/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1988 AT&T * All Rights Reserved * * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Module sections. Initialize special sections */ #define ELF_TARGET_AMD64 #include #include #include #include #include #include "msg.h" #include "_libld.h" inline static void remove_local(Ofl_desc *ofl, Sym_desc *sdp, int allow_ldynsym) { Sym *sym = sdp->sd_sym; uchar_t type = ELF_ST_TYPE(sym->st_info); /* LINTED - only used for assert() */ int err; if ((ofl->ofl_flags & FLG_OF_REDLSYM) == 0) { ofl->ofl_locscnt--; err = st_delstring(ofl->ofl_strtab, sdp->sd_name); assert(err != -1); if (allow_ldynsym && ldynsym_symtype[type]) { ofl->ofl_dynlocscnt--; err = st_delstring(ofl->ofl_dynstrtab, sdp->sd_name); assert(err != -1); /* Remove from sort section? */ DYNSORT_COUNT(sdp, sym, type, --); } } sdp->sd_flags |= FLG_SY_ISDISC; } inline static void remove_scoped(Ofl_desc *ofl, Sym_desc *sdp, int allow_ldynsym) { Sym *sym = sdp->sd_sym; uchar_t type = ELF_ST_TYPE(sym->st_info); /* LINTED - only used for assert() */ int err; ofl->ofl_scopecnt--; ofl->ofl_elimcnt++; err = st_delstring(ofl->ofl_strtab, sdp->sd_name); assert(err != -1); if (allow_ldynsym && ldynsym_symtype[type]) { ofl->ofl_dynscopecnt--; err = st_delstring(ofl->ofl_dynstrtab, sdp->sd_name); assert(err != -1); /* Remove from sort section? */ DYNSORT_COUNT(sdp, sym, type, --); } sdp->sd_flags1 |= FLG_SY1_ELIM; } inline static void ignore_sym(Ofl_desc *ofl, Ifl_desc *ifl, Sym_desc *sdp, int allow_ldynsym) { Os_desc *osp; Is_desc *isp = sdp->sd_isc; uchar_t bind = ELF_ST_BIND(sdp->sd_sym->st_info); if (bind == STB_LOCAL) { uchar_t type = ELF_ST_TYPE(sdp->sd_sym->st_info); /* * Skip section symbols, these were never collected in the * first place. */ if (type == STT_SECTION) return; /* * Determine if the whole file is being removed. Remove any * file symbol, and any symbol that is not associated with a * section, provided the symbol has not been identified as * (update) required. */ if (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) && ((type == STT_FILE) || ((isp == NULL) && ((sdp->sd_flags & FLG_SY_UPREQD) == 0)))) { DBG_CALL(Dbg_syms_discarded(ofl->ofl_lml, sdp)); if (ifl->ifl_flags & FLG_IF_IGNORE) remove_local(ofl, sdp, allow_ldynsym); return; } } else { /* * Global symbols can only be eliminated when the interfaces of * an object have been defined via versioning/scoping. */ if ((sdp->sd_flags1 & FLG_SY1_HIDDEN) == 0) return; /* * Remove any unreferenced symbols that are not associated with * a section. */ if ((isp == NULL) && ((sdp->sd_flags & FLG_SY_UPREQD) == 0)) { DBG_CALL(Dbg_syms_discarded(ofl->ofl_lml, sdp)); if (ifl->ifl_flags & FLG_IF_IGNORE) remove_scoped(ofl, sdp, allow_ldynsym); return; } } /* * Do not discard any symbols that are associated with non-allocable * segments. */ if (isp && ((isp->is_flags & FLG_IS_SECTREF) == 0) && ((osp = isp->is_osdesc) != 0) && (osp->os_sgdesc->sg_phdr.p_type == PT_LOAD)) { DBG_CALL(Dbg_syms_discarded(ofl->ofl_lml, sdp)); if (ifl->ifl_flags & FLG_IF_IGNORE) { if (bind == STB_LOCAL) remove_local(ofl, sdp, allow_ldynsym); else remove_scoped(ofl, sdp, allow_ldynsym); } } } /* * If -zignore has been in effect, scan all input files to determine if the * file, or sections from the file, have been referenced. If not, the file or * some of the files sections can be discarded. * * which haven't been referenced (and hence can be discarded). If sections are * to be discarded, rescan the output relocations and the symbol table and * remove the relocations and symbol entries that are no longer required. * * Note: It's possible that a section which is being discarded has contributed * to the GOT table or the PLT table. However, we can't at this point * eliminate the corresponding entries. This is because there could well * be other sections referencing those same entries, but we don't have * the infrastructure to determine this. So, keep the PLT and GOT * entries in the table in case someone wants them. * Note: The section to be affected needs to be allocatable. * So even if -zignore is in effect, if the section is not allocatable, * we do not eliminate it. */ static uintptr_t ignore_section_processing(Ofl_desc *ofl) { Listnode *lnp; Ifl_desc *ifl; Rel_cache *rcp; int allow_ldynsym = OFL_ALLOW_LDYNSYM(ofl); for (LIST_TRAVERSE(&ofl->ofl_objs, lnp, ifl)) { uint_t num, discard; /* * Diagnose (-D unused) a completely unreferenced file. */ if ((ifl->ifl_flags & FLG_IF_FILEREF) == 0) DBG_CALL(Dbg_unused_file(ofl->ofl_lml, ifl->ifl_name, 0, 0)); if (((ofl->ofl_flags1 & FLG_OF1_IGNPRC) == 0) || ((ifl->ifl_flags & FLG_IF_IGNORE) == 0)) continue; /* * Before scanning the whole symbol table to determine if * symbols should be discard - quickly (relatively) scan the * sections to determine if any are to be discarded. */ discard = 0; if (ifl->ifl_flags & FLG_IF_FILEREF) { for (num = 1; num < ifl->ifl_shnum; num++) { Is_desc *isp = ifl->ifl_isdesc[num]; Os_desc *osp; Sg_desc *sgp; if (((isp = ifl->ifl_isdesc[num]) != 0) && ((isp->is_flags & FLG_IS_SECTREF) == 0) && ((osp = isp->is_osdesc) != 0) && ((sgp = osp->os_sgdesc) != 0) && (sgp->sg_phdr.p_type == PT_LOAD)) { discard++; break; } } } /* * No sections are to be 'ignored' */ if ((discard == 0) && (ifl->ifl_flags & FLG_IF_FILEREF)) continue; /* * We know that we have discarded sections. Scan the symbol * table for this file to determine if symbols need to be * discarded that are associated with the 'ignored' sections. */ for (num = 1; num < ifl->ifl_symscnt; num++) { Sym_desc *sdp; /* * If the symbol definition has been resolved to another * file, or the symbol has already been discarded or * eliminated, skip it. */ sdp = ifl->ifl_oldndx[num]; if ((sdp->sd_file != ifl) || (sdp->sd_flags & (FLG_SY_ISDISC|FLG_SY_INVALID)) || (sdp->sd_flags1 & FLG_SY1_ELIM)) continue; /* * Complete the investigation of the symbol. */ ignore_sym(ofl, ifl, sdp, allow_ldynsym); } } /* * If we were only here to solicit debugging diagnostics, we're done. */ if ((ofl->ofl_flags1 & FLG_OF1_IGNPRC) == 0) return (1); /* * Scan all output relocations searching for those against discarded or * ignored sections. If one is found, decrement the total outrel count. */ for (LIST_TRAVERSE(&ofl->ofl_outrels, lnp, rcp)) { Rel_desc *rsp; Os_desc *osp; /* LINTED */ for (rsp = (Rel_desc *)(rcp + 1); rsp < rcp->rc_free; rsp++) { Is_desc *isc = rsp->rel_isdesc; uint_t flags, entsize; Shdr *shdr; Ifl_desc *ifl; if ((isc == 0) || ((isc->is_flags & (FLG_IS_SECTREF))) || ((ifl = isc->is_file) == 0) || ((ifl->ifl_flags & FLG_IF_IGNORE) == 0) || ((shdr = isc->is_shdr) == 0) || ((shdr->sh_flags & SHF_ALLOC) == 0)) continue; flags = rsp->rel_flags; if (flags & (FLG_REL_GOT | FLG_REL_BSS | FLG_REL_NOINFO | FLG_REL_PLT)) continue; osp = rsp->rel_osdesc; if (rsp->rel_flags & FLG_REL_RELA) entsize = sizeof (Rela); else entsize = sizeof (Rel); assert(osp->os_szoutrels > 0); osp->os_szoutrels -= entsize; if (!(flags & FLG_REL_PLT)) ofl->ofl_reloccntsub++; if (rsp->rel_rtype == ld_targ.t_m.m_r_relative) ofl->ofl_relocrelcnt--; } } return (1); } /* * Allocate Elf_Data, Shdr, and Is_desc structures for a new * section. * * entry: * ofl - Output file descriptor * shtype - SHT_ type code for section. * shname - String giving the name for the new section. * entcnt - # of items contained in the data part of the new section. * This value is multiplied against the known element size * for the section type to determine the size of the data * area for the section. It is only meaningful in cases where * the section type has a non-zero element size. In other cases, * the caller must set the size fields in the *ret_data and * *ret_shdr structs manually. * ret_isec, ret_shdr, ret_data - Address of pointers to * receive address of newly allocated structs. * * exit: * On error, returns S_ERROR. On success, returns (1), and the * ret_ pointers have been updated to point at the new structures, * which have been filled in. To finish the task, the caller must * update any fields within the supplied descriptors that differ * from its needs, and then call ld_place_section(). */ static uintptr_t new_section(Ofl_desc *ofl, Word shtype, const char *shname, Xword entcnt, Is_desc **ret_isec, Shdr **ret_shdr, Elf_Data **ret_data) { typedef struct sec_info { Word d_type; Word align; /* Used in both data and section header */ Word sh_flags; Word sh_entsize; } SEC_INFO_T; const SEC_INFO_T *sec_info; Shdr *shdr; Elf_Data *data; Is_desc *isec; size_t size; /* * For each type of section, we have a distinct set of * SEC_INFO_T values. This macro defines a static structure * containing those values and generates code to set the sec_info * pointer to refer to it. The pointer in sec_info remains valid * outside of the declaration scope because the info_s struct is static. * * We can't determine the value of M_WORD_ALIGN at compile time, so * a different variant is used for those cases. */ #define SET_SEC_INFO(d_type, d_align, sh_flags, sh_entsize) \ { \ static const SEC_INFO_T info_s = { d_type, d_align, sh_flags, \ sh_entsize}; \ sec_info = &info_s; \ } #define SET_SEC_INFO_WORD_ALIGN(d_type, sh_flags, sh_entsize) \ { \ static SEC_INFO_T info_s = { d_type, 0, sh_flags, \ sh_entsize}; \ info_s.align = ld_targ.t_m.m_word_align; \ sec_info = &info_s; \ } switch (shtype) { case SHT_PROGBITS: /* * SHT_PROGBITS sections contain are used for many * different sections. Alignments and flags differ. * Some have a standard entsize, and others don't. * We set some defaults here, but there is no expectation * that they are correct or complete for any specific * purpose. The caller must provide the correct values. */ SET_SEC_INFO_WORD_ALIGN(ELF_T_BYTE, SHF_ALLOC, 0) break; case