt; int rv; id_t oem_id; smbios_struct_t s; const char **oem_str; rv = smbios_lookup_type(shp, SMB_TYPE_OEMSTR, &s); if (rv != 0) { return (-1); } oem_id = s.smbstr_id; cnt = smbios_info_strtab(shp, oem_id, 0, NULL); if (cnt > 0) { oem_str = alloca(sizeof (char *) * cnt); (void) smbios_info_strtab(shp, oem_id, cnt, oem_str); for (i = 0; i < cnt; i++) { if (strncmp(oem_str[i], SMB_PRMS1, strlen(SMB_PRMS1) + 1) == 0) { return (0); } } } return (-1); } static void print_smbios_21(smbios_21_entry_t *ep, FILE *fp) { int i; oprintf(fp, "Entry Point Anchor Tag: %*.*s\n", (int)sizeof (ep->smbe_eanchor), (int)sizeof (ep->smbe_eanchor), ep->smbe_eanchor); oprintf(fp, "Entry Point Checksum: 0x%x\n", ep->smbe_ecksum); oprintf(fp, "Entry Point Length: %u\n", ep->smbe_elen); oprintf(fp, "Entry Point Version: %u.%u\n", ep->smbe_major, ep->smbe_minor); oprintf(fp, "Max Structure Size: %u\n", ep->smbe_maxssize); oprintf(fp, "Entry Point Revision: 0x%x\n", ep->smbe_revision); oprintf(fp, "Entry Point Revision Data:"); for (i = 0; i < sizeof (ep->smbe_format); i++) oprintf(fp, " 0x%02x", ep->smbe_format[i]); oprintf(fp, "\n"); oprintf(fp, "Intermediate Anchor Tag: %*.*s\n", (int)sizeof (ep->smbe_ianchor), (int)sizeof (ep->smbe_ianchor), ep->smbe_ianchor); oprintf(fp, "Intermediate Checksum: 0x%x\n", ep->smbe_icksum); oprintf(fp, "Structure Table Length: %u\n", ep->smbe_stlen); oprintf(fp, "Structure Table Address: 0x%x\n", ep->smbe_staddr); oprintf(fp, "Structure Table Entries: %u\n", ep->smbe_stnum); oprintf(fp, "DMI BCD Revision: 0x%x\n", ep->smbe_bcdrev); } static void print_smbios_30(smbios_30_entry_t *ep, FILE *fp) { oprintf(fp, "Entry Point Anchor Tag: %*.*s\n", (int)sizeof (ep->smbe_eanchor), (int)sizeof (ep->smbe_eanchor), ep->smbe_eanchor); oprintf(fp, "Entry Point Checksum: 0x%x\n", ep->smbe_ecksum); oprintf(fp, "Entry Point Length: %u\n", ep->smbe_elen); oprintf(fp, "SMBIOS Version: %u.%u\n", ep->smbe_major, ep->smbe_minor); oprintf(fp, "SMBIOS DocRev: 0x%x\n", ep->smbe_docrev); oprintf(fp, "Entry Point Revision: 0x%x\n", ep->smbe_revision); oprintf(fp, "Structure Table Length: %u\n", ep->smbe_stlen); oprintf(fp, "Structure Table Address: 0x%" PRIx64 "\n", ep->smbe_staddr); } static void print_smbios(smbios_hdl_t *shp, FILE *fp) { smbios_entry_t ep; switch (smbios_info_smbios(shp, &ep)) { case SMBIOS_ENTRY_POINT_21: print_smbios_21(&ep.ep21, fp); break; case SMBIOS_ENTRY_POINT_30: print_smbios_30(&ep.ep30, fp); break; } } static void print_common(const smbios_info_t *ip, FILE *fp) { if (ip->smbi_manufacturer[0] != '\0') str_print(fp, " Manufacturer", ip->smbi_manufacturer); if (ip->smbi_product[0] != '\0') str_print(fp, " Product", ip->smbi_product); if (ip->smbi_version[0] != '\0') str_print(fp, " Version", ip->smbi_version); if (ip->smbi_serial[0] != '\0') str_print(fp, " Serial Number", ip->smbi_serial); if (ip->smbi_asset[0] != '\0') str_print(fp, " Asset Tag", ip->smbi_asset); if (ip->smbi_location[0] != '\0') str_print(fp, " Location Tag", ip->smbi_location); if (ip->smbi_part[0] != '\0') str_print(fp, " Part Number", ip->smbi_part); } static void print_bios(smbios_hdl_t *shp, FILE *fp) { smbios_bios_t b; if (smbios_info_bios(shp, &b) == -1) { smbios_warn(shp, "failed to read BIOS information"); return; } str_print(fp, " Vendor", b.smbb_vendor); str_print(fp, " Version String", b.smbb_version); str_print(fp, " Release Date", b.smbb_reldate); oprintf(fp, " Address Segment: 0x%x\n", b.smbb_segment); oprintf(fp, " ROM Size: %" PRIu64 " bytes\n", b.smbb_extromsize); oprintf(fp, " Image Size: %u bytes\n", b.smbb_runsize); flag64_printf(fp, "Characteristics", b.smbb_cflags, sizeof (b.smbb_cflags) * NBBY, smbios_bios_flag_name, smbios_bios_flag_desc); if (b.smbb_nxcflags > SMB_BIOSXB_1) { flag_printf(fp, "Characteristics Extension Byte 1", b.smbb_xcflags[SMB_BIOSXB_1], sizeof (b.smbb_xcflags[SMB_BIOSXB_1]) * NBBY, smbios_bios_xb1_name, smbios_bios_xb1_desc); } if (b.smbb_nxcflags > SMB_BIOSXB_2) { flag_printf(fp, "Characteristics Extension Byte 2", b.smbb_xcflags[SMB_BIOSXB_2], sizeof (b.smbb_xcflags[SMB_BIOSXB_2]) * NBBY, smbios_bios_xb2_name, smbios_bios_xb2_desc); } if (b.smbb_nxcflags > SMB_BIOSXB_BIOS_MIN) { oprintf(fp, " Version Number: %u.%u\n", b.smbb_biosv.smbv_major, b.smbb_biosv.smbv_minor); } /* * If the major and minor versions are 0xff then that indicates that the * embedded controller does not exist. */ if (b.smbb_nxcflags > SMB_BIOSXB_ECFW_MIN && b.smbb_ecfwv.smbv_major != 0xff && b.smbb_ecfwv.smbv_minor != 0xff) { oprintf(fp, " Embedded Ctlr Firmware Version Number: %u.%u\n", b.smbb_ecfwv.smbv_major, b.smbb_ecfwv.smbv_minor); } } static void print_system(smbios_hdl_t *shp, FILE *fp) { smbios_system_t s; uint_t i; if (smbios_info_system(shp, &s) == -1) { smbios_warn(shp, "failed to read system information"); return; } oprintf(fp, " UUID: "); for (i = 0; i < s.smbs_uuidlen; i++) { oprintf(fp, "%02x", s.smbs_uuid[i]); if (i == 3 || i == 5 || i == 7 || i == 9) oprintf(fp, "-"); } oprintf(fp, "\n"); desc_printf(smbios_system_wakeup_desc(s.smbs_wakeup), fp, " Wake-Up Event: 0x%x", s.smbs_wakeup); str_print(fp, " SKU Number", s.smbs_sku); str_print(fp, " Family", s.smbs_family); } static void print_bboard(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_bboard_t b; int chdl_cnt; if (smbios_info_bboard(shp, id, &b) != 0) { smbios_warn(shp, "failed to read baseboard information"); return; } oprintf(fp, " Chassis: %u\n", (uint_t)b.smbb_chassis); flag_printf(fp, "Flags", b.smbb_flags, sizeof (b.smbb_flags) * NBBY, smbios_bboard_flag_name, smbios_bboard_flag_desc); desc_printf(smbios_bboard_type_desc(b.smbb_type), fp, " Board Type: 0x%x", b.smbb_type); chdl_cnt = b.smbb_contn; if (chdl_cnt != 0) { id_t *chdl; uint16_t hdl; int i, n, cnt; chdl = alloca(chdl_cnt * sizeof (id_t)); cnt = smbios_info_contains(shp, id, chdl_cnt, chdl); if (cnt > SMB_CONT_MAX) return; n = MIN(chdl_cnt, cnt); oprintf(fp, "\n"); for (i = 0; i < n; i++) { hdl = (uint16_t)chdl[i]; oprintf(fp, " Contained Handle: %u\n", hdl); } } } static void print_chassis(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_chassis_t c; smbios_chassis_entry_t *elts; uint_t nelts, i; if (smbios_info_chassis(shp, id, &c) != 0) { smbios_warn(shp, "failed to read chassis information"); return; } oprintf(fp, " OEM Data: 0x%x\n", c.smbc_oemdata); str_print(fp, " SKU Number", c.smbc_sku[0] == '\0' ? "" : c.smbc_sku); oprintf(fp, " Lock Present: %s\n", c.smbc_lock ? "Y" : "N"); desc_printf(smbios_chassis_type_desc(c.smbc_type), fp, " Chassis Type: 