/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * SPARC V9 machine dependent and ELF file class dependent functions. * Contains routines for performing function binding and symbol relocations. */ #include #include #include #include #include #include #include #include #include #include #include "_rtld.h" #include "_audit.h" #include "_elf.h" #include "_inline_gen.h" #include "_inline_reloc.h" #include "msg.h" extern void iflush_range(caddr_t, size_t); extern void plt_upper_32(uintptr_t, uintptr_t); extern void plt_upper_44(uintptr_t, uintptr_t); extern void plt_full_range(uintptr_t, uintptr_t); extern void elf_rtbndr(Rt_map *, ulong_t, caddr_t); extern void elf_rtbndr_far(Rt_map *, ulong_t, caddr_t); int elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr) { /* * Check machine type and flags. */ if (ehdr->e_flags & EF_SPARC_EXT_MASK) { /* * Check vendor-specific extensions. */ if (ehdr->e_flags & EF_SPARC_HAL_R1) { rej->rej_type = SGS_REJ_HAL; rej->rej_info = (uint_t)ehdr->e_flags; return (0); } if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) { rej->rej_type = SGS_REJ_US3; rej->rej_info = (uint_t)ehdr->e_flags; return (0); } /* * Generic check. * All of our 64-bit SPARC's support the US1 (UltraSPARC 1) * instructions so that bit isn't worth checking for explicitly. */ if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) { rej->rej_type = SGS_REJ_BADFLAG; rej->rej_info = (uint_t)ehdr->e_flags; return (0); } } else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) { rej->rej_type = SGS_REJ_BADFLAG; rej->rej_info = (uint_t)ehdr->e_flags; return (0); } return (1); } void ldso_plt_init(Rt_map *lmp) { /* * There is no need to analyze ld.so because we don't map in any of * its dependencies. However we may map these dependencies in later * (as if ld.so had dlopened them), so initialize the plt and the * permission information. */ if (PLTGOT(lmp)) { Xword pltoff; /* * Install the lm pointer in .PLT2 as per the ABI. */ pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE; elf_plt2_init(PLTGOT(lmp) + pltoff, lmp); /* * The V9 ABI states that the first 32k PLT entries * use .PLT1, with .PLT0 used by the "latter" entries. * We don't currently implement the extendend format, * so install an error handler in .PLT0 to catch anyone * trying to use it. */ elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far); /* * Initialize .PLT1 */ pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE; elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr); } } /* * elf_plt_write() will test to see how far away our destination * address lies. If it is close enough that a branch can * be used instead of a jmpl - we will fill the plt in with * single branch. The branches are much quicker then * a jmpl instruction - see bug#4356879 for further * details. * * NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since * librtld/dldump update PLT's who's physical * address is not the same as the 'virtual' runtime * address. */ Pltbindtype elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval, Xword pltndx) { Rela *rel = (Rela *)rptr; uintptr_t nsym = ~symval; uintptr_t vpltaddr, pltaddr; long disp; pltaddr = addr + rel->r_offset; vpltaddr = vaddr + rel->r_offset; disp = symval - vpltaddr - 4; if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) { *((Sxword *)pltaddr) = (uintptr_t)symval + (uintptr_t)rel->r_addend - vaddr; DBG_CALL(pltcntfar++); return (PLT_T_FAR); } /* * Test if the destination address is close enough to use * a ba,a... instruction to reach it. */ if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) { uint_t *pltent, bainstr; Pltbindtype rc; pltent = (uint_t *)pltaddr; /* * The * * ba,a,pt %icc, * * is the most efficient of the PLT's. If we * are within +-20 bits - use that branch. */ if (S_INRANGE(disp, 20)) { bainstr = M_BA_A_PT; /* ba,a,pt %icc, */ /* LINTED */ bainstr |= (uint_t)(S_MASK(19) & (disp >> 2)); rc = PLT_T_21D; DBG_CALL(pltcnt21d++); } else { /* * Otherwise - we fall back to the good old * * ba,a * * Which