SHT_SYMTAB: SET_SEC_INFO_WORD_ALIGN(ELF_T_SYM, 0, sizeof (Sym)) break; case SHT_DYNSYM: case SHT_SUNW_LDYNSYM: SET_SEC_INFO_WORD_ALIGN(ELF_T_SYM, SHF_ALLOC, sizeof (Sym)) break; case SHT_STRTAB: /* * A string table may or may not be allocable, depending * on context, so we leave that flag unset and leave it to * the caller to add it if necessary. * * String tables do not have a standard entsize, so * we set it to 0. */ SET_SEC_INFO(ELF_T_BYTE, 1, SHF_STRINGS, 0) break; case SHT_RELA: /* * Relocations with an addend (Everything except 32-bit X86). * The caller is expected to set all section header flags. */ SET_SEC_INFO_WORD_ALIGN(ELF_T_RELA, 0, sizeof (Rela)) break; case SHT_REL: /* * Relocations without an addend (32-bit X86 only). * The caller is expected to set all section header flags. */ SET_SEC_INFO_WORD_ALIGN(ELF_T_REL, 0, sizeof (Rel)) break; case SHT_HASH: case SHT_SUNW_symsort: case SHT_SUNW_tlssort: SET_SEC_INFO_WORD_ALIGN(ELF_T_WORD, SHF_ALLOC, sizeof (Word)) break; case SHT_DYNAMIC: /* * A dynamic section may or may not be allocable, depending * on context, so we leave that flag unset and leave it to * the caller to add it if necessary. */ SET_SEC_INFO_WORD_ALIGN(ELF_T_DYN, SHF_WRITE, sizeof (Dyn)) break; case SHT_NOBITS: /* * SHT_NOBITS is used for BSS-type sections. The size and * alignment depend on the specific use and must be adjusted * by the caller. */ SET_SEC_INFO(ELF_T_BYTE, 0, SHF_ALLOC | SHF_WRITE, 0) break; case SHT_INIT_ARRAY: case SHT_FINI_ARRAY: case SHT_PREINIT_ARRAY: SET_SEC_INFO(ELF_T_ADDR, sizeof (Addr), SHF_ALLOC | SHF_WRITE, sizeof (Addr)) break; case SHT_SYMTAB_SHNDX: /* * Note that these sections are created to be associated * with both symtab and dynsym symbol tables. However, they * are non-allocable in all cases, because the runtime * linker has no need for this information. It is purely * informational, used by elfdump(1), debuggers, etc. */ SET_SEC_INFO_WORD_ALIGN(ELF_T_WORD, 0, sizeof (Word)); break; case SHT_SUNW_cap: SET_SEC_INFO_WORD_ALIGN(ELF_T_CAP, SHF_ALLOC, sizeof (Cap)); break; case SHT_SUNW_move: /* * The sh_info field of the SHT_*_syminfo section points * to the header index of the associated .dynamic section, * so we also set SHF_INFO_LINK. */ SET_SEC_INFO(ELF_T_BYTE, sizeof (Lword), SHF_ALLOC | SHF_WRITE, sizeof (Move)); break; case SHT_SUNW_syminfo: /* * The sh_info field of the SHT_*_syminfo section points * to the header index of the associated .dynamic section, * so we also set SHF_INFO_LINK. */ SET_SEC_INFO_WORD_ALIGN(ELF_T_BYTE, SHF_ALLOC | SHF_INFO_LINK, sizeof (Syminfo)); break; case SHT_SUNW_verneed: case SHT_SUNW_verdef: /* * The info for verneed and versym happen to be the same. * The entries in these sections are not of uniform size, * so we set the entsize to 0. */ SET_SEC_INFO_WORD_ALIGN(ELF_T_BYTE, SHF_ALLOC, 0); break; case SHT_SUNW_versym: SET_SEC_INFO_WORD_ALIGN(ELF_T_BYTE, SHF_ALLOC, sizeof (Versym)); break; default: /* Should not happen: fcn called with unknown section type */ assert(0); return (S_ERROR); } #undef SET_SEC_INFO #undef SET_SEC_INFO_WORD_ALIGN size = entcnt * sec_info->sh_entsize; /* * Allocate and initialize the Elf_Data structure. */ if ((data = libld_calloc(sizeof (Elf_Data), 1)) == 0) return (S_ERROR); data->d_type = sec_info->d_type; data->d_size = size; data->d_align = sec_info->align; data->d_version = ofl->ofl_dehdr->e_version; /* * Allocate and initialize the Shdr structure. */ if ((shdr = libld_calloc(sizeof (Shdr), 1)) == 0) return (S_ERROR); shdr->sh_type = shtype; shdr->sh_size = size; shdr->sh_flags = sec_info->sh_flags; shdr->sh_addralign = sec_info->align; shdr->sh_entsize = sec_info->sh_entsize; /* * Allocate and initialize the Is_desc structure. */ if ((isec = libld_calloc(1, sizeof (Is_desc))) == 0) return (S_ERROR); isec->is_name = shname; isec->is_shdr = shdr; isec->is_indata = data; *ret_isec = isec; *ret_shdr = shdr; *ret_data = data; return (1); } /* * Use an existing input section as a template to create a new * input section with the same values as the original, other than * the size of the data area which is supplied by the caller. * * entry: * ofl - Output file descriptor * ifl - Input file section to use as a template * size - Size of data area for new section * ret_isec, ret_shdr, ret_data - Address of pointers to * receive address of newly allocated structs. * * exit: * On error, returns S_ERROR. On success, returns (1), and the * ret_ pointers have been updated to point at the new structures, * which have been filled in. To finish the task, the caller must * update any fields within the supplied descriptors that differ * from its needs, and then call ld_place_section(). */ static uintptr_t new_section_from_template(Ofl_desc *ofl, Is_desc *tmpl_isp, size_t size, Is_desc **ret_isec, Shdr **ret_shdr, Elf_Data **ret_data) { Shdr *shdr; Elf_Data *data; Is_desc *isec; /* * Allocate and initialize the Elf_Data structure. */ if ((data = libld_calloc(sizeof (Elf_Data), 1)) == 0) return (S_ERROR); data->d_type = tmpl_isp->is_indata->d_type; data->d_size = size; data->d_align = tmpl_isp->is_shdr->sh_addralign; data->d_version = ofl->ofl_dehdr->e_version; /* * Allocate and initialize the Shdr structure. */ if ((shdr = libld_malloc(sizeof (Shdr))) == 0) return (S_ERROR); *shdr = *tmpl_isp->is_shdr; shdr->sh_addr = 0; shdr->sh_offset = 0; shdr->sh_size = size; /* * Allocate and initialize the Is_desc structure. */ if ((isec = libld_calloc(1, sizeof (Is_desc))) == 0) return (S_ERROR); isec->is_name = tmpl_isp->is_name; isec->is_shdr = shdr; isec->is_indata = data; *ret_isec = isec; *ret_shdr = shdr; *ret_data = data; return (1); } /* * Build a .bss section for allocation of tentative definitions. Any `static' * .bss definitions would have been associated to their own .bss sections and * thus collected from the input files. `global' .bss definitions are tagged * as COMMON and do not cause any associated .bss section elements to be * generated. Here we add up all these COMMON symbols and generate the .bss * section required to represent them. */ uintptr_t ld_make_bss(Ofl_desc *ofl, Xword size, Xword align, Bss_Type which) { Shdr *shdr; Elf_Data *data; Is_desc *isec; Os_desc *osp; uint_t ident; Xword rsize = (Xword)ofl->ofl_relocbsssz; /* * Allocate header structs. We will set the name ourselves below, * and there is no entcnt for a BSS. So, the shname and entcnt * arguments are 0. */ if (new_section(ofl, SHT_NOBITS, NULL, 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); data->d_size = (size_t)size; data->d_align = (size_t)align; shdr->sh_size = size; shdr->sh_addralign = align; if (which == MAKE_TLS) { isec->is_name = MSG_ORIG(MSG_SCN_TBSS); ident = ld_targ.t_id.id_tlsbss; ofl->ofl_istlsbss = isec; shdr->sh_flags |= SHF_TLS; } else if (which == MAKE_BSS) { isec->is_name = MSG_ORIG(MSG_SCN_BSS); ofl->ofl_isbss = isec; ident = ld_targ.t_id.id_bss; #if defined(_ELF64) } else if ((ld_targ.t_m.m_mach == EM_AMD64) && (which == MAKE_LBSS)) { isec->is_name = MSG_ORIG(MSG_SCN_LBSS); ofl->ofl_islbss = isec; ident = ld_targ.t_id.id_lbss; shdr->sh_flags |= SHF_AMD64_LARGE; #endif } /* * Retain this .bss input section as this will be where global * symbol references are added. */ if ((osp = ld_place_section(ofl, isec, ident, 0)) == (Os_desc *)S_ERROR) return (S_ERROR); /* * If relocations exist against .*bss section, a * section symbol must be created for the section in * the .dynsym symbol table. */ if (!(osp->os_flags & FLG_OS_OUTREL)) { ofl_flag_t flagtotest; if (which == MAKE_TLS) flagtotest = FLG_OF1_TLSOREL; else flagtotest = FLG_OF1_BSSOREL; if (ofl->ofl_flags1 & flagtotest) { ofl->ofl_dynshdrcnt++; osp->os_flags |= FLG_OS_OUTREL; } } osp->os_szoutrels = rsize; return (1); } /* * Build a SHT_{INIT|FINI|PREINIT}ARRAY section (specified via * ld -z *array=name */ static uintptr_t make_array(Ofl_desc *ofl, Word shtype, const char *sectname, List *list) { uint_t entcount; Listnode *lnp; Elf_Data *data; Is_desc *isec; Shdr *shdr; Sym_desc *sdp; Rel_desc reld; Rela reloc; Os_desc *osp; uintptr_t ret = 1; if (list->head == NULL) return (1); entcount = 0; for (LIST_TRAVERSE(list, lnp, sdp)) entcount++; if (new_section(ofl, shtype, sectname, entcount, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); if ((data->d_buf = libld_calloc(sizeof (Addr), entcount)) == 0) return (S_ERROR); if (ld_place_section(ofl, isec, ld_targ.t_id.id_array, 0) == (Os_desc *)S_ERROR) return (S_ERROR); osp = isec->is_osdesc; if ((ofl->ofl_osinitarray == NULL) && (shtype == SHT_INIT_ARRAY)) ofl->ofl_osinitarray = osp; if ((ofl->ofl_ospreinitarray == NULL) && (shtype == SHT_PREINIT_ARRAY)) ofl->ofl_ospreinitarray = osp; else if ((ofl->ofl_osfiniarray == NULL) && (shtype == SHT_FINI_ARRAY)) ofl->ofl_osfiniarray = osp; /* * Create relocations against this section to initialize it to the * function addresses. */ reld.rel_osdesc = osp; reld.rel_isdesc = isec; reld.rel_move = 0; reld.rel_flags = FLG_REL_LOAD; /* * Fabricate the relocation information (as if a relocation record had * been input - see init_rel()). */ reld.rel_rtype = ld_targ.t_m.m_r_arrayaddr; reld.rel_roffset = 0; reld.rel_raddend = 0; reld.rel_typedata = 0; /* * Create a minimal relocation record to satisfy process_sym_reloc() * debugging requirements. */ reloc.r_offset = 0; reloc.r_info = ELF_R_INFO(0, ld_targ.t_m.m_r_arrayaddr); reloc.r_addend = 0; DBG_CALL(Dbg_reloc_generate(ofl->ofl_lml, osp, ld_targ.t_m.m_rel_sht_type)); for (LIST_TRAVERSE(list, lnp, sdp)) { reld.rel_sname = sdp->sd_name; reld.rel_sym = sdp; if (ld_process_sym_reloc(ofl, &reld, (Rel *)&reloc, isec, MSG_INTL(MSG_STR_COMMAND)) == S_ERROR) { ret = S_ERROR; continue; } reld.rel_roffset += (Xword)sizeof (Addr); reloc.r_offset = reld.rel_roffset; } return (ret); } /* * Build a comment section (-Qy option). */ static uintptr_t make_comment(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_COMMENT), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); data->d_buf = (void *)ofl->ofl_sgsid; data->d_size = strlen(ofl->ofl_sgsid) + 1; data->d_align = 1; shdr->sh_size = (Xword)data->d_size; shdr->sh_flags = 0; shdr->sh_addralign = 1; return ((uintptr_t)ld_place_section(ofl, isec, ld_targ.t_id.id_note, 0)); } /* * Make the dynamic section. Calculate the size of any strings referenced * within this structure, they will be added to the global string table * (.dynstr). This routine should be called before make_dynstr(). * * This routine must be maintained in parallel with update_odynamic() * in update.c */ static uintptr_t make_dynamic(Ofl_desc *ofl) { Shdr *shdr; Os_desc *osp; Elf_Data *data; Is_desc *isec; size_t cnt = 0; Listnode *lnp; Ifl_desc *ifl; Sym_desc *sdp; size_t size; ofl_flag_t flags = ofl->ofl_flags; int not_relobj = !(flags & FLG_OF_RELOBJ); int unused = 0; /* * Only a limited subset of DT_ entries apply to relocatable * objects. See the comment at the head of update_odynamic() in * update.c for details. */ if (new_section(ofl, SHT_DYNAMIC, MSG_ORIG(MSG_SCN_DYNAMIC), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* new_section() does not set SHF_ALLOC. Add it if needed */ if (not_relobj) shdr->sh_flags |= SHF_ALLOC; osp = ofl->ofl_osdynamic = ld_place_section(ofl, isec, ld_targ.t_id.id_dynamic, 0); /* * Reserve entries for any needed dependencies. */ for (LIST_TRAVERSE(&ofl->ofl_sos, lnp, ifl)) { Sdf_desc *sdf; if (!(ifl->ifl_flags & (FLG_IF_NEEDED | FLG_IF_NEEDSTR))) continue; /* * If this dependency didn't satisfy any symbol references, * generate a debugging diagnostic (ld(1) -Dunused can be used * to display these). If this is a standard needed dependency, * and -z ignore is in effect, drop the dependency. Explicitly * defined dependencies (i.e., -N dep) don't get dropped, and * are flagged as being required to simplify update_odynamic() * processing. */ if ((ifl->ifl_flags & FLG_IF_NEEDSTR) || ((ifl->ifl_flags & FLG_IF_DEPREQD) == 0)) { if (unused++ == 0) DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); DBG_CALL(Dbg_unused_file(ofl->ofl_lml, ifl->ifl_soname, (ifl->ifl_flags & FLG_IF_NEEDSTR), 0)); if (ifl->ifl_flags & FLG_IF_NEEDSTR) ifl->ifl_flags |= FLG_IF_DEPREQD; else if (ifl->ifl_flags & FLG_IF_IGNORE) continue; } /* * If this object has an accompanying shared object definition * determine if an alternative shared object name has been * specified. */ if (((sdf = ifl->ifl_sdfdesc) != 0) && (sdf->sdf_flags & FLG_SDF_SONAME)) ifl->ifl_soname = sdf->sdf_soname; /* * If this object is a lazyload reserve a DT_POSFLAG_1 entry. */ if ((ifl->ifl_flags & (FLG_IF_LAZYLD | FLG_IF_GRPPRM)) && not_relobj) cnt++; if (st_insert(ofl->ofl_dynstrtab, ifl->ifl_soname) == -1) return (S_ERROR); cnt++; /* * If the needed entry contains the $ORIGIN token make sure * the associated DT_1_FLAGS entry is created. */ if (strstr(ifl->ifl_soname, MSG_ORIG(MSG_STR_ORIGIN))) { ofl->ofl_dtflags_1 |= DF_1_ORIGIN; ofl->ofl_dtflags |= DF_ORIGIN; } } if (unused) DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); if (not_relobj) { /* * Reserve entries for any per-symbol auxiliary/filter strings. */ cnt += alist_nitems(ofl->ofl_dtsfltrs); /* * Reserve entries for _init() and _fini() section addresses. */ if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_INIT_U), SYM_NOHASH, 0, ofl)) != NULL) && (sdp->sd_ref == REF_REL_NEED) && (sdp->sd_sym->st_shndx != SHN_UNDEF)) { sdp->sd_flags |= FLG_SY_UPREQD; cnt++; } if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_FINI_U), SYM_NOHASH, 0, ofl)) != NULL) && (sdp->sd_ref == REF_REL_NEED) && (sdp->sd_sym->st_shndx != SHN_UNDEF)) { sdp->sd_flags |= FLG_SY_UPREQD; cnt++; } /* * Reserve entries for any soname, filter name (shared libs * only), run-path pointers, cache names and audit requirements. */ if (ofl->ofl_soname) { cnt++; if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_soname) == -1) return (S_ERROR); } if (ofl->ofl_filtees) { cnt++; if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_filtees) == -1) return (S_ERROR); /* * If the filtees entry contains the $ORIGIN token * make sure the associated DT_1_FLAGS entry is created. */ if (strstr(ofl->ofl_filtees, MSG_ORIG(MSG_STR_ORIGIN))) { ofl->ofl_dtflags_1 |= DF_1_ORIGIN; ofl->ofl_dtflags |= DF_ORIGIN; } } } if (ofl->ofl_rpath) { cnt += 2; /* DT_RPATH & DT_RUNPATH */ if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_rpath) == -1) return (S_ERROR); /* * If the rpath entry contains the $ORIGIN token make sure * the associated DT_1_FLAGS entry is created. */ if (strstr(ofl->ofl_rpath, MSG_ORIG(MSG_STR_ORIGIN))) { ofl->ofl_dtflags_1 |= DF_1_ORIGIN; ofl->ofl_dtflags |= DF_ORIGIN; } } if (not_relobj) { if (ofl->ofl_config) { cnt++; if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_config) == -1) return (S_ERROR); /* * If the config entry contains the $ORIGIN token * make sure the associated DT_1_FLAGS entry is created. */ if (strstr(ofl->ofl_config, MSG_ORIG(MSG_STR_ORIGIN))) { ofl->ofl_dtflags_1 |= DF_1_ORIGIN; ofl->ofl_dtflags |= DF_ORIGIN; } } if (ofl->ofl_depaudit) { cnt++; if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_depaudit) == -1) return (S_ERROR); } if (ofl->ofl_audit) { cnt++; if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_audit) == -1) return (S_ERROR); } /* * Reserve entries for the HASH, STRTAB, STRSZ, SYMTAB, SYMENT, * and CHECKSUM. */ cnt += 6; /* * If we are including local functions at the head of * the dynsym, then also reserve entries for DT_SUNW_SYMTAB * and DT_SUNW_SYMSZ. */ if (OFL_ALLOW_LDYNSYM(ofl)) cnt += 2; if ((ofl->ofl_dynsymsortcnt > 0) || (ofl->ofl_dyntlssortcnt > 0)) cnt++; /* DT_SUNW_SORTENT */ if (ofl->ofl_dynsymsortcnt > 0) cnt += 2; /* DT_SUNW_[SYMSORT|SYMSORTSZ] */ if (ofl->ofl_dyntlssortcnt > 0) cnt += 2; /* DT_SUNW_[TLSSORT|TLSSORTSZ] */ if ((flags & (FLG_OF_VERDEF | FLG_OF_NOVERSEC)) == FLG_OF_VERDEF) cnt += 2; /* DT_VERDEF & DT_VERDEFNUM */ if ((flags & (FLG_OF_VERNEED | FLG_OF_NOVERSEC)) == FLG_OF_VERNEED) cnt += 2; /* DT_VERNEED & DT_VERNEEDNUM */ if ((flags & FLG_OF_COMREL) && ofl->ofl_relocrelcnt) cnt++; /* RELACOUNT */ if (flags & FLG_OF_TEXTREL) /* TEXTREL */ cnt++; if (ofl->ofl_osfiniarray) /* FINI_ARRAY & FINI_ARRAYSZ */ cnt += 2; if (ofl->ofl_osinitarray) /* INIT_ARRAY & INIT_ARRAYSZ */ cnt += 2; if (ofl->ofl_ospreinitarray) /* PREINIT_ARRAY & */ cnt += 2; /* PREINIT_ARRAYSZ */ /* * If we have plt's reserve a PLT, PLTSZ, PLTREL and JMPREL. */ if (ofl->ofl_pltcnt) cnt += 3; /* * If pltpadding is needed (Sparcv9) */ if (ofl->ofl_pltpad) cnt += 2; /* DT_PLTPAD & DT_PLTPADSZ */ /* * If we have any relocations reserve a REL, RELSZ and * RELENT entry. */ if (ofl->ofl_relocsz) cnt += 3; /* * If a syminfo section is required create SYMINFO, SYMINSZ, * and SYMINENT entries. */ if (flags & FLG_OF_SYMINFO) cnt += 3; /* * If there are any partially initialized sections allocate * MOVEENT, MOVESZ and MOVETAB. */ if (ofl->ofl_osmove) cnt += 3; /* * Allocate one DT_REGISTER entry for every register symbol. */ cnt += ofl->ofl_regsymcnt; /* * Reserve a entry for each '-zrtldinfo=...' specified * on the command line. */ for (LIST_TRAVERSE(&ofl->ofl_rtldinfo, lnp, sdp)) cnt++; /* * These two entries should only be placed in a segment * which is writable. If it's a read-only segment * (due to mapfile magic, e.g. libdl.so.1) then don't allocate * these entries. */ if ((osp->os_sgdesc) && (osp->os_sgdesc->sg_phdr.p_flags & PF_W)) { cnt++; /* FEATURE_1 */ if (ofl->ofl_osinterp) cnt++; /* DEBUG */ } /* * Any hardware/software capabilities? */ if (ofl->ofl_oscap) cnt++; /* SUNW_CAP */ if (flags & FLG_OF_SYMBOLIC) cnt++; /* SYMBOLIC */ } /* * Account for Architecture dependent .dynamic entries, and defaults. */ (*ld_targ.t_mr.mr_mach_make_dynamic)(ofl, &cnt); /* * DT_FLAGS, DT_FLAGS_1, DT_SUNW_STRPAD, and DT_NULL. Also, * allow room for the unused extra DT_NULLs. These are included * to allow an ELF editor room to add items later. */ cnt += 4 + DYNAMIC_EXTRA_ELTS; /* * DT_SUNW_LDMACH. Used to hold the ELF machine code of the * linker that produced the output object. This information * allows us to determine whether a given object was linked * natively, or by a linker running on a different type of * system. This information can be valuable if one suspects * that a problem might be due to alignment or byte order issues. */ cnt++; /* * Determine the size of the section from the number of entries. */ size = cnt * (size_t)shdr->sh_entsize; shdr->sh_size = (Xword)size; data->d_size = size; return ((uintptr_t)ofl->ofl_osdynamic); } /* * Build the GOT section and its associated relocation entries. */ uintptr_t ld_make_got(Ofl_desc *ofl) { Elf_Data *data; Shdr *shdr; Is_desc *isec; size_t size = (size_t)ofl->ofl_gotcnt * ld_targ.t_m.m_got_entsize; size_t rsize = (size_t)ofl->ofl_relocgotsz; if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_GOT), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); data->d_size = size; shdr->sh_flags |= SHF_WRITE; shdr->sh_size = (Xword)size; shdr->sh_entsize = ld_targ.t_m.m_got_entsize; ofl->ofl_osgot = ld_place_section(ofl, isec, ld_targ.t_id.id_got, 0); if (ofl->ofl_osgot == (Os_desc *)S_ERROR) return (S_ERROR); ofl->ofl_osgot->os_szoutrels = (Xword)rsize; return (1); } /* * Build an interpreter section. */ static uintptr_t make_interp(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; const char *iname = ofl->ofl_interp; size_t size; /* * If -z nointerp is in effect, don't create an interpreter section. */ if (ofl->ofl_flags1 & FLG_OF1_NOINTRP) return (1); /* * We always build