0x%x", c.smbc_type); desc_printf(smbios_chassis_state_desc(c.smbc_bustate), fp, " Boot-Up State: 0x%x", c.smbc_bustate); desc_printf(smbios_chassis_state_desc(c.smbc_psstate), fp, " Power Supply State: 0x%x", c.smbc_psstate); desc_printf(smbios_chassis_state_desc(c.smbc_thstate), fp, " Thermal State: 0x%x", c.smbc_thstate); oprintf(fp, " Chassis Height: %uu\n", c.smbc_uheight); oprintf(fp, " Power Cords: %u\n", c.smbc_cords); oprintf(fp, " Element Records: %u\n", c.smbc_elems); if (c.smbc_elems == 0) { return; } if (smbios_info_chassis_elts(shp, id, &nelts, &elts) != 0) { smbios_warn(shp, "failed to read chassis elements"); return; } oprintf(fp, "\n"); for (i = 0; i < nelts; i++) { switch (elts[i].smbce_type) { case SMB_CELT_BBOARD: desc_printf(smbios_bboard_type_desc(elts[i].smbce_elt), fp, " Contained SMBIOS Base Board Type: 0x%x", elts[i].smbce_elt); break; case SMB_CELT_SMBIOS: desc_printf(smbios_type_name(elts[i].smbce_elt), fp, " Contained SMBIOS structure Type: %u", elts[i].smbce_elt); break; default: oprintf(fp, " Unknown contained Type: %u/%u\n", elts[i].smbce_type, elts[i].smbce_elt); break; } oprintf(fp, " Minimum number: %u\n", elts[i].smbce_min); oprintf(fp, " Maximum number: %u\n", elts[i].smbce_max); } } static void print_processor(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_processor_t p; uint_t status; if (smbios_info_processor(shp, id, &p) != 0) { smbios_warn(shp, "failed to read processor information"); return; } status = SMB_PRSTATUS_STATUS(p.smbp_status); desc_printf(smbios_processor_family_desc(p.smbp_family), fp, " Family: %u", p.smbp_family); oprintf(fp, " CPUID: 0x%llx\n", (u_longlong_t)p.smbp_cpuid); desc_printf(smbios_processor_type_desc(p.smbp_type), fp, " Type: %u", p.smbp_type); desc_printf(smbios_processor_upgrade_desc(p.smbp_upgrade), fp, " Socket Upgrade: %u", p.smbp_upgrade); oprintf(fp, " Socket Status: %s\n", SMB_PRSTATUS_PRESENT(p.smbp_status) ? "Populated" : "Not Populated"); desc_printf(smbios_processor_status_desc(status), fp, " Processor Status: %u", status); if (SMB_PRV_LEGACY(p.smbp_voltage)) { oprintf(fp, " Supported Voltages:"); switch (p.smbp_voltage) { case SMB_PRV_5V: oprintf(fp, " 5.0V"); break; case SMB_PRV_33V: oprintf(fp, " 3.3V"); break; case SMB_PRV_29V: oprintf(fp, " 2.9V"); break; } oprintf(fp, "\n"); } else { oprintf(fp, " Supported Voltages: %.1fV\n", (float)SMB_PRV_VOLTAGE(p.smbp_voltage) / 10); } if (p.smbp_corecount != 0) { oprintf(fp, " Core Count: %u\n", p.smbp_corecount); } else { oprintf(fp, " Core Count: Unknown\n"); } if (p.smbp_coresenabled != 0) { oprintf(fp, " Cores Enabled: %u\n", p.smbp_coresenabled); } else { oprintf(fp, " Cores Enabled: Unknown\n"); } if (p.smbp_threadcount != 0) { oprintf(fp, " Thread Count: %u\n", p.smbp_threadcount); } else { oprintf(fp, " Thread Count: Unknown\n"); } if (p.smbp_cflags) { flag_printf(fp, "Processor Characteristics", p.smbp_cflags, sizeof (p.smbp_cflags) * NBBY, smbios_processor_core_flag_name, smbios_processor_core_flag_desc); } if (p.smbp_clkspeed != 0) oprintf(fp, " External Clock Speed: %uMHz\n", p.smbp_clkspeed); else oprintf(fp, " External Clock Speed: Unknown\n"); if (p.smbp_maxspeed != 0) oprintf(fp, " Maximum Speed: %uMHz\n", p.smbp_maxspeed); else oprintf(fp, " Maximum Speed: Unknown\n"); if (p.smbp_curspeed != 0) oprintf(fp, " Current Speed: %uMHz\n", p.smbp_curspeed); else oprintf(fp, " Current Speed: Unknown\n"); id_printf(fp, " L1 Cache Handle: ", p.smbp_l1cache); id_printf(fp, " L2 Cache Handle: ", p.smbp_l2cache); id_printf(fp, " L3 Cache Handle: ", p.smbp_l3cache); if (p.smbp_threadsenabled != 0) { oprintf(fp, " Threads Enabled: %u\n", p.smbp_threadsenabled); } else { oprintf(fp, " Threads Enabled: Unknown\n"); } /* * The Socket Type string overlaps with the upgrade string. Only print * something if we have a valid value. */ if (*p.smbp_socktype != '\0') { str_print(fp, " Socket Type", p.smbp_socktype); } } static void print_cache(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_cache_t c; if (smbios_info_cache(shp, id, &c) != 0) { smbios_warn(shp, "failed to read cache information"); return; } oprintf(fp, " Level: %u\n", c.smba_level); oprintf(fp, " Maximum Installed Size: %" PRIu64 " bytes\n", c.smba_maxsize2); if (c.smba_size2 != 0) { oprintf(fp, " Installed Size: %" PRIu64 " bytes\n", c.smba_size2); } else { oprintf(fp, " Installed Size: Not Installed\n"); } if (c.smba_speed != 0) oprintf(fp, " Speed: %uns\n", c.smba_speed); else oprintf(fp, " Speed: Unknown\n"); flag_printf(fp, "Supported SRAM Types", c.smba_stype, sizeof (c.smba_stype) * NBBY, smbios_cache_ctype_name, smbios_cache_ctype_desc); desc_printf(smbios_cache_ctype_desc(c.smba_ctype), fp, " Current SRAM Type: 0x%x", c.smba_ctype); desc_printf(smbios_cache_ecc_desc(c.smba_etype), fp, " Error Correction Type: %u", c.smba_etype); desc_printf(smbios_cache_logical_desc(c.smba_ltype), fp, " Logical Cache Type: %u", c.smba_ltype); desc_printf(smbios_cache_assoc_desc(c.smba_assoc), fp, " Associativity: %u", c.smba_assoc); desc_printf(smbios_cache_mode_desc(c.smba_mode), fp, " Mode: %u", c.smba_mode); desc_printf(smbios_cache_loc_desc(c.smba_location), fp, " Location: %u", c.smba_location); flag_printf(fp, "Flags", c.smba_flags, sizeof (c.smba_flags) * NBBY, smbios_cache_flag_name, smbios_cache_flag_desc); } static void print_port(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_port_t p; if (smbios_info_port(shp, id, &p) != 0) { smbios_warn(shp, "failed to read port information"); return; } str_print(fp, " Internal Reference Designator", p.smbo_iref); str_print(fp, " External Reference Designator", p.smbo_eref); desc_printf(smbios_port_conn_desc(p.smbo_itype), fp, " Internal Connector Type: %u", p.smbo_itype); desc_printf(smbios_port_conn_desc(p.smbo_etype), fp, " External Connector Type: %u", p.smbo_etype); desc_printf(smbios_port_type_desc(p.smbo_ptype), fp, " Port Type: %u", p.smbo_ptype); } static void print_slot(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_slot_t s; smbios_version_t v; if (smbios_info_slot(shp, id, &s) != 0) { smbios_warn(shp, "failed to read slot information"); return; } smbios_info_smbios_version(shp, &v); str_print(fp, " Reference Designator", s.smbl_name); oprintf(fp, " Slot ID: 0x%x\n", s.smbl_id); desc_printf(smbios_slot_type_desc(s.smbl_type), fp, " Type: 0x%x", s.smbl_type); desc_printf(smbios_slot_width_desc(s.smbl_width), fp, " Width: 0x%x", s.smbl_width); desc_printf(smbios_slot_usage_desc(s.smbl_usage), fp, " Usage: 0x%x", s.smbl_usage); desc_printf(smbios_slot_length_desc(s.smbl_length), fp, " Length: 