still beats a jmpl instruction. */ bainstr = M_BA_A; /* ba,a */ /* LINTED */ bainstr |= (uint_t)(S_MASK(22) & (disp >> 2)); rc = PLT_T_24D; DBG_CALL(pltcnt24d++); } pltent[2] = M_NOP; /* nop instr */ pltent[1] = bainstr; iflush_range((char *)(&pltent[1]), 4); pltent[0] = M_NOP; /* nop instr */ iflush_range((char *)(&pltent[0]), 4); return (rc); } if ((nsym >> 32) == 0) { plt_upper_32(pltaddr, symval); DBG_CALL(pltcntu32++); return (PLT_T_U32); } if ((nsym >> 44) == 0) { plt_upper_44(pltaddr, symval); DBG_CALL(pltcntu44++); return (PLT_T_U44); } /* * The PLT destination is not in reach of * a branch instruction - so we fall back * to a 'jmpl' sequence. */ plt_full_range(pltaddr, symval); DBG_CALL(pltcntfull++); return (PLT_T_FULL); } /* * Once relocated, the following 6 instruction sequence moves * a 64-bit immediate value into register %g1 */ #define VAL64_TO_G1 \ /* 0x00 */ 0x0b, 0x00, 0x00, 0x00, /* sethi %hh(value), %g5 */ \ /* 0x04 */ 0x8a, 0x11, 0x60, 0x00, /* or %g5, %hm(value), %g5 */ \ /* 0x08 */ 0x8b, 0x29, 0x70, 0x20, /* sllx %g5, 32, %g5 */ \ /* 0x0c */ 0x03, 0x00, 0x00, 0x00, /* sethi %lm(value), %g1 */ \ /* 0x10 */ 0x82, 0x10, 0x60, 0x00, /* or %g1, %lo(value), %g1 */ \ /* 0x14 */ 0x82, 0x10, 0x40, 0x05 /* or %g1, %g5, %g1 */ /* * Local storage space created on the stack created for this glue * code includes space for: * 0x8 pointer to dyn_data * 0x8 size prev stack frame */ static const Byte dyn_plt_template[] = { /* 0x0 */ 0x2a, 0xcf, 0x80, 0x03, /* brnz,a,pt %fp, 0xc */ /* 0x4 */ 0x82, 0x27, 0x80, 0x0e, /* sub %fp, %sp, %g1 */ /* 0x8 */ 0x82, 0x10, 0x20, 0xb0, /* mov 176, %g1 */ /* 0xc */ 0x9d, 0xe3, 0xbf, 0x40, /* save %sp, -192, %sp */ /* 0x10 */ 0xc2, 0x77, 0xa7, 0xef, /* stx %g1, [%fp + 2031] */ /* store prev stack size */ /* 0x14 */ VAL64_TO_G1, /* dyn_data to g1 */ /* 0x2c */ 0xc2, 0x77, 0xa7, 0xf7, /* stx %g1, [%fp + 2039] */ /* 0x30 */ VAL64_TO_G1, /* elf_plt_trace() addr to g1 */ /* Call to elf_plt_trace() via g1 */ /* 0x48 */ 0x9f, 0xc0, 0x60, 0x00, /* jmpl ! link r[15] to addr in g1 */ /* 0x4c */ 0x01, 0x00, 0x00, 0x00 /* nop ! for jmpl delay slot *AND* */ /* to get 8-byte alignment */ }; int dyn_plt_ent_size = sizeof (dyn_plt_template) + sizeof (Addr) + /* reflmp */ sizeof (Addr) + /* deflmp */ sizeof (Word) + /* symndx */ sizeof (Word) + /* sb_flags */ sizeof (Sym); /* symdef */ /* * the dynamic plt entry is: * * brnz,a,pt %fp, 1f * sub %sp, %fp, %g1 * mov SA(MINFRAME), %g1 * 1: * save %sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp * * ! store prev stack size * stx %g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)] * * 2: * ! move dyn_data to %g1 * sethi %hh(dyn_data), %g5 * or %g5, %hm(dyn_data), %g5 * sllx %g5, 32, %g5 * sethi %lm(dyn_data), %g1 * or %g1, %lo(dyn_data), %g1 * or %g1, %g5, %g1 * * ! store dyn_data ptr on frame (from %g1) * stx %g1, [%fp + STACK_BIAS - CLONGSIZE] * * ! Move address of elf_plt_trace() into %g1 * [Uses same 6 instructions as shown at label 2: above. Not shown.] * * ! Use JMPL to make call. CALL instruction is limited to 30-bits. * ! of displacement. * jmp1 %g1, %o7 * * ! JMPL has a delay slot that must be filled. And, the sequence * ! of instructions needs to have 8-byte alignment. This NOP does both. * ! The alignment is needed for the data we put following the * ! instruction. * nop * * dyn data: * Addr reflmp * Addr deflmp * Word symndx * Word sb_flags * Sym symdef (Elf64_Sym = 24-bytes) */ /* * Relocate the instructions given by the VAL64_TO_G1 macro above. * The arguments parallel those of do_reloc_rtld(). * * entry: * off - Address of 1st instruction in sequence. * value - Value being relocated (addend) * sym - Name of value being relocated. * lml - link map list * * exit: * Returns TRUE for success, FALSE for failure. */ static int reloc_val64_to_g1(uchar_t *off, Addr *value, const char *sym, Lm_list *lml) { Xword tmp_value; /* * relocating: * sethi %hh(value), %g5 */ tmp_value = (Xword)value; if (do_reloc_rtld(R_SPARC_HH22, off, &tmp_value, sym, MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { return (0); } /* * relocating: * or %g5, %hm(value), %g5 */ tmp_value = (Xword)value; if (do_reloc_rtld(R_SPARC_HM10, off + 4, &tmp_value, sym, MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { return (0); } /* * relocating: * sethi %lm(value), %g1 */ tmp_value = (Xword)value; if (do_reloc_rtld(R_SPARC_LM22, off + 12, &tmp_value, sym, MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { return (0); } /* * relocating: * or %g1, %lo(value), %g1 */ tmp_value = (Xword)value; if (do_reloc_rtld(R_SPARC_LO10, off + 16, &tmp_value, sym, MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { return (0); } return (1); } static caddr_t elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp, Sym *sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags, int *fail) { extern ulong_t elf_plt_trace(); uchar_t *dyn_plt; uintptr_t *dyndata; /* * If both pltenter & pltexit have been disabled there * there is no reason to even create the glue code. */ if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) == (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) { (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr, (uintptr_t)to, pltndx); return (to); } /* * We only need to add the glue code if there is an auditing * library that is interested in this binding. */ dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts + (pltndx * dyn_plt_ent_size)); /* * Have we initialized this dynamic plt entry yet? If we haven't do it * now. Otherwise this function has been called before, but from a * different plt (ie. from another shared object). In that case * we just set the plt to point to the new dyn_plt. */ if (*dyn_plt == 0) { Sym *symp; Lm_list *lml = LIST(rlmp); (void) memcpy((void *)dyn_plt, dyn_plt_template, sizeof (dyn_plt_template)); dyndata = (uintptr_t *)((uintptr_t)dyn_plt + sizeof (dyn_plt_template)); /* * relocating: * VAL64_TO_G1(dyndata) * VAL64_TO_G1(&elf_plt_trace) */ if (!(reloc_val64_to_g1((dyn_plt + 0x14), dyndata, MSG_ORIG(MSG_SYM_LADYNDATA), lml) && reloc_val64_to_g1((dyn_plt + 0x30), (Addr *)&elf_plt_trace, MSG_ORIG(MSG_SYM_ELFPLTTRACE), lml))) { *fail = 1; return (0); } *dyndata++ = (Addr)rlmp; *dyndata++ = (Addr)dlmp; /* * symndx in the high word, sb_flags in the low. */ *dyndata = (Addr)sb_flags; *(Word *)dyndata = symndx; dyndata++; symp = (Sym *)dyndata; *symp = *sym; symp->st_value = (Addr)to; iflush_range((void *)dyn_plt, sizeof (dyn_plt_template)); } (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr, (uintptr_t)dyn_plt, pltndx); return ((caddr_t)dyn_plt); } /* * Function binding routine - invoked on the first call to a function through * the procedure linkage table; * passes first through an assembly language interface. * * Takes the address of the PLT entry where the call originated, * the offset into the relocation table of the associated * relocation entry and the address of the link map (rt_private_map struct) * for the entry. * * Returns the address of the function referenced after re-writing the PLT * entry to invoke the function directly. * * On error, causes process to terminate with a signal. */ ulong_t elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from) { Rt_map *nlmp, *llmp; Addr addr, vaddr, reloff, symval; char *name; Rela *rptr; Sym *rsym, *nsym; Xword pltndx; uint_t binfo, sb_flags = 0, dbg_class; ulong_t rsymndx; Slookup sl; Sresult sr; Pltbindtype pbtype; int entry, lmflags, farplt = 0; Lm_list *lml; /* * For compatibility with libthread (TI_VERSION 1) we track the entry * value. A zero value indicates we have recursed into ld.so.1 to * further process a locking request. Under this recursion we disable * tsort and cleanup activities. */ entry = enter(0); lml = LIST(lmp); if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) { dbg_class = dbg_desc->d_class; dbg_desc->d_class = 0; } /* * Must calculate true plt relocation address from reloc. * Take offset, subtract number of reserved PLT entries, and divide * by PLT entry size, which should give the index of the plt * entry (and relocation entry since they have been defined to be * in the same order). Then we must multiply by the size of * a relocation entry, which will give us the offset of the * plt relocation entry from the start of them given by JMPREL(lm). */ addr = pltoff - M_PLT_RESERVSZ; if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) { pltndx = addr / M_PLT_ENTSIZE; } else { ulong_t pltblockoff; pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE); pltndx = M64_PLT_NEARPLTS + ((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) + ((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) - M_PLT_XNumber; farplt = 1; } /* * Perform some basic sanity checks. If we didn't get a load map * or the plt offset is invalid then its possible someone has walked * over the plt entries or jumped to plt[01] out of the blue. */ if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) || (farplt && (addr % M_PLT_INSSIZE))) { Conv_inv_buf_t inv_buf; eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF), conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf), EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from)); rtldexit(lml, 1); } reloff = pltndx * sizeof (Rela); /* * Use relocation entry to get symbol table entry and symbol name. */ addr = (ulong_t)JMPREL(lmp); rptr = (Rela *)(addr + reloff); rsymndx = ELF_R_SYM(rptr->r_info); rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp))); name = (char *)(STRTAB(lmp) + rsym->st_name); /* * Determine the last link-map of this list, this'll be the starting * point for any tsort() processing. */ llmp = lml->lm_tail; /* * Find definition for symbol. Initialize the symbol lookup, and symbol * result, data structures. */ SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0, rsymndx, rsym, 0, LKUP_DEFT); SRESULT_INIT(sr, name); if (lookup_sym(&sl, &sr, &binfo, NULL) == 0) { eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp), demangle(name)); rtldexit(lml, 1); } name = (char *)sr.sr_name; nlmp = sr.sr_dmap; nsym = sr.sr_sym; symval = nsym->st_value; if (!(FLAGS(nlmp) & FLG_RT_FIXED) && (nsym->st_shndx != SHN_ABS)) symval += ADDR(nlmp); if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) { /* * Record that this new link map is now bound to the caller. */ if (bind_one(lmp, nlmp, BND_REFER) == 0) rtldexit(lml, 1); } if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_SYMBIND) { /* LINTED */ uint_t symndx = (uint_t)(((uintptr_t)nsym - (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); symval = audit_symbind(lmp, nlmp, nsym, symndx, symval, &sb_flags); } if (FLAGS(lmp) & FLG_RT_FIXED) vaddr = 0; else vaddr = ADDR(lmp); pbtype = PLT_T_NONE; if (!(rtld_flags & RT_FL_NOBIND)) { if (((lml->lm_tflags | AFLAGS(lmp)) & (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && AUDINFO(lmp)->ai_dynplts) { int fail = 0; /* LINTED */ uint_t symndx = (uint_t)(((uintptr_t)nsym - (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr, rptr, lmp, nlmp, nsym, symndx, pltndx, (caddr_t)symval, sb_flags, &fail); if (fail) rtldexit(lml, 1); } else { /* * Write standard PLT entry to jump directly * to newly bound function. */ pbtype = elf_plt_write((uintptr_t)vaddr, (uintptr_t)vaddr, rptr, symval, pltndx); } } /* * Print binding information and rebuild PLT entry. */ DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)), (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, name, binfo)); /* * Complete any processing for newly loaded objects. Note we don't * know exactly where any new objects are loaded (we know the object * that supplied the symbol, but others may have been loaded lazily as * we searched for the symbol), so sorting starts from the last * link-map know on entry to this routine. */ if (entry) load_completion(llmp); /* * Some operations like dldump() or dlopen()'ing a relocatable object * result in objects being loaded on rtld's link-map, make sure these * objects are initialized also. */ if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init) load_completion(nlmp); /* * Make sure the