an .interp section for dynamic executables. However * if the user has specifically specified an interpreter we'll build * this section for any output (presumably the user knows what they are * doing. refer ABI section 5-4, and ld.1 man page use of -I). */ if (((ofl->ofl_flags & (FLG_OF_DYNAMIC | FLG_OF_EXEC | FLG_OF_RELOBJ)) != (FLG_OF_DYNAMIC | FLG_OF_EXEC)) && !iname) return (1); /* * In the case of a dynamic executable supply a default interpreter * if a specific interpreter has not been specified. */ if (iname == NULL) iname = ofl->ofl_interp = ld_targ.t_m.m_def_interp; size = strlen(iname) + 1; if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_INTERP), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); data->d_size = size; shdr->sh_size = (Xword)size; data->d_align = shdr->sh_addralign = 1; ofl->ofl_osinterp = ld_place_section(ofl, isec, ld_targ.t_id.id_interp, 0); return ((uintptr_t)ofl->ofl_osinterp); } /* * Build a hardware/software capabilities section. */ static uintptr_t make_cap(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; Os_desc *osec; Cap *cap; size_t size = 0; /* * Determine how many entries are required. */ if (ofl->ofl_hwcap_1) size++; if (ofl->ofl_sfcap_1) size++; if (size == 0) return (1); size++; /* Add CA_SUNW_NULL */ if (new_section(ofl, SHT_SUNW_cap, MSG_ORIG(MSG_SCN_SUNWCAP), size, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); if ((data->d_buf = libld_malloc(shdr->sh_size)) == 0) return (S_ERROR); cap = (Cap *)data->d_buf; if (ofl->ofl_hwcap_1) { cap->c_tag = CA_SUNW_HW_1; cap->c_un.c_val = ofl->ofl_hwcap_1; cap++; } if (ofl->ofl_sfcap_1) { cap->c_tag = CA_SUNW_SF_1; cap->c_un.c_val = ofl->ofl_sfcap_1; cap++; } cap->c_tag = CA_SUNW_NULL; cap->c_un.c_val = 0; /* * If we're not creating a relocatable object, save the output section * to trigger the creation of an associated program header. */ osec = ld_place_section(ofl, isec, ld_targ.t_id.id_cap, 0); if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) ofl->ofl_oscap = osec; return ((uintptr_t)osec); } /* * Build the PLT section and its associated relocation entries. */ static uintptr_t make_plt(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; size_t size = ld_targ.t_m.m_plt_reservsz + (((size_t)ofl->ofl_pltcnt + (size_t)ofl->ofl_pltpad) * ld_targ.t_m.m_plt_entsize); size_t rsize = (size_t)ofl->ofl_relocpltsz; /* * On sparc, account for the NOP at the end of the plt. */ if (ld_targ.t_m.m_mach == LD_TARG_BYCLASS(EM_SPARC, EM_SPARCV9)) size += sizeof (Word); if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_PLT), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); data->d_size = size; data->d_align = ld_targ.t_m.m_plt_align; shdr->sh_flags = ld_targ.t_m.m_plt_shf_flags; shdr->sh_size = (Xword)size; shdr->sh_addralign = ld_targ.t_m.m_plt_align; shdr->sh_entsize = ld_targ.t_m.m_plt_entsize; ofl->ofl_osplt = ld_place_section(ofl, isec, ld_targ.t_id.id_plt, 0); if (ofl->ofl_osplt == (Os_desc *)S_ERROR) return (S_ERROR); ofl->ofl_osplt->os_szoutrels = (Xword)rsize; return (1); } /* * Make the hash table. Only built for dynamic executables and shared * libraries, and provides hashed lookup into the global symbol table * (.dynsym) for the run-time linker to resolve symbol lookups. */ static uintptr_t make_hash(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; size_t size; Word nsyms = ofl->ofl_globcnt; size_t cnt; /* * Allocate section header structures. We set entcnt to 0 * because it's going to change after we place this section. */ if (new_section(ofl, SHT_HASH, MSG_ORIG(MSG_SCN_HASH), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* * Place the section first since it will affect the local symbol * count. */ ofl->ofl_oshash = ld_place_section(ofl, isec, ld_targ.t_id.id_hash, 0); if (ofl->ofl_oshash == (Os_desc *)S_ERROR) return (S_ERROR); /* * Calculate the number of output hash buckets. */ ofl->ofl_hashbkts = findprime(nsyms); /* * The size of the hash table is determined by * * i. the initial nbucket and nchain entries (2) * ii. the number of buckets (calculated above) * iii. the number of chains (this is based on the number of * symbols in the .dynsym array + NULL symbol). */ cnt = 2 + ofl->ofl_hashbkts + (ofl->ofl_dynshdrcnt + ofl->ofl_globcnt + ofl->ofl_lregsymcnt + 1); size = cnt * shdr->sh_entsize; /* * Finalize the section header and data buffer initialization. */ if ((data->d_buf = libld_calloc(size, 1)) == 0) return (S_ERROR); data->d_size = size; shdr->sh_size = (Xword)size; return (1); } /* * Generate the standard symbol table. Contains all locals and globals, * and resides in a non-allocatable section (ie. it can be stripped). */ static uintptr_t make_symtab(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; Is_desc *xisec = 0; size_t size; Word symcnt; /* * We increment the number of sections in the output object * (ofl->ofl_shdrcnt) as