/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include "_rtld.h" #include "_audit.h" #include "msg.h" /* * qsort(3c) comparison function. */ static int compare(const void *fdesc1, const void *fdesc2) { ulong_t hwcap1 = ((Fdesc *)fdesc1)->fd_fmap.fm_hwptr; ulong_t hwcap2 = ((Fdesc *)fdesc2)->fd_fmap.fm_hwptr; if (hwcap1 && (hwcap2 == 0)) return (-1); if ((hwcap1 == 0) && hwcap2) return (1); if ((hwcap1 == 0) && (hwcap2 == 0)) return (0); if (hwcap1 > hwcap2) return (-1); if (hwcap1 < hwcap2) return (1); return (0); } /* * Process any hardware and software capabilities. */ int cap_check(Rej_desc *rej, Ehdr *ehdr) { Cap *cptr; Phdr *phdr; int cnt; /* LINTED */ phdr = (Phdr *)((char *)ehdr + ehdr->e_phoff); for (cnt = 0; cnt < ehdr->e_phnum; cnt++, phdr++) { Lword val; if (phdr->p_type != PT_SUNWCAP) continue; /* LINTED */ for (cptr = (Cap *)((char *)ehdr + phdr->p_offset); (cptr->c_tag != CA_SUNW_NULL); cptr++) { if ((cptr->c_tag == CA_SUNW_HW_1) && (rtld_flags2 & RT_FL2_HWCAP)) { /* * If this object defines a set of hardware * capability requirements, ensure the kernel * can cope with them. */ if ((val = (cptr->c_un.c_val & ~hwcap)) != 0) { static Conv_cap_val_hw1_buf_t cap_buf; rej->rej_type = SGS_REJ_HWCAP_1; rej->rej_str = conv_cap_val_hw1(val, M_MACH, 0, &cap_buf); return (0); } /* * Retain this hardware capabilities value for * possible later inspection should this object * be processed as a filtee. */ fmap->fm_hwptr = cptr->c_un.c_val; } #if defined(_ELF64) if (cptr->c_tag == CA_SUNW_SF_1) { /* * A 64-bit executable that started the process * can be restricted to a 32-bit address space. * A 64-bit dependency that is restricted to a * 32-bit address space can not be loaded unless * the executable has established this * requirement. */ if ((cptr->c_un.c_val & SF1_SUNW_ADDR32) && ((rtld_flags2 & RT_FL2_ADDR32) == 0)) { static Conv_cap_val_sf1_buf_t cap_buf; rej->rej_type = SGS_REJ_SFCAP_1; rej->rej_str = conv_cap_val_sf1(SF1_SUNW_ADDR32, M_MACH, 0, &cap_buf); return (0); } } #endif } } return (1); } static void remove_fdesc(Fdesc *fdp) { #if defined(MAP_ALIGN) if (fdp->fd_fmap.fm_maddr && ((fdp->fd_fmap.fm_mflags & MAP_ALIGN) == 0)) { #else if (fdp->fd_fmap.fm_maddr) { #endif (void) munmap(fdp->fd_fmap.fm_maddr, fdp->fd_fmap.fm_msize); /* * Note, this file descriptor might be duplicating information * from the global fmap descriptor. If so, clean up the global * descriptor to prevent a duplicate (unnecessary) unmap. */ if (fmap->fm_maddr == fdp->fd_fmap.fm_maddr) { fmap->fm_maddr = 0; fmap_setup(); } } if (fdp->fd_fd) (void) close(fdp->fd_fd); if ((fdp->fd_flags & FLG_FD_ALTER) == 0) { if (fdp->fd_pname && (fdp->fd_pname != fdp->fd_nname)) free((void *)fdp->fd_pname); if (fdp->fd_nname) free((void *)fdp->fd_nname); } } /* * When $HWCAP is used to represent dependencies, take the associated directory * and analyze all the files it contains. */ static int hwcap_dir(Alist **fdalpp, Lm_list *lml, const char *name, Rt_map *clmp, uint_t flags, Rej_desc *rej, int *in_nfavl) { char path[PATH_MAX], *dst; const char *src; DIR *dir; struct dirent *dirent; Aliste idx; Alist *fdalp = NULL; Fdesc *fdp; int error = 0; /* * Access the directory in preparation for reading its entries. If * successful, establish the initial pathname. */ if ((dir = opendir(name)) == 0) { Rej_desc _rej = { 0 }; _rej.rej_type = SGS_REJ_STR; _rej.rej_name = name; _rej.rej_str = strerror(errno); DBG_CALL(Dbg_file_rejected(lml, &_rej, M_MACH)); rejection_inherit(rej, &_rej); return (0); } for (dst = path, src = name; *src; dst++, src++) *dst = *src; *dst++ = '/'; /* * Read each entry from the directory and determine whether it is a * valid ELF file. */ while ((dirent = readdir(dir)) != NULL) { const char *file = dirent->d_name, *oname; char *_dst; Fdesc fdesc = { 0 }; Rej_desc _rej = { 0 }; /* * Ignore "." and ".." entries. */ if ((file[0] == '.') && ((file[1] == '\0') || ((file[1] == '.') && (file[2] == '\0')))) continue; /* * Complete the full pathname, and verify its usability. Note, * an auditor can supply an alternative name. */ for (_dst = dst, src = file, file = dst; *src; _dst++, src++) *_dst = *src; *_dst = '\0'; if ((oname = strdup(path)) == NULL) { error = 1; break; } if (load_trace(lml, &oname, clmp) == 0) { free((void *)oname); continue; } name = oname; /* * Note, all directory entries are processed by find_path(), * even entries that are directories themselves. This single * point for control keeps the number of stat()'s down, and * provides a single point for error diagnostics. */ if (find_path(lml, name, clmp, flags, &fdesc, &_rej, in_nfavl) == 0) { rejection_inherit(rej, &_rej); if ((rej->rej_name != _rej.rej_name) && (_rej.rej_name == name)) free((void *)name); continue; } DBG_CALL(Dbg_cap_hw_candidate(lml, name)); /* * If this object has already been loaded, obtain the hardware * capabilities for later sorting. Otherwise we have a new * candidate. */ if (fdesc.fd_lmp) fdesc.fd_fmap.fm_hwptr = HWCAP(fdesc.fd_lmp); else fdesc.fd_fmap = *fmap; if (alist_append(&fdalp, &fdesc, sizeof (Fdesc), 10) == 0) { remove_fdesc(&fdesc); error = 1; break; } /* * Clear the global file mapping structure so that the mapping * for this file won't be overriden. */ fmap->fm_mflags = MAP_PRIVATE; fmap->fm_maddr = 0; fmap->fm_msize = FMAP_SIZE; fmap->fm_hwptr = 0; } (void) closedir(dir); /* * If no objects have been found, we're done. Also, if an allocation * error occurred while processing any object, remove any objects that * had already been added to the list and return. */ if ((fdalp == NULL) || error) { if (fdalp) { for (ALIST_TRAVERSE(fdalp, idx, fdp)) remove_fdesc(fdp); free(fdalp); } return (0); } /* * Having processed and retained all candidates from this directory, * sort them, based on the precedence of their hardware capabilities. */ qsort(fdalp->al_data, fdalp->al_nitems, fdalp->al_size, compare); *fdalpp = fdalp; return (1); } static Pnode * _hwcap_filtees(Pnode **pnpp, Aliste nlmco, Lm_cntl *nlmc, Rt_map *flmp, const char *ref, const char *dir, int mode, uint_t flags, int *in_nfavl) { Alist *fdalp = NULL; Aliste idx; Pnode *fpnp = 0, *lpnp, *npnp = (*pnpp)->p_next; Fdesc *fdp; Lm_list *lml = LIST(flmp); int unused = 0; Rej_desc rej = { 0 }; if (hwcap_dir(&fdalp, lml, dir, flmp, flags, &rej, in_nfavl) == 0) { remove_rej(&rej); return (0); } /* * Now complete the mapping of each of the ordered objects, adding * each object to a new Pnode. */ for (ALIST_TRAVERSE(fdalp, idx, fdp)) { Rt_map *nlmp; Grp_hdl *ghp = 0; Pnode *pnp; int audit = 0; if (unused) { /* * Flush out objects remaining. */ remove_fdesc(fdp); continue; } /* * Complete mapping the file, obtaining a handle, and continue * to analyze the object, establishing dependencies and * relocating. Remove the file descriptor at this point, as it * is no longer required. */ DBG_CALL(Dbg_file_filtee(lml, NAME(flmp), fdp->fd_nname, 0)); nlmp = load_path(lml, nlmco, &fdp->fd_nname, flmp, mode, (flags | FLG_RT_HANDLE), &ghp, fdp, &rej, in_nfavl); remove_fdesc(fdp); if (nlmp == 0) continue; /* * Create a new Pnode to represent this filtee, and substitute * the calling Pnode (which was used to represent the hardware * capability directory). */ if ((pnp = calloc(1, sizeof (Pnode))) == 0) { if (ghp) { remove_lmc(lml, flmp, nlmc, nlmco, fdp->fd_nname); } return (0); } if ((pnp->p_name = strdup(NAME(nlmp))) == NULL) { if (ghp) { remove_lmc(lml, flmp, nlmc, nlmco, fdp->fd_nname); } free(pnp); return (0); } pnp->p_len = strlen(NAME(nlmp)); pnp->p_info = (void *)ghp; pnp->p_next = npnp; if (fpnp == 0) { Pnode *opnp = (*pnpp); /* * If this is the first pnode, reuse the original after * freeing any of its pathnames. */ if (opnp->p_name) free((void *)opnp->p_name); if (opnp->p_oname) free((void *)opnp->p_oname); *opnp = *pnp; free((void *)pnp); fpnp = lpnp = pnp = opnp; } else { lpnp->p_next = pnp; lpnp = pnp; } /* * Establish the filter handle to prevent any recursion. */ if (nlmp && ghp) { ghp->gh_flags |= GPH_FILTEE; pnp->p_info = (void *)ghp; } /* * Audit the filter/filtee established. A return of 0 * indicates the auditor wishes to ignore this filtee. */ if (nlmp && (lml->lm_tflags | FLAGS1(flmp)) & LML_TFLG_AUD_OBJFILTER) { if (audit_objfilter(flmp, ref, nlmp, 0) == 0) { audit = 1; nlmp = 0; } } /* * Finish processing the objects associated with this request. */ if (nlmp && ghp && ((analyze_lmc(lml, nlmco, nlmp, in_nfavl) == 0) || (relocate_lmc(lml, nlmco, flmp, nlmp, in_nfavl) == 0))) nlmp = 0; /* * If the filtee has been successfully processed, then create * an association between the filter and the filtee. This * association provides sufficient information to tear down the * filter and filtee if necessary. */ DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD)); if (nlmp && ghp && (hdl_add(ghp, flmp, GPD_FILTER) == 0)) nlmp = 0; /* * If this object is marked an end-filtee, we're done. */ if (nlmp && ghp && (FLAGS1(nlmp) & FL1_RT_ENDFILTE)) unused = 1; /* * If this filtee loading has failed, generate a diagnostic. * Null out the pnode entry, and continue the search. */ if (nlmp == 0) { /* * If attempting to load this filtee required a new * link-map control list to which this request has * added objects, then remove all the objects that * have been associated to this request. */ if (nlmc && nlmc->lc_head) remove_lmc(lml, flmp, nlmc, nlmco, pnp->p_name); DBG_CALL(Dbg_file_filtee(lml, 0, pnp->p_name, audit)); pnp->p_len = 0; pnp->p_info = 0; } } free(fdalp); return (fpnp); } Pnode * hwcap_filtees(Pnode **pnpp, Aliste nlmco, Lm_cntl *nlmc, Dyninfo *dip, Rt_map *flmp, const char *ref, int mode, uint_t flags, int *in_nfavl) { Pnode *pnp = *pnpp; const char *dir = pnp->p_name; Lm_list *flml = LIST(flmp); DBG_CALL(Dbg_cap_hw_filter(flml, dir, flmp)); if ((pnp = _hwcap_filtees(pnpp, nlmco, nlmc, flmp, ref, dir, mode, flags, in_nfavl)) != 0) return (pnp); /* * If no hardware capability filtees have been found, provide suitable * diagnostics and mark the incoming Pnode as unused. */ if ((flml->lm_flags & LML_FLG_TRC_ENABLE) && (dip->di_flags & FLG_DI_AUXFLTR) && (rtld_flags & RT_FL_WARNFLTR)) (void) printf(MSG_INTL(MSG_LDD_HWCAP_NFOUND), dir); DBG_CALL(Dbg_cap_hw_filter(flml, dir, 0)); pnp = *pnpp; pnp->p_len = 0; return (pnp); } /* * Load an individual hardware capabilities object. */ Rt_map * load_hwcap(Lm_list *lml, Aliste lmco, const char *dir, Rt_map *clmp, uint_t mode, uint_t flags, Grp_hdl **hdl, Rej_desc *rej, int *in_nfavl) { Alist *fdalp = NULL; Aliste idx; Fdesc *fdp; int found = 0; Rt_map *lmp = 0; /* * Obtain the sorted list of hardware capabilites objects available. */ if (hwcap_dir(&fdalp, lml, dir, clmp, flags, rej, in_nfavl) == 0) return (0); /* * From the list of hardware capability objects, use the first and * discard the rest. */ for (ALIST_TRAVERSE(fdalp, idx, fdp)) { if ((found == 0) && ((lmp = load_path(lml, lmco, &fdp->fd_nname, clmp, mode, flags, hdl, fdp, rej, in_nfavl)) != 0)) found++; /* * Remove the used file descriptor and any objects remaining. */ remove_fdesc(fdp); } free(fdalp); return (lmp); }