object to which we've bound has had it's .init fired. * Cleanup before return to user code. */ if (entry) { is_dep_init(nlmp, lmp); leave(lml, 0); } if (lmflags & LML_FLG_RTLDLM) dbg_desc->d_class = dbg_class; return (symval); } static int bindpltpad(Rt_map *lmp, Alist **padlist, Addr value, void **pltaddr, const char *fname, const char *sname) { Aliste idx = 0; Pltpadinfo ppi, *ppip; void *plt; uintptr_t pltoff; Rela rel; int i; for (ALIST_TRAVERSE(*padlist, idx, ppip)) { if (ppip->pp_addr == value) { *pltaddr = ppip->pp_plt; DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr, sname)); return (1); } if (ppip->pp_addr > value) break; } plt = PLTPAD(lmp); pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp); PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE); if (PLTPAD(lmp) > PLTPADEND(lmp)) { /* * Just fail in usual relocation way */ *pltaddr = (void *)value; return (1); } rel.r_offset = pltoff; rel.r_info = 0; rel.r_addend = 0; /* * elf_plt_write assumes the plt was previously filled * with NOP's, so fill it in now. */ for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) { ((uint_t *)plt)[i] = M_NOP; } iflush_range((caddr_t)plt, M_PLT_ENTSIZE); (void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0); ppi.pp_addr = value; ppi.pp_plt = plt; if (alist_insert(padlist, &ppi, sizeof (Pltpadinfo), AL_CNT_PLTPAD, idx) == NULL) return (0); *pltaddr = plt; DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname)); return (1); } /* * Read and process the relocations for one link object, we assume all * relocation sections for loadable segments are stored contiguously in * the file. */ int elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl, APlist **textrel) { ulong_t relbgn, relend, relsiz, basebgn, pltbgn, pltend; ulong_t pltndx, roffset, rsymndx, psymndx = 0; uint_t dsymndx, binfo, pbinfo; uchar_t rtype; long reladd; Addr value, pvalue; Sym *symref, *psymref, *symdef, *psymdef; Syminfo *sip; char *name, *pname; Rt_map *_lmp, *plmp; int ret = 1, noplt = 0; long relacount = RELACOUNT(lmp); Rela *rel; Pltbindtype pbtype; Alist *pltpadlist = NULL; APlist *bound = NULL; /* * If an object has any DT_REGISTER entries associated with * it, they are processed now. */ if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) { if (elf_regsyms(lmp) == 0) return (0); } /* * Although only necessary for lazy binding, initialize the first * procedure linkage table entry to go to elf_rtbndr(). dbx(1) seems * to find this useful. */ if ((plt == 0) && PLTGOT(lmp)) { mmapobj_result_t *mpp; Xword pltoff; /* * Make sure the segment is writable. */ if ((((mpp = find_segment((caddr_t)PLTGOT(lmp), lmp)) != NULL) && ((mpp->mr_prot & PROT_WRITE) == 0)) && ((set_prot(lmp, mpp, 1) == 0) || (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) return (0); /* * Install the lm pointer in .PLT2 as per the ABI. */ pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE; elf_plt2_init(PLTGOT(lmp) + pltoff, lmp); /* * The V9 ABI states that the first 32k PLT entries * use .PLT1, with .PLT0 used by the "latter" entries. * We don't currently implement the extendend format, * so install an error handler in .PLT0 to catch anyone * trying to use it. */ elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far); /* * Initialize .PLT1 */ pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE; elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr); } /* * Initialize the plt start and end addresses. */ if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0) pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp)); /* * If we've been called upon to promote an RTLD_LAZY object to an * RTLD_NOW then we're only interested in scaning the .plt table. */ if (plt) { relbgn = pltbgn; relend = pltend; } else { /* * The relocation sections appear to the run-time linker as a * single table. Determine the address of the beginning and end * of this table. There are two different interpretations of * the ABI at this point: * * o The REL table and its associated RELSZ indicate