0x%x", s.smbl_length); flag_printf(fp, "Slot Characteristics 1", s.smbl_ch1, sizeof (s.smbl_ch1) * NBBY, smbios_slot_ch1_name, smbios_slot_ch1_desc); flag_printf(fp, "Slot Characteristics 2", s.smbl_ch2, sizeof (s.smbl_ch2) * NBBY, smbios_slot_ch2_name, smbios_slot_ch2_desc); if (check_oem(shp) != 0 && !smbios_vergteq(&v, 2, 6)) return; oprintf(fp, " Segment Group: %u\n", s.smbl_sg); oprintf(fp, " Bus Number: %u\n", s.smbl_bus); oprintf(fp, " Device/Function Number: %u/%u\n", s.smbl_df >> 3, s.smbl_df & 0x7); if (s.smbl_dbw != 0) { oprintf(fp, " Data Bus Width: %d\n", s.smbl_dbw); } if (s.smbl_npeers > 0) { smbios_slot_peer_t *peer; uint_t i, npeers; if (smbios_info_slot_peers(shp, id, &npeers, &peer) != 0) { smbios_warn(shp, "failed to read slot peer " "information"); return; } for (i = 0; i < npeers; i++) { oprintf(fp, " Slot Peer %u:\n", i); oprintf(fp, " Segment group: %u\n", peer[i].smblp_group); oprintf(fp, " Bus/Device/Function: %u/%u/%u\n", peer[i].smblp_bus, peer[i].smblp_device, peer[i].smblp_function); oprintf(fp, " Electrical width: %u\n", peer[i].smblp_data_width); } smbios_info_slot_peers_free(shp, npeers, peer); } if (s.smbl_info != 0) { if (s.smbl_type >= SMB_SLT_PCIE && s.smbl_type <= SMB_SLT_PCIEG6P) { oprintf(fp, " PCIe Generation: %d\n", s.smbl_info); } else { oprintf(fp, " Slot Type: 0x%x\n", s.smbl_info); } } if (s.smbl_pwidth != 0) { desc_printf(smbios_slot_width_desc(s.smbl_pwidth), fp, " Physical Width: 0x%x", s.smbl_pwidth); } if (s.smbl_pitch != 0) { oprintf(fp, " Slot Pitch: %u.%u mm\n", s.smbl_pitch / 100, s.smbl_pitch % 100); } /* * The slot height was introduced in SMBIOS 3.5. However, a value of * zero here does not mean that it is unknown, but rather that the * concept is not applicable. Therefore we cannot use a standard check * against zero for this and instead use the version. */ if (smbios_vergteq(&v, 3, 5)) { desc_printf(smbios_slot_height_desc(s.smbl_height), fp, " Height: 0x%x", s.smbl_height); } else { oprintf(fp, " Height: unknown\n"); } } static void print_obdevs_ext(smbios_hdl_t *shp, id_t id, FILE *fp) { boolean_t enabled; smbios_obdev_ext_t oe; const char *type; if (smbios_info_obdevs_ext(shp, id, &oe) != 0) { smbios_warn(shp, "failed to read extended on-board devices " "information"); return; } /* * Bit 7 is always whether or not the device is enabled while bits 0:6 * are the actual device type. */ enabled = oe.smboe_dtype >> 7; type = smbios_onboard_ext_type_desc(oe.smboe_dtype & 0x7f); str_print(fp, " Reference Designator", oe.smboe_name); oprintf(fp, " Device Enabled: %s\n", enabled == B_TRUE ? "true" : "false"); oprintf(fp, " Device Type: %s\n", type); oprintf(fp, " Device Type Instance: %u\n", oe.smboe_dti); oprintf(fp, " Segment Group Number: %u\n", oe.smboe_sg); oprintf(fp, " Bus Number: %u\n", oe.smboe_bus); oprintf(fp, " Device/Function Number: %u\n", oe.smboe_df); } static void print_obdevs(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_obdev_t *argv; int i, argc; if ((argc = smbios_info_obdevs(shp, id, 0, NULL)) > 0) { argv = alloca(sizeof (smbios_obdev_t) * argc); if (smbios_info_obdevs(shp, id, argc, argv) == -1) { smbios_warn(shp, "failed to read on-board device " "information"); return; } for (i = 0; i < argc; i++) str_print_nolabel(fp, " ", argv[i].smbd_name); } } static void print_strtab(smbios_hdl_t *shp, id_t id, FILE *fp) { const char **argv; int i, argc; if ((argc = smbios_info_strtab(shp, id, 0, NULL)) > 0) { argv = alloca(sizeof (char *) * argc); if (smbios_info_strtab(shp, id, argc, argv) == -1) { smbios_warn(shp, "failed to read string table " "information"); return; } for (i = 0; i < argc; i++) str_print_nolabel(fp, " ", argv[i]); } } static void print_lang(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_lang_t l; if (smbios_info_lang(shp, &l) == -1) { smbios_warn(shp, "failed to read language information"); return; } str_print(fp, " Current Language", l.smbla_cur); oprintf(fp, " Language String Format: %u\n", l.smbla_fmt); oprintf(fp, " Number of Installed Languages: %u\n", l.smbla_num); oprintf(fp, " Installed Languages:\n"); print_strtab(shp, id, fp); } /*ARGSUSED*/ static void print_evlog(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_evlog_t ev; uint32_t i; if (smbios_info_eventlog(shp, &ev) == -1) { smbios_warn(shp, "failed to read event log information"); return; } oprintf(fp, " Log Area Size: %lu bytes\n", (ulong_t)ev.smbev_size); oprintf(fp, " Header Offset: %lu\n", (ulong_t)ev.smbev_hdr); oprintf(fp, " Data Offset: %lu\n", (ulong_t)ev.smbev_data); desc_printf(smbios_evlog_method_desc(ev.smbev_method), fp, " Data Access Method: %u", ev.smbev_method); flag_printf(fp, "Log Flags", ev.smbev_flags, sizeof (ev.smbev_flags) * NBBY, smbios_evlog_flag_name, smbios_evlog_flag_desc); desc_printf(smbios_evlog_format_desc(ev.smbev_format), fp, " Log Header Format: %u", ev.smbev_format); oprintf(fp, " Update Token: 0x%x\n", ev.smbev_token); oprintf(fp, " Data Access Address: "); switch (ev.smbev_method) { case SMB_EVM_1x1i_1x1d: case SMB_EVM_2x1i_1x1d: case SMB_EVM_1x2i_1x1d: oprintf(fp, "Index Address 0x%x, Data Address 0x%x\n", ev.smbev_addr.eva_io.evi_iaddr, ev.smbev_addr.eva_io.evi_daddr); break; case SMB_EVM_GPNV: oprintf(fp, "0x%x\n", ev.smbev_addr.eva_gpnv); break; default: oprintf(fp, "0x%x\n", ev.smbev_addr.eva_addr); } oprintf(fp, " Type Descriptors:\n"); for (i = 0; i < ev.smbev_typec; i++) { oprintf(fp, " %u: Log Type 0x%x, Data Type 0x%x\n", i, ev.smbev_typev[i].smbevt_ltype, ev.smbev_typev[i].smbevt_dtype); } } static void print_bytes(const uint8_t *data, size_t size, FILE *fp) { size_t row, rows = P2ROUNDUP(size, 16) / 16; size_t col, cols; char buf[17]; uint8_t x; oprintf(fp, "\n offset: 0 1 2 3 4 5 6 7 8 9 a b c d e f " "0123456789abcdef\n"); for (row = 0; row < rows; row++) { oprintf(fp, " %#6lx: ", (ulong_t)row * 16); cols = MIN(size - row * 16, 16); for (col = 0; col < cols; col++) { if (col % 4 == 0) oprintf(fp, " "); x = *data++; oprintf(fp, "%02x", x); buf[col] = x <= ' ' || x > '~' ? '.' : x; } for (; col < 16; col++) { if (col % 4 == 0) oprintf(fp, " "); oprintf(fp, " "); buf[col] = ' '; } buf[col] = '\0'; oprintf(fp, " %s\n", buf); } oprintf(fp, "\n"); } static void print_memarray(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_memarray_t ma; if (smbios_info_memarray(shp, id, &ma) != 0) { smbios_warn(shp, "failed to read memarray information"); return; } desc_printf(smbios_memarray_loc_desc(ma.smbma_location), fp, " Location: %u", ma.smbma_location); desc_printf(smbios_memarray_use_desc(ma.smbma_use), fp, " Use: %u", ma.smbma_use); desc_printf(smbios_memarray_ecc_desc(ma.smbma_ecc), fp, " ECC: %u", ma.smbma_ecc); oprintf(fp, " Number of Slots/Sockets: %u\n", ma.smbma_ndevs); id_printf(fp, " Memory Error Data: ", ma.smbma_err); oprintf(fp, " Max Capacity: %llu bytes\n", (u_longlong_t)ma.smbma_size); } static void print_memdevice(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_memdevice_t md; if (smbios_info_memdevice(shp, id, &md) != 0) { smbios_warn(shp, "failed to read memory device information"); return; } id_printf(fp, " Physical Memory Array: ", md.smbmd_array); id_printf(fp, " Memory Error Data: ", md.smbmd_error); if (md.smbmd_twidth != -1u) oprintf(fp, " Total Width: %u bits\n", md.smbmd_twidth); else oprintf(fp, " Total Width: Unknown\n"); if (md.smbmd_dwidth != -1u) oprintf(fp, " Data Width: %u bits\n", md.smbmd_dwidth); else oprintf(fp, " Data Width: Unknown\n"); switch (md.smbmd_size) { case -1ull: oprintf(fp, " Size: Unknown\n"); break; case 0: oprintf(fp, " Size: Not Populated\n"); break; default: oprintf(fp, " Size: %llu bytes\n", (u_longlong_t)md.smbmd_size); } desc_printf(smbios_memdevice_form_desc(md.smbmd_form), fp, " Form Factor: %u", md.smbmd_form); if (md.smbmd_set == 0) oprintf(fp, " Set: None\n"); else if (md.smbmd_set == (uint8_t)-1u) oprintf(fp, " Set: Unknown\n"); else oprintf(fp, " Set: %u\n", md.smbmd_set); if (md.smbmd_rank != 0) { desc_printf(smbios_memdevice_rank_desc(md.smbmd_rank), fp, " Rank: %u", md.smbmd_rank); } else { oprintf(fp, " Rank: Unknown\n"); } desc_printf(smbios_memdevice_type_desc(md.smbmd_type), fp, " Memory Type: %u", md.smbmd_type); flag_printf(fp, "Flags", md.smbmd_flags, sizeof (md.smbmd_flags) * NBBY, smbios_memdevice_flag_name, smbios_memdevice_flag_desc); if (md.smbmd_extspeed != 0) { oprintf(fp, " Speed: %" PRIu64 " MT/s\n", md.smbmd_extspeed); } else { oprintf(fp, " Speed: Unknown\n"); } if (md.smbmd_extclkspeed != 0) { oprintf(fp, " Configured Speed: %" PRIu64 " MT/s\n", md.smbmd_extclkspeed); } else { oprintf(fp, " Configured Speed: Unknown\n"); } str_print(fp, " Device Locator", md.smbmd_dloc); str_print(fp, " Bank Locator", md.smbmd_bloc); if (md.smbmd_minvolt != 0) { oprintf(fp, " Minimum Voltage: %.2fV\n", md.smbmd_minvolt / 1000.0); } else { oprintf(fp, " Minimum Voltage: Unknown\n"); } if (md.smbmd_maxvolt != 0) { oprintf(fp, " Maximum Voltage: %.2fV\n", md.smbmd_maxvolt / 1000.0); } else { oprintf(fp, " Maximum Voltage: Unknown\n"); } if (md.smbmd_confvolt != 0) { oprintf(fp, " Configured Voltage: %.2fV\n", md.smbmd_confvolt / 1000.0); } else { oprintf(fp, " Configured Voltage: Unknown\n"); } if (md.smbmd_memtech != 0) { desc_printf(smbios_memdevice_memtech_desc(md.smbmd_memtech), fp, " Memory Technology: %u", md.smbmd_memtech); } if (md.smbmd_opcap_flags != 0) { flag_printf(fp, "Operating Mode Capabilities", md.smbmd_opcap_flags, sizeof (md.smbmd_opcap_flags) * NBBY, smbios_memdevice_op_capab_name, smbios_memdevice_op_capab_desc); } if (md.smbmd_firmware_rev[0] != '\0') { str_print(fp, " Firmware Revision", md.smbmd_firmware_rev); } if (md.smbmd_modmfg_id != SMB_MD_MFG_UNKNOWN) { jedec_print(fp, "Module Manufacturer ID", md.smbmd_modmfg_id); } if (md.smbmd_modprod_id != 0) { jedec_print(fp, "Module Product ID", md.smbmd_modprod_id); } if (md.smbmd_cntrlmfg_id != SMB_MD_MFG_UNKNOWN) { jedec_print(fp, "Memory Subsystem Controller Manufacturer ID", md.smbmd_cntrlmfg_id); } if (md.smbmd_cntrlprod_id != 0) { jedec_print(fp, "Memory Subsystem Controller Product ID", md.smbmd_cntrlprod_id); } if (md.smbmd_nvsize == UINT64_MAX) { oprintf(fp, " Non-volatile Size: Unknown\n"); } else if (md.smbmd_nvsize != 0) { oprintf(fp, " Non-volatile Size: %llu bytes\n", (u_longlong_t)md.smbmd_nvsize); } if (md.smbmd_volatile_size == UINT64_MAX) { oprintf(fp, " Volatile Size: Unknown\n"); } else if (md.smbmd_volatile_size != 0) { oprintf(fp, " Volatile Size: %llu bytes\n", (u_longlong_t)md.smbmd_volatile_size); } if (md.smbmd_cache_size == UINT64_MAX) { oprintf(fp, " Cache Size: Unknown\n"); } else if (md.smbmd_cache_size != 0) { oprintf(fp, " Cache Size: %llu bytes\n", (u_longlong_t)md.smbmd_cache_size); } if (md.smbmd_logical_size == UINT64_MAX) { oprintf(fp, " Logical Size: Unknown\n"); } else if (md.smbmd_logical_size != 0) { oprintf(fp, " Logical Size: %llu bytes\n", (u_longlong_t)md.smbmd_logical_size); } if (md.smbmd_pmic0_mfgid != SMB_MD_MFG_UNKNOWN) { jedec_print(fp, "PMIC0 Manufacturer ID", md.smbmd_pmic0_mfgid); } if (md.smbmd_pmic0_rev != SMB_MD_REV_UNKNOWN) { jedec_rev_print(fp, "PMIC0 Revision", md.smbmd_pmic0_rev); } if (md.smbmd_rcd_mfgid != SMB_MD_MFG_UNKNOWN) { jedec_print(fp, "RCD Manufacturer ID", md.smbmd_rcd_mfgid); } if (md.smbmd_rcd_rev != SMB_MD_REV_UNKNOWN) { jedec_rev_print(fp, "RCD Revision", md.smbmd_rcd_rev); } } static void print_memarrmap(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_memarrmap_t ma; if (smbios_info_memarrmap(shp, id, &ma) != 0) { smbios_warn(shp, "failed to read memory array map information"); return; } id_printf(fp, " Physical Memory Array: ", ma.smbmam_array); oprintf(fp, " Devices per Row: %u\n", ma.smbmam_width); oprintf(fp, " Physical Address: 0x%llx\n Size: %llu bytes\n", (u_longlong_t)ma.smbmam_addr, (u_longlong_t)ma.smbmam_size); } static void print_memdevmap(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_memdevmap_t md; if (smbios_info_memdevmap(shp, id, &md) != 0) { smbios_warn(shp, "failed to read memory device map " "information"); return; } id_printf(fp, " Memory Device: ", md.smbmdm_device); id_printf(fp, " Memory Array Mapped Address: ", md.smbmdm_arrmap); oprintf(fp, " Physical Address: 0x%llx\n Size: %llu bytes\n", (u_longlong_t)md.smbmdm_addr, (u_longlong_t)md.smbmdm_size); oprintf(fp, " Partition Row Position: %u\n", md.smbmdm_rpos); oprintf(fp, " Interleave Position: %u\n", md.smbmdm_ipos); oprintf(fp, " Interleave Data Depth: %u\n", md.smbmdm_idepth); } static void print_hwsec(smbios_hdl_t *shp, FILE *fp) { smbios_hwsec_t h; if (smbios_info_hwsec(shp, &h) == -1) { smbios_warn(shp, "failed to read hwsec information"); return; } desc_printf(smbios_hwsec_desc(h.smbh_pwr_ps), fp, " Power-On Password Status: %u", h.smbh_pwr_ps); desc_printf(smbios_hwsec_desc(h.smbh_kbd_ps), fp, " Keyboard Password Status: %u", h.smbh_kbd_ps); desc_printf(smbios_hwsec_desc(h.smbh_adm_ps), fp, " Administrator Password Status: %u", h.smbh_adm_ps); desc_printf(smbios_hwsec_desc(h.smbh_pan_ps), fp, " Front Panel Reset Status: %u", h.smbh_pan_ps); } static void print_vprobe(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_vprobe_t vp; if (smbios_info_vprobe(shp, id, &vp) != 0) { smbios_warn(shp, "failed to read voltage probe information"); return; } str_print(fp, " Description", vp.smbvp_description != NULL ? vp.smbvp_description : "unknown"); desc_printf(smbios_vprobe_loc_desc(vp.smbvp_location), fp, " Location: %u", vp.smbvp_location); desc_printf(smbios_vprobe_status_desc(vp.smbvp_status), fp, " Status: %u", vp.smbvp_status); if (vp.smbvp_maxval != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Maximum Possible Voltage: %u mV\n", vp.smbvp_maxval); } else { oprintf(fp, " Maximum Possible Voltage: unknown\n"); } if (vp.smbvp_minval != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Minimum Possible Voltage: %u mV\n", vp.smbvp_minval); } else { oprintf(fp, " Minimum Possible Voltage: unknown\n"); } if (vp.smbvp_resolution != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Resolution: %u.%u mV\n", vp.smbvp_resolution / 10, vp.smbvp_resolution % 10); } else { oprintf(fp, " Probe Resolution: unknown\n"); } if (vp.smbvp_tolerance != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Tolerance: +/-%u mV\n", vp.smbvp_tolerance); } else { oprintf(fp, " Probe Tolerance: unknown\n"); } if (vp.smbvp_accuracy != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Accuracy: +/-%u.%02u%%\n", vp.smbvp_accuracy / 100, vp.smbvp_accuracy % 100); } else { oprintf(fp, " Probe Accuracy: unknown\n"); } oprintf(fp, " OEM- or BIOS- defined value: 0x%x\n", vp.smbvp_oem); if (vp.smbvp_nominal != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Nominal Value: %u mV\n", vp.smbvp_nominal); } else { oprintf(fp, " Probe Nominal Value: unknown\n"); } } static void print_cooldev(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_cooldev_t cd; if (smbios_info_cooldev(shp, id, &cd) != 0) { smbios_warn(shp, "failed to read cooling device " "information"); return; } id_printf(fp, " Temperature Probe Handle: ", cd.smbcd_tprobe); desc_printf(smbios_cooldev_type_desc(cd.smbcd_type), fp, " Device Type: %u", cd.smbcd_type); desc_printf(smbios_cooldev_status_desc(cd.smbcd_status), fp, " Status: %u", cd.smbcd_status); oprintf(fp, " Cooling Unit Group: %u\n", cd.smbcd_group); oprintf(fp, " OEM- or BIOS- defined data: 0x%x\n", cd.smbcd_oem); if (cd.smbcd_nominal != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Nominal Speed: %u RPM\n", cd.smbcd_nominal); } else { oprintf(fp, " Nominal Speed: unknown\n"); } if (cd.smbcd_descr != NULL && cd.smbcd_descr[0] != '\0') { str_print(fp, " Description", cd.smbcd_descr); } } static void print_tprobe(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_tprobe_t tp; if (smbios_info_tprobe(shp, id, &tp) != 0) { smbios_warn(shp, "failed to read temperature probe " "information"); return; } str_print(fp, " Description", tp.smbtp_description != NULL ? tp.smbtp_description : "unknown"); desc_printf(smbios_tprobe_loc_desc(tp.smbtp_location), fp, " Location: %u", tp.smbtp_location); desc_printf(smbios_tprobe_status_desc(tp.smbtp_status), fp, " Status: %u", tp.smbtp_status); if (tp.smbtp_maxval != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Maximum Possible Temperature: %u.%u C\n", tp.smbtp_maxval / 10, tp.smbtp_maxval % 10); } else { oprintf(fp, " Maximum Possible Temperature: unknown\n"); } if (tp.smbtp_minval != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Minimum Possible Temperature: %u.%u C\n", tp.smbtp_minval / 10, tp.smbtp_minval % 10); } else { oprintf(fp, " Minimum Possible Temperature: unknown\n"); } if (tp.smbtp_resolution != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Resolution: %u.%03u C\n", tp.smbtp_resolution / 1000, tp.smbtp_resolution % 1000); } else { oprintf(fp, " Probe Resolution: unknown\n"); } if (tp.smbtp_tolerance != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Tolerance: +/-%u.%u C\n", tp.smbtp_tolerance / 10, tp.smbtp_tolerance % 10); } else { oprintf(fp, " Probe Tolerance: unknown\n"); } if (tp.smbtp_accuracy != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Accuracy: +/-%u.%02u%%\n", tp.smbtp_accuracy / 100, tp.smbtp_accuracy % 100); } else { oprintf(fp, " Probe Accuracy: unknown\n"); } oprintf(fp, " OEM- or BIOS- defined value: 0x%x\n", tp.smbtp_oem); if (tp.smbtp_nominal != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Nominal Value: %u.%u C\n", tp.smbtp_nominal / 10, tp.smbtp_nominal % 10); } else { oprintf(fp, " Probe Nominal Value: unknown\n"); } } static void print_iprobe(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_iprobe_t ip; if (smbios_info_iprobe(shp, id, &ip) != 0) { smbios_warn(shp, "failed to read current probe information"); return; } str_print(fp, " Description", ip.smbip_description != NULL ? ip.smbip_description : "unknown"); desc_printf(smbios_iprobe_loc_desc(ip.smbip_location), fp, " Location: %u", ip.smbip_location); desc_printf(smbios_iprobe_status_desc(ip.smbip_status), fp, " Status: %u", ip.smbip_status); if (ip.smbip_maxval != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Maximum Possible Current: %u mA\n", ip.smbip_maxval); } else { oprintf(fp, " Maximum Possible Current: unknown\n"); } if (ip.smbip_minval != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Minimum Possible Current: %u mA\n", ip.smbip_minval); } else { oprintf(fp, " Minimum Possible Current: unknown\n"); } if (ip.smbip_resolution != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Resolution: %u.%u mA\n", ip.smbip_resolution / 10, ip.smbip_resolution % 10); } else { oprintf(fp, " Probe Resolution: unknown\n"); } if (ip.smbip_tolerance != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Tolerance: +/-%u mA\n", ip.smbip_tolerance); } else { oprintf(fp, " Probe Tolerance: unknown\n"); } if (ip.smbip_accuracy != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Accuracy: +/-%u.%02u%%\n", ip.smbip_accuracy / 100, ip.smbip_accuracy % 100); } else { oprintf(fp, " Probe Accuracy: unknown\n"); } oprintf(fp, " OEM- or BIOS- defined value: 0x%x\n", ip.smbip_oem); if (ip.smbip_nominal != SMB_PROBE_UNKNOWN_VALUE) { oprintf(fp, " Probe Nominal Value: %u mA\n", ip.smbip_nominal); } else { oprintf(fp, " Probe Nominal Value: unknown\n"); } } static void print_boot(smbios_hdl_t *shp, FILE *fp) { smbios_boot_t b; if (smbios_info_boot(shp, &b) == -1) { smbios_warn(shp, "failed to read boot information"); return; } desc_printf(smbios_boot_desc(b.smbt_status), fp, " Boot Status Code: 0x%x", b.smbt_status); if (b.smbt_size != 0) { oprintf(fp, " Boot Data (%lu bytes):\n", (ulong_t)b.smbt_size); print_bytes(b.smbt_data, b.smbt_size, fp); } } static void print_ipmi(smbios_hdl_t *shp, FILE *fp) { smbios_ipmi_t i; if (smbios_info_ipmi(shp, &i) == -1) { smbios_warn(shp, "failed to read ipmi information"); return; } desc_printf(smbios_ipmi_type_desc(i.smbip_type), fp, " Type: %u", i.smbip_type); oprintf(fp, " BMC IPMI Version: %u.