the * concatenation of *all* relocation sections (this is the * model our link-editor constructs). * * o The REL table and its associated RELSZ indicate the * concatenation of all *but* the .plt relocations. These * relocations are specified individually by the JMPREL and * PLTRELSZ entries. * * Determine from our knowledege of the relocation range and * .plt range, the range of the total relocation table. Note * that one other ABI assumption seems to be that the .plt * relocations always follow any other relocations, the * following range checking drops that assumption. */ relbgn = (ulong_t)(REL(lmp)); relend = relbgn + (ulong_t)(RELSZ(lmp)); if (pltbgn) { if (!relbgn || (relbgn > pltbgn)) relbgn = pltbgn; if (!relbgn || (relend < pltend)) relend = pltend; } } if (!relbgn || (relbgn == relend)) { DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE)); return (1); } relsiz = (ulong_t)(RELENT(lmp)); basebgn = ADDR(lmp); DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START)); /* * If we're processing in lazy mode there is no need to scan the * .rela.plt table. */ if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0)) noplt = 1; sip = SYMINFO(lmp); /* * Loop through relocations. */ while (relbgn < relend) { mmapobj_result_t *mpp; uint_t sb_flags = 0; Addr vaddr; rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH); /* * If this is a RELATIVE relocation in a shared object * (the common case), and if we are not debugging, then * jump into a tighter relocaiton loop (elf_reloc_relacount) * Only make the jump if we've been given a hint on the * number of relocations. */ if ((rtype == R_SPARC_RELATIVE) && ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) { if (relacount) { relbgn = elf_reloc_relative_count(relbgn, relacount, relsiz, basebgn, lmp, textrel, 0); relacount = 0; } else { relbgn = elf_reloc_relative(relbgn, relend, relsiz, basebgn, lmp, textrel, 0); } if (relbgn >= relend) break; rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH); } roffset = ((Rela *)relbgn)->r_offset; reladd = (long)(((Rela *)relbgn)->r_addend); rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info); rel = (Rela *)relbgn; relbgn += relsiz; /* * Optimizations. */ if (rtype == R_SPARC_NONE) continue; if (noplt && ((ulong_t)rel >= pltbgn) && ((ulong_t)rel < pltend)) { relbgn = pltend; continue; } if (rtype != R_SPARC_REGISTER) { /* * If this is a shared object, add the base address * to offset. */ if (!(FLAGS(lmp) & FLG_RT_FIXED)) roffset += basebgn; /* * If this relocation is not against part of the image * mapped into memory we skip it. */ if ((mpp = find_segment((caddr_t)roffset, lmp)) == NULL) { elf_reloc_bad(lmp, (void *)rel, rtype, roffset, rsymndx); continue; } } /* * If we're promoting plts, determine if this one has already * been written. An uninitialized plts' second instruction is a * branch. */ if (plt) { uchar_t *_roffset = (uchar_t *)roffset; _roffset += M_PLT_INSSIZE; /* LINTED */ if ((*(uint_t *)_roffset & (~(S_MASK(19)))) != M_BA_A_XCC) continue; } binfo = 0; pltndx = (ulong_t)-1; pbtype = PLT_T_NONE; /* * If a symbol index is specified then get the symbol table * entry, locate the symbol definition, and determine its * address. */ if (rsymndx) { /* * If a Syminfo section is provided, determine if this * symbol is deferred, and if so, skip this relocation. */ if (sip && is_sym_deferred((ulong_t)rel, basebgn, lmp, textrel, sip, rsymndx)) continue; /* * Get the local symbol table entry. */ symref = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp))); /* * If this is a local symbol, just use the base address. * (we should have no local relocations in the * executable). */ if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) { value = basebgn; name = NULL; /* * Special case TLS relocations. */ if ((rtype == R_SPARC_TLS_DTPMOD32) || (rtype == R_SPARC_TLS_DTPMOD64)) { /* * Use the TLS modid. */ value = TLSMODID(lmp); } else if ((rtype == R_SPARC_TLS_TPOFF32) || (rtype == R_SPARC_TLS_TPOFF64)) { if ((value = elf_static_tls(lmp, symref, rel, rtype, 0, roffset, 0)) == 0) { ret = 0; break; } } } else { /* * If the symbol index is equal to the previous * symbol index relocation we processed then * reuse the previous values. (Note that there * have been cases where a relocation exists * against a copy relocation symbol, our ld(1) * should optimize this away, but make sure we * don't use the same symbol information should * this case exist). */ if ((rsymndx == psymndx) && (rtype != R_SPARC_COPY)) { /* LINTED */ if (psymdef == 0) { DBG_CALL(Dbg_bind_weak(lmp, (Addr)roffset, (Addr) (roffset - basebgn), name)); continue; } /* LINTED */ value = pvalue; /* LINTED */ name = pname; symdef = psymdef; /* LINTED */ symref = psymref; /* LINTED */ _lmp = plmp; /* LINTED */ binfo = pbinfo; if ((LIST(_lmp)->lm_tflags | AFLAGS(_lmp)) & LML_TFLG_AUD_SYMBIND) { value = audit_symbind(lmp, _lmp, /* LINTED */ symdef, dsymndx, value, &sb_flags); } } else { Slookup sl; Sresult sr; /* * Lookup the symbol definition. * Initialize the symbol lookup, and * symbol result, data structures. */ name = (char *)(STRTAB(lmp) + symref->st_name); SLOOKUP_INIT(sl, name, lmp, 0, ld_entry_cnt, 0, rsymndx, symref, rtype, LKUP_STDRELOC); SRESULT_INIT(sr, name); symdef = NULL; if (lookup_sym(&sl, &sr, &binfo, in_nfavl)) { name = (char *)sr.sr_name; _lmp = sr.sr_dmap; symdef = sr.sr_sym; } /* * If the symbol is not found and the * reference was not to a weak symbol, * report an error. Weak references * may be unresolved. */ /* BEGIN CSTYLED */ if (symdef == 0) { if (sl.sl_bind != STB_WEAK) { if (elf_reloc_error(lmp, name, rel, binfo)) continue; ret = 0; break; } else { psymndx = rsymndx; psymdef = 0; DBG_CALL(Dbg_bind_weak(lmp, (Addr)roffset, (Addr) (roffset - basebgn), name)); continue; } } /* END CSTYLED */ /* * If symbol was found in an object * other than the referencing object * then record the binding. */ if ((lmp != _lmp) && ((FLAGS1(_lmp) & FL1_RT_NOINIFIN) == 0)) { if (aplist_test(&bound, _lmp, AL_CNT_RELBIND) == 0) { ret = 0; break; } } /* * Calculate the location of definition; * symbol value plus base address of * containing shared object. */ if (IS_SIZE(rtype)) value = symdef->st_size; else value = symdef->st_value; if (!(FLAGS(_lmp) & FLG_RT_FIXED) && !(IS_SIZE(rtype)) && (symdef->st_shndx != SHN_ABS) && (ELF_ST_TYPE(symdef->st_info) != STT_TLS)) value += ADDR(_lmp); /* * Retain this symbol index and the * value in case it can be used for the * subsequent relocations. */ if (rtype != R_SPARC_COPY) { psymndx = rsymndx; pvalue = value; pname = name; psymdef = symdef; psymref = symref; plmp = _lmp; pbinfo = binfo; } if ((LIST(_lmp)->lm_tflags | AFLAGS(_lmp)) & LML_TFLG_AUD_SYMBIND) { /* LINTED */ dsymndx = (((uintptr_t)symdef - (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp)); value = audit_symbind(lmp, _lmp, symdef, dsymndx, value, &sb_flags); } } /* * If relocation is PC-relative, subtract * offset address. */ if (IS_PC_RELATIVE(rtype)) value -= roffset; /* * Special case TLS relocations. */ if ((rtype == R_SPARC_TLS_DTPMOD32) || (rtype == R_SPARC_TLS_DTPMOD64)) { /* * Relocation value is the TLS modid. */ value = TLSMODID(_lmp); } else if ((rtype == R_SPARC_TLS_TPOFF64) || (rtype == R_SPARC_TLS_TPOFF32)) { if ((value = elf_static_tls(_lmp, symdef, rel, rtype, name, roffset, value)) == 0) { ret = 0; break; } } } } else { /* * Special cases. */ if (rtype == R_SPARC_REGISTER) { /* * A register symbol associated with symbol * index 0 is initialized (i.e. relocated) to * a constant in the r_addend field rather than * to a symbol value. */ value = 0; } else if ((rtype == R_SPARC_TLS_DTPMOD32) || (rtype == R_SPARC_TLS_DTPMOD64)) { /* * TLS relocation value is the TLS modid. */ value = TLSMODID(lmp); } else value = basebgn; name = NULL; } DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, NULL, 0, name)); /* * Make sure the segment is writable. */ if ((rtype != R_SPARC_REGISTER) && ((mpp->mr_prot & PROT_WRITE) == 0) && ((set_prot(lmp, mpp, 1) == 0) || (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) { ret = 0; break; } /* * Call relocation routine to perform required relocation. */ switch (rtype) { case R_SPARC_REGISTER: /* * The v9 ABI 4.2.4 says that system objects may, * but are not required to, use register symbols * to inidcate how they use global registers. Thus * at least %g6, %g7 must be allowed in addition * to %g2 and %g3. */ value += reladd; if (roffset == STO_SPARC_REGISTER_G1) { set_sparc_g1(value); } else if (roffset == STO_SPARC_REGISTER_G2) { set_sparc_g2(value); } else if (roffset == STO_SPARC_REGISTER_G3) { set_sparc_g3(value); } else if (roffset == STO_SPARC_REGISTER_G4) { set_sparc_g4(value); } else if (roffset == STO_SPARC_REGISTER_G5) { set_sparc_g5(value); } else if (roffset == STO_SPARC_REGISTER_G6) { set_sparc_g6(value); } else if (roffset == STO_SPARC_REGISTER_G7) { set_sparc_g7(value); } else { eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_REL_BADREG), NAME(lmp), EC_ADDR(roffset)); ret = 0; break; } DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD, M_MACH, (Xword)roffset, (Xword)value)); break; case R_SPARC_COPY: if (elf_copy_reloc(name, symref, lmp, (void *)roffset, symdef, _lmp, (const void *)value) == 0) ret = 0; break; case R_SPARC_JMP_SLOT: pltndx = ((uintptr_t)rel - (uintptr_t)JMPREL(lmp)) / relsiz; if (FLAGS(lmp) & FLG_RT_FIXED) vaddr = 0; else vaddr = ADDR(lmp); if (((LIST(lmp)->lm_tflags | AFLAGS(lmp)) & (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && AUDINFO(lmp)->ai_dynplts) { int fail = 0; /* LINTED */ uint_t symndx = (uint_t)(((uintptr_t)symdef - (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp)); (void) elf_plt_trace_write((caddr_t)vaddr, (Rela *)rel, lmp, _lmp, symdef, symndx, pltndx, (caddr_t)value, sb_flags, &fail); if (fail) ret = 0; } else { /* * Write standard PLT entry to jump directly * to newly bound function. */ DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD, (Xword)roffset, (Xword)value)); pbtype = elf_plt_write((uintptr_t)vaddr, (uintptr_t)vaddr, (void *)rel, value, pltndx); } break; case R_SPARC_WDISP30: if (PLTPAD(lmp) && (S_INRANGE((Sxword)value, 29) == 0)) { void * plt = 0; if (bindpltpad(lmp, &pltpadlist, value + roffset, &plt, NAME(_lmp), name) == 0) { ret = 0; break; } value = (Addr)((Addr)plt - roffset); } /* FALLTHROUGH */ default: value += reladd; if (IS_EXTOFFSET(rtype)) value += (Word)ELF_R_TYPE_DATA(rel->r_info); /* * Write the relocation out. If this relocation is a * common basic write, skip the doreloc() engine. */ if ((rtype == R_SPARC_GLOB_DAT) || (rtype == R_SPARC_64)) { if (roffset & 0x7) { Conv_inv_buf_t inv_buf; eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_REL_NONALIGN), conv_reloc_SPARC_type(rtype, 0, &inv_buf), NAME(lmp), demangle(name), EC_OFF(roffset)); ret = 0; } else *(ulong_t *)roffset += value; } else { if (do_reloc_rtld(rtype, (uchar_t *)roffset, (Xword *)&value, name, NAME(lmp), LIST(lmp)) == 0) ret = 0; } /* * The value now contains the 'bit-shifted' value that * was or'ed into memory (this was set by * do_reloc_rtld()). */ DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD, (Xword)roffset, (Xword)value)); /* * If this relocation is against a text segment, make * sure that the instruction cache is flushed. */ if (textrel) iflush_range((caddr_t)roffset, 0x4); } if ((ret == 0) && ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0)) break; if (binfo) { DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset, (Off)(roffset - basebgn), pltndx, pbtype, _lmp, (Addr)value, symdef->st_value, name, binfo)); } } /* * Free up any items on the pltpadlist if it was allocated */ if (pltpadlist) free(pltpadlist); return (relocate_finish(lmp, bound, ret)); } /* * Provide a machine specific interface to the conversion routine. By calling * the machine specific version, rather than the generic version, we insure that * the data tables/strings for all known machine versions aren't dragged into * ld.so.1. */ const char * _conv_reloc_type(uint_t rel) { static Conv_inv_buf_t inv_buf; return (conv_reloc_SPARC_type(rel, 0, &inv_buf)); }