%u\n", i.smbip_vers.smbv_major, i.smbip_vers.smbv_minor); oprintf(fp, " i2c Bus Slave Address: 0x%x\n", i.smbip_i2c); oprintf(fp, " NV Storage Device Bus ID: 0x%x\n", i.smbip_bus); oprintf(fp, " BMC Base Address: 0x%llx\n", (u_longlong_t)i.smbip_addr); oprintf(fp, " Interrupt Number: %u\n", i.smbip_intr); oprintf(fp, " Register Spacing: %u\n", i.smbip_regspacing); flag_printf(fp, "Flags", i.smbip_flags, sizeof (i.smbip_flags) * NBBY, smbios_ipmi_flag_name, smbios_ipmi_flag_desc); } static void print_powersup(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_powersup_t p; if (smbios_info_powersup(shp, id, &p) != 0) { smbios_warn(shp, "failed to read power supply information"); return; } oprintf(fp, " Power Supply Group: %u\n", p.smbps_group); if (p.smbps_maxout != 0x8000) { oprintf(fp, " Maximum Output: %llu mW\n", p.smbps_maxout); } else { oprintf(fp, " Maximum Output: unknown\n"); } flag_printf(fp, "Characteristics", p.smbps_flags, sizeof (p.smbps_flags) * NBBY, smbios_powersup_flag_name, smbios_powersup_flag_desc); desc_printf(smbios_powersup_input_desc(p.smbps_ivrs), fp, " Input Voltage Range Switching: %u", p.smbps_ivrs); desc_printf(smbios_powersup_status_desc(p.smbps_status), fp, " Status: %u", p.smbps_status); desc_printf(smbios_powersup_type_desc(p.smbps_pstype), fp, " Type: %u", p.smbps_pstype); if (p.smbps_vprobe != 0xffff) { oprintf(fp, " Voltage Probe Handle: %lu\n", p.smbps_vprobe); } if (p.smbps_cooldev != 0xffff) { oprintf(fp, " Cooling Device Handle: %lu\n", p.smbps_cooldev); } if (p.smbps_iprobe != 0xffff) { oprintf(fp, " Current Probe Handle: %lu\n", p.smbps_iprobe); } } static void print_addinfo(smbios_hdl_t *shp, id_t id, FILE *fp) { uint_t nents, i; if (smbios_info_addinfo_nents(shp, id, &nents) != 0) { smbios_warn(shp, "failed to read additional information"); return; } oprintf(fp, " Number of Additional Information Entries: %u\n", nents); for (i = 0; i < nents; i++) { smbios_addinfo_ent_t *ent; oprintf(fp, " Additional Information Entry %u\n", i); if (smbios_info_addinfo_ent(shp, id, i, &ent) != 0) { smbios_warn(shp, "failed to read additional " "information entry %u", i); continue; } oprintf(fp, " Referenced handle: %lu\n", ent->smbai_ref); oprintf(fp, " Handle offset: %u\n", ent->smbai_ref_off); if (ent->smbai_str != NULL) { str_print(fp, " Information String", ent->smbai_str); } /* * As of SMBIOS 3.7, there are no extra data entries strictly * defined in the spec, but there may be something. If we find * something that's a standard integer size, then we'll * interpret it and print it as a hex value. In theory this is * supposed to refer back to some field, but hard to say how * this'll actually be used. The first time we encountered it * was just an additional string entry. */ if (ent->smbai_dlen > 0) { oprintf(fp, " Data Length: %u\n", ent->smbai_dlen); switch (ent->smbai_dlen) { case 1: oprintf(fp, " Data: 0x%x\n", *(uint8_t *)ent->smbai_data); break; case 2: oprintf(fp, " Data: 0x%x\n", *(uint16_t *)ent->smbai_data); break; case 4: oprintf(fp, " Data: 0x%x\n", *(uint32_t *)ent->smbai_data); break; case 8: oprintf(fp, " Data: 0x%x\n", *(uint64_t *)ent->smbai_data); break; default: break; } } smbios_info_addinfo_ent_free(shp, ent); } } static void print_processor_info_riscv(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_processor_info_riscv_t rv; if (smbios_info_processor_riscv(shp, id, &rv) != 0) { smbios_warn(shp, "failed to read RISC-V specific processor " "information"); return; } if (rv.smbpirv_boothart != 0) { oprintf(fp, " Boot Hart\n"); } u128_print(fp, " Hart ID", rv.smbpirv_hartid); u128_print(fp, " Vendor ID", rv.smbpirv_vendid); u128_print(fp, " Architecture ID", rv.smbpirv_archid); u128_print(fp, " Implementation ID", rv.smbpirv_machid); flag64_printf(fp, " ISA", rv.smbpirv_isa, sizeof (rv.smbpirv_isa) * NBBY, smbios_riscv_isa_name, smbios_riscv_isa_desc); flag_printf(fp, " Privilege Levels", rv.smbpirv_privlvl, sizeof (rv.smbpirv_privlvl) * NBBY, smbios_riscv_priv_name, smbios_riscv_priv_desc); u128_print(fp, " Machine Exception Trap Delegation", rv.smbpirv_metdi); u128_print(fp, " Machine Interrupt Trap Delegation", rv.smbpirv_mitdi); desc_printf(smbios_riscv_width_desc(rv.smbpirv_xlen), fp, " Register Width: 0x%x", rv.smbpirv_xlen); desc_printf(smbios_riscv_width_desc(rv.smbpirv_mxlen), fp, " M-Mode Register Width: 0x%x", rv.smbpirv_mxlen); desc_printf(smbios_riscv_width_desc(rv.smbpirv_sxlen), fp, " S-Mode Register Width: 0x%x", rv.smbpirv_sxlen); desc_printf(smbios_riscv_width_desc(rv.smbpirv_uxlen), fp, " U-Mode Register Width: 0x%x", rv.smbpirv_uxlen); } static void print_processor_info(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_processor_info_t p; if (smbios_info_processor_info(shp, id, &p) != 0) { smbios_warn(shp, "failed to read processor additional " "information"); return; } id_printf(fp, " Processor Handle: ", p.smbpi_processor); desc_printf(smbios_processor_info_type_desc(p.smbpi_ptype), fp, " Processor Type: %u", p.smbpi_ptype); switch (p.smbpi_ptype) { case SMB_PROCINFO_T_RV32: case SMB_PROCINFO_T_RV64: case SMB_PROCINFO_T_RV128: oprintf(fp, " RISC-V Additional Processor Information:\n"); print_processor_info_riscv(shp, id, fp); break; default: break; } } static void print_battery(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_battery_t bat; if (smbios_info_battery(shp, id, &bat) != 0) { smbios_warn(shp, "failed to read battery information"); return; } if (bat.smbb_date != NULL) { str_print(fp, " Manufacture Date", bat.smbb_date); } if (bat.smbb_serial != NULL) { str_print(fp, " Serial Number", bat.smbb_serial); } if (bat.smbb_chem != SMB_BDC_UNKNOWN) { desc_printf(smbios_battery_chem_desc(bat.smbb_chem), fp, " Battery Chemistry: 0x%x", bat.smbb_chem); } if (bat.smbb_cap != 0) { oprintf(fp, " Design Capacity: %u mWh\n", bat.smbb_cap); } else { oprintf(fp, " Design Capacity: unknown\n"); } if (bat.smbb_volt != 0) { oprintf(fp, " Design Voltage: %u mV\n", bat.smbb_volt); } else { oprintf(fp, " Design Voltage: unknown\n"); } str_print(fp, " SBDS Version Number", bat.smbb_version); if (bat.smbb_err != UINT8_MAX) { oprintf(fp, " Maximum Error: %u\n", bat.smbb_err); } else { oprintf(fp, " Maximum Error: unknown\n", bat.smbb_err); } oprintf(fp, " SBDS Serial Number: %04x\n", bat.smbb_ssn); oprintf(fp, " SBDS Manufacture Date: %u-%02u-%02u\n", bat.smbb_syear, bat.smbb_smonth, bat.smbb_sday); str_print(fp, " SBDS Device Chemistry", bat.smbb_schem); oprintf(fp, " OEM-specific Information: 0x%08x\n", bat.smbb_oemdata); } static void print_pointdev(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_pointdev_t pd; if (smbios_info_pointdev(shp, id, &pd) != 0) { smbios_warn(shp, "failed to read pointer device information"); return; } desc_printf(smbios_pointdev_type_desc(pd.smbpd_type), fp, " Type: %u", pd.smbpd_type); desc_printf(smbios_pointdev_iface_desc(pd.smbpd_iface), fp, " Interface: %u", pd.smbpd_iface); oprintf(fp, " Buttons: %u\n", pd.smbpd_nbuttons); } static void print_extprocessor(smbios_hdl_t *shp, id_t id, FILE *fp) { int i; smbios_processor_ext_t ep; if (check_oem(shp) != 0) return; if (smbios_info_extprocessor(shp, id, &ep) != 0) { smbios_warn(shp, "failed to read extended processor " "information"); return; } oprintf(fp, " Processor: %u\n", ep.smbpe_processor); oprintf(fp, " FRU: %u\n", ep.smbpe_fru); oprintf(fp, " Initial APIC ID count: %u\n\n", ep.smbpe_n); for (i = 0; i < ep.smbpe_n; i++) { oprintf(fp, " Logical Strand %u: Initial APIC ID: %u\n", i, ep.smbpe_apicid[i]); } } static void print_extport(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_port_ext_t epo; if (check_oem(shp) != 0) return; if (smbios_info_extport(shp, id, &epo) != 0) { smbios_warn(shp, "failed to read extended port information"); return; } oprintf(fp, " Chassis Handle: %u\n", epo.smbporte_chassis); oprintf(fp, " Port Connector Handle: %u\n", epo.smbporte_port); oprintf(fp, " Device Type: %u\n", epo.smbporte_dtype); oprintf(fp, " Device Handle: %u\n", epo.smbporte_devhdl); oprintf(fp, " PHY: %u\n", epo.smbporte_phy); } static void print_pciexrc(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_pciexrc_t pcie; if (check_oem(shp) != 0) return; if (smbios_info_pciexrc(shp, id, &pcie) != 0) { smbios_warn(shp, "failed to read pciexrc information"); return; } oprintf(fp, " Component ID: %u\n", pcie.smbpcie_bb); oprintf(fp, " BDF: 0x%x\n", pcie.smbpcie_bdf); } static void print_extmemarray(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_memarray_ext_t em; if (check_oem(shp) != 0) return; if (smbios_info_extmemarray(shp, id, &em) != 0) { smbios_warn(shp, "failed to read extmemarray information"); return; } oprintf(fp, " Physical Memory Array Handle: %u\n", em.smbmae_ma); oprintf(fp, " Component Parent Handle: %u\n", em.smbmae_comp); oprintf(fp, " BDF: 0x%x\n", em.smbmae_bdf); } static void print_extmemdevice(smbios_hdl_t *shp, id_t id, FILE *fp) { uint_t i, ncs; uint8_t *cs; smbios_memdevice_ext_t emd; if (check_oem(shp) != 0) return; if (smbios_info_extmemdevice(shp, id, &emd) != 0) { smbios_warn(shp, "failed to read extmemdevice information"); return; } oprintf(fp, " Memory Device Handle: %u\n", emd.smbmdeve_md); oprintf(fp, " DRAM Channel: %u\n", emd.smbmdeve_drch); oprintf(fp, " Number of Chip Selects: %u\n", emd.smbmdeve_ncs); if (emd.smbmdeve_ncs == 0) return; if (smbios_info_extmemdevice_cs(shp, id, &ncs, &cs) != 0) { smbios_warn(shp, "failed to read extmemdevice cs information"); return; } for (i = 0; i < ncs; i++) { oprintf(fp, " Chip Select: %u\n", cs[i]); } smbios_info_extmemdevice_cs_free(shp, ncs, cs); } static void print_strprop_info(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_strprop_t prop; if (smbios_info_strprop(shp, id, &prop) != 0) { smbios_warn(shp, "failed to read string property information"); return; } desc_printf(smbios_strprop_id_desc(prop.smbsp_prop_id), fp, " Property ID: %u", prop.smbsp_prop_id); if (prop.smbsp_prop_val != NULL) { str_print(fp, " Property Value", prop.smbsp_prop_val); } id_printf(fp, " Parent Handle: ", prop.smbsp_parent); } static void print_fwinfo(smbios_hdl_t *shp, id_t id, FILE *fp) { smbios_fwinfo_t fw; smbios_fwinfo_comp_t *comps; uint_t ncomps, i; if (smbios_info_fwinfo(shp, id, &fw) != 0) { smbios_warn(shp, "failed to read firmware inventory"); return; } str_print(fp, " Component Name", fw.smbfw_name); str_print(fp, " ID", fw.smbfw_id); str_print(fp, " Release Date", fw.smbfw_reldate); str_print(fp, " Lowest Supported Version", fw.smbfw_lsv); desc_printf(smbios_fwinfo_vers_desc(fw.smbfw_vers_fmt), fp, " Version Format: %u", fw.smbfw_vers_fmt); desc_printf(smbios_fwinfo_id_desc(fw.smbfw_id_fmt), fp, " ID Format: %u", fw.smbfw_id_fmt); if (fw.smbfw_imgsz != UINT64_MAX) { oprintf(fp, " Image Size: %" PRIu64 "\n", fw.smbfw_imgsz); } else { oprintf(fp, " Image Size: unknown\n"); } flag_printf(fp, "Characteristics", fw.smbfw_chars, sizeof (fw.smbfw_chars) * NBBY, smbios_fwinfo_ch_name, smbios_fwinfo_ch_desc); desc_printf(smbios_fwinfo_state_desc(fw.smbfw_state), fp, " State: %u", fw.smbfw_state); oprintf(fp, " Number of Associated Components: %u\n", fw.smbfw_ncomps); if (fw.smbfw_ncomps == 0) return; if (smbios_info_fwinfo_comps(shp, id, &ncomps, &comps) == -1) { smbios_warn(shp, "failed to read firmware inventory " "components"); return; } oprintf(fp, "\n Component Handles:\n"); for (i = 0; i < ncomps; i++) { oprintf(fp, " %ld\n", comps[i]); } } static int print_struct(smbios_hdl_t *shp, const smbios_struct_t *sp, void *fp) { smbios_info_t info; int hex = opt_x; const char *s; if (opt_t != -1 && opt_t != sp->smbstr_type) return (0); /* skip struct if type doesn't match -t */ if (!opt_O && (sp->smbstr_type == SMB_TYPE_MEMCTL || sp->smbstr_type == SMB_TYPE_MEMMOD)) return (0); /* skip struct if type is obsolete */ if (g_hdr++ == 0 || !opt_s) oprintf(fp, "%-5s %-4s %s\n", "ID", "SIZE", "TYPE"); oprintf(fp, "%-5u %-4lu", (uint_t)sp->smbstr_id, (ulong_t)sp->smbstr_size); if ((s = smbios_type_name(sp->smbstr_type)) != NULL) oprintf(fp, " %s (type %u)", s, sp->smbstr_type); else if (sp->smbstr_type > SMB_TYPE_OEM_LO && sp->smbstr_type < SMB_TYPE_OEM_HI) oprintf(fp, " %s+%u (type %u)", "SMB_TYPE_OEM_LO", sp->smbstr_type - SMB_TYPE_OEM_LO, sp->smbstr_type); else oprintf(fp, " %u", sp->smbstr_type); if ((s = smbios_type_desc(sp->smbstr_type)) != NULL) oprintf(fp, " (%s)\n", s); else oprintf(fp, "\n"); if (opt_s) return (0); /* only print header line if -s specified */ if (smbios_info_common(shp, sp->smbstr_id, &info) == 0) { oprintf(fp, "\n"); print_common(&info, fp); } switch (sp->smbstr_type) { case SMB_TYPE_BIOS: oprintf(fp, "\n"); print_bios(shp, fp); break; case SMB_TYPE_SYSTEM: oprintf(fp, "\n"); print_system(shp, fp); break; case SMB_TYPE_BASEBOARD: oprintf(fp, "\n"); print_bboard(shp, sp->smbstr_id, fp); break; case SMB_TYPE_CHASSIS: oprintf(fp, "\n"); print_chassis(shp, sp->smbstr_id, fp); break; case SMB_TYPE_PROCESSOR: oprintf(fp, "\n"); print_processor(shp, sp->smbstr_id, fp); break; case SMB_TYPE_CACHE: oprintf(fp, "\n"); print_cache(shp, sp->smbstr_id, fp); break; case SMB_TYPE_PORT: oprintf(fp, "\n"); print_port(shp, sp->smbstr_id, fp); break; case SMB_TYPE_SLOT: oprintf(fp, "\n"); print_slot(shp, sp->smbstr_id, fp); break; case SMB_TYPE_OBDEVS: oprintf(fp, "\n"); print_obdevs(shp, sp->smbstr_id, fp); break; case SMB_TYPE_OEMSTR: case SMB_TYPE_SYSCONFSTR: oprintf(fp, "\n"); print_strtab(shp, sp->smbstr_id, fp); break; case SMB_TYPE_LANG: oprintf(fp, "\n"); print_lang(shp, sp->smbstr_id, fp); break; case SMB_TYPE_EVENTLOG: oprintf(fp, "\n"); print_evlog(shp, sp->smbstr_id, fp); break; case SMB_TYPE_MEMARRAY: oprintf(fp, "\n"); print_memarray(shp, sp->smbstr_id, fp); break; case SMB_TYPE_MEMDEVICE: oprintf(fp, "\n"); print_memdevice(shp, sp->smbstr_id, fp); break; case SMB_TYPE_MEMARRAYMAP: oprintf(fp, "\n"); print_memarrmap(shp, sp->smbstr_id, fp); break; case SMB_TYPE_MEMDEVICEMAP: oprintf(fp, "\n"); print_memdevmap(shp, sp->smbstr_id, fp); break; case SMB_TYPE_BATTERY: oprintf(fp, "\n"); print_battery(shp, sp->smbstr_id, fp); break; case SMB_TYPE_POINTDEV: oprintf(fp, "\n"); print_pointdev(shp, sp->smbstr_id, fp); break; case SMB_TYPE_SECURITY: oprintf(fp, "\n"); print_hwsec(shp, fp); break; case SMB_TYPE_VPROBE: oprintf(fp, "\n"); print_vprobe(shp, sp->smbstr_id, fp); break; case SMB_TYPE_COOLDEV: oprintf(fp, "\n"); print_cooldev(shp, sp->smbstr_id, fp); break; case SMB_TYPE_TPROBE: oprintf(fp, "\n"); print_tprobe(shp, sp->smbstr_id, fp); break; case SMB_TYPE_IPROBE: oprintf(fp, "\n"); print_iprobe(shp, sp->smbstr_id, fp); break; case SMB_TYPE_BOOT: oprintf(fp, "\n"); print_boot(shp, fp); break; case SMB_TYPE_IPMIDEV: oprintf(fp, "\n"); print_ipmi(shp, fp); break; case SMB_TYPE_POWERSUP: oprintf(fp, "\n"); print_powersup(shp, sp->smbstr_id, fp); break; case SMB_TYPE_ADDINFO: oprintf(fp, "\n"); print_addinfo(shp, sp->smbstr_id, fp); break; case SMB_TYPE_OBDEVEXT: oprintf(fp, "\n"); print_obdevs_ext(shp, sp->smbstr_id, fp); break; case SMB_TYPE_PROCESSOR_INFO: oprintf(fp, "\n"); print_processor_info(shp, sp->smbstr_id, fp); break; case SMB_TYPE_STRPROP: oprintf(fp, "\n"); print_strprop_info(shp, sp->smbstr_id, fp); break; case SMB_TYPE_FWINFO: oprintf(fp, "\n"); print_fwinfo(shp, sp->smbstr_id, fp); break; case SUN_OEM_EXT_PROCESSOR: oprintf(fp, "\n"); print_extprocessor(shp, sp->smbstr_id, fp); break; case SUN_OEM_EXT_PORT: oprintf(fp, "\n"); print_extport(shp, sp->smbstr_id, fp); break; case SUN_OEM_PCIEXRC: oprintf(fp, "\n"); print_pciexrc(shp, sp->smbstr_id, fp); break; case SUN_OEM_EXT_MEMARRAY: oprintf(fp, "\n"); print_extmemarray(shp, sp->smbstr_id, fp); break; case SUN_OEM_EXT_MEMDEVICE: oprintf(fp, "\n"); print_extmemdevice(shp, sp->smbstr_id, fp); break; default: hex++; } if (hex) print_bytes(sp->smbstr_data, sp->smbstr_size, fp); else oprintf(fp, "\n"); return (0); } static uint16_t getu16(const char *name, const char *s) { u_longlong_t val; char *p; errno = 0; val = strtoull(s, &p, 0); if (errno != 0 || p == s || *p != '\0' || val > UINT16_MAX) { (void) fprintf(stderr, "%s: invalid %s argument -- %s\n", g_pname, name, s); exit(SMBIOS_USAGE); } return ((uint16_t)val); } static uint16_t getstype(const char *name, const char *s) { const char *ts; uint16_t t; for (t = 0; t < SMB_TYPE_OEM_LO; t++) { if ((ts = smbios_type_name(t)) != NULL && strcmp(s, ts) == 0) return (t); } (void) fprintf(stderr, "%s: invalid %s argument -- %s\n", g_pname, name, s); exit(SMBIOS_USAGE); /*NOTREACHED*/ } static int usage(FILE *fp) { (void) fprintf(fp, "Usage: %s " "[-BeOsx] [-i id] [-t type] [-w file] [file]\n\n", g_pname); (void) fprintf(fp, "\t-B disable header validation for broken BIOSes\n" "\t-e display SMBIOS entry point information\n" "\t-i display only the specified structure\n" "\t-O display obsolete structure types\n" "\t-s display only a summary of structure identifiers and types\n" "\t-t display only the specified structure type\n" "\t-w write the raw data to the specified file\n" "\t-x display raw data for structures\n"); return (SMBIOS_USAGE); } int main(int argc, char *argv[]) { const char *ifile = NULL; const char *ofile = NULL; int oflags = 0; smbios_hdl_t *shp; smbios_struct_t s; int err, fd, c; char *p; if ((p = strrchr(argv[0], '/')) == NULL) g_pname = argv[0]; else g_pname = p + 1; while (optind < argc) { while ((c = getopt(argc, argv, "Bei:Ost:w:xZ")) != EOF) { switch (c) { case 'B': oflags |= SMB_O_NOCKSUM | SMB_O_NOVERS; break; case 'e': opt_e++; break; case 'i': opt_i = getu16("struct ID", optarg); break; case 'O': opt_O++; break; case 's': opt_s++; break; case 't': if (isdigit(optarg[0])) opt_t = getu16("struct type", optarg); else opt_t = getstype("struct type", optarg); break; case 'w': ofile = optarg; break; case 'x': opt_x++; break; case 'Z': oflags |= SMB_O_ZIDS; /* undocumented */ break; default: return (usage(stderr)); } } if (optind < argc) { if (ifile != NULL) { (void) fprintf(stderr, "%s: illegal " "argument -- %s\n", g_pname, argv[optind]); return (SMBIOS_USAGE); } ifile = argv[optind++]; } } if ((shp = smbios_open(ifile, SMB_VERSION, oflags, &err)) == NULL) { (void) fprintf(stderr, "%s: failed to load SMBIOS: %s\n", g_pname, smbios_errmsg(err)); return (SMBIOS_ERROR); } if (opt_i == -1 && opt_t == -1 && opt_e == 0 && smbios_truncated(shp)) (void) fprintf(stderr, "%s: SMBIOS table is truncated\n", g_pname); if (ofile != NULL) { if ((fd = open(ofile, O_WRONLY|O_CREAT|O_TRUNC, 0666)) == -1) { (void) fprintf(stderr, "%s: failed to open %s: %s\n", g_pname, ofile, strerror(errno)); err = SMBIOS_ERROR; } else if (smbios_write(shp, fd) != 0) { (void) fprintf(stderr, "%s: failed to write %s: %s\n", g_pname, ofile, smbios_errmsg(smbios_errno(shp))); err = SMBIOS_ERROR; } smbios_close(shp); return (err); } if (opt_e) { print_smbios(shp, stdout); smbios_close(shp); return (SMBIOS_SUCCESS); } if (opt_O && (opt_i != -1 || opt_t != -1)) opt_O++; /* -i or -t imply displaying obsolete records */ if (opt_i != -1) err = smbios_lookup_id(shp, opt_i, &s); else err = smbios_iter(shp, print_struct, stdout); if (err != 0) { (void) fprintf(stderr, "%s: failed to access SMBIOS: %s\n", g_pname, smbios_errmsg(smbios_errno(shp))); smbios_close(shp); return (SMBIOS_ERROR); } if (opt_i != -1) (void) print_struct(shp, &s, stdout); smbios_close(shp); return (SMBIOS_SUCCESS); }