we add them. However, if -z ignore * processing is in effect, the number of sections later removed * is not reflected in that count. Updating the count as we * remove these sections is a relatively expensive operation. * Hence, if -z ignore is in use, we recompute the number of * sections in a single final pass. */ if (ofl->ofl_flags1 & FLG_OF1_IGNPRC) ld_recalc_shdrcnt(ofl); /* * Create the section headers. Note that we supply an ent_cnt * of 0. We won't know the count until the section has been placed. */ if (new_section(ofl, SHT_SYMTAB, MSG_ORIG(MSG_SCN_SYMTAB), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* * Place the section first since it will affect the local symbol * count. */ ofl->ofl_ossymtab = ld_place_section(ofl, isec, ld_targ.t_id.id_symtab, 0); if (ofl->ofl_ossymtab == (Os_desc *)S_ERROR) return (S_ERROR); /* * At this point we've created all but the 'shstrtab' section. * Determine if we have to use 'Extended Sections'. If so - then * also create a SHT_SYMTAB_SHNDX section. */ if ((ofl->ofl_shdrcnt + 1) >= SHN_LORESERVE) { Shdr *xshdr; Elf_Data *xdata; if (new_section(ofl, SHT_SYMTAB_SHNDX, MSG_ORIG(MSG_SCN_SYMTAB_SHNDX), 0, &xisec, &xshdr, &xdata) == S_ERROR) return (S_ERROR); if ((ofl->ofl_ossymshndx = ld_place_section(ofl, xisec, ld_targ.t_id.id_symtab_ndx, 0)) == (Os_desc *)S_ERROR) return (S_ERROR); } /* * Calculated number of symbols, which need to be augmented by * the null first entry, the FILE symbol, and the .shstrtab entry. */ symcnt = (size_t)(3 + ofl->ofl_shdrcnt + ofl->ofl_scopecnt + ofl->ofl_locscnt + ofl->ofl_globcnt); size = symcnt * shdr->sh_entsize; /* * Finalize the section header and data buffer initialization. */ data->d_size = size; shdr->sh_size = (Xword)size; /* * If we created a SHT_SYMTAB_SHNDX - then set it's sizes too. */ if (xisec) { size_t xsize = symcnt * sizeof (Word); xisec->is_indata->d_size = xsize; xisec->is_shdr->sh_size = (Xword)xsize; } return (1); } /* * Build a dynamic symbol table. These tables reside in the text * segment of a dynamic executable or shared library. * * .SUNW_ldynsym contains local function symbols * .dynsym contains only globals symbols * * The two tables are created adjacent to each other, with .SUNW_ldynsym * coming first. */ static uintptr_t make_dynsym(Ofl_desc *ofl) { Shdr *shdr, *lshdr; Elf_Data *data, *ldata; Is_desc *isec, *lisec; size_t size; Xword cnt; int allow_ldynsym; /* * Unless explicitly disabled, always produce a .SUNW_ldynsym section * when it is allowed by the file type, even if the resulting * table only ends up with a single STT_FILE in it. There are * two reasons: (1) It causes the generation of the DT_SUNW_SYMTAB * entry in the .dynamic section, which is something we would * like to encourage, and (2) Without it, we cannot generate * the associated .SUNW_dyn[sym|tls]sort sections, which are of * value to DTrace. * * In practice, it is extremely rare for an object not to have * local symbols for .SUNW_ldynsym, so 99% of the time, we'd be * doing it anyway. */ allow_ldynsym = OFL_ALLOW_LDYNSYM(ofl); /* * Create the section headers. Note that we supply an ent_cnt * of 0. We won't know the count until the section has been placed. */ if (allow_ldynsym && new_section(ofl, SHT_SUNW_LDYNSYM, MSG_ORIG(MSG_SCN_LDYNSYM), 0, &lisec, &lshdr, &ldata) == S_ERROR) return (S_ERROR); if (new_section(ofl, SHT_DYNSYM, MSG_ORIG(MSG_SCN_DYNSYM), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* * Place the section(s) first since it will affect the local symbol * count. */ if (allow_ldynsym && ((ofl->ofl_osldynsym = ld_place_section(ofl, lisec, ld_targ.t_id.id_ldynsym, 0)) == (Os_desc *)S_ERROR)) return (S_ERROR); ofl->ofl_osdynsym = ld_place_section(ofl, isec, ld_targ.t_id.id_dynsym, 0); if (ofl->ofl_osdynsym == (Os_desc *)S_ERROR) return (S_ERROR); /* * One extra section header entry for the 'null' entry. */ cnt = 1 + ofl->ofl_dynshdrcnt + ofl->ofl_globcnt + ofl->ofl_lregsymcnt; size = (size_t)cnt * shdr->sh_entsize; /* * Finalize the section header and data buffer initialization. */ data->d_size = size; shdr->sh_size = (Xword)size; /* * An ldynsym contains local function symbols. It is not * used for linking, but if present, serves to allow better * stack traces to be generated in contexts where the symtab * is not available. (dladdr(), or stripped executable/library files). */ if (allow_ldynsym) { cnt = 1 + ofl->ofl_dynlocscnt + ofl->ofl_dynscopecnt; size = (size_t)cnt * shdr->sh_entsize; ldata->d_size = size; lshdr->sh_size = (Xword)size; } return (1); } /* * Build .SUNW_dynsymsort and/or .SUNW_dyntlssort sections. These are * index sections for the .SUNW_ldynsym/.dynsym pair that present data * and function symbols sorted by address. */ static uintptr_t make_dynsort(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; /* Only do it if the .SUNW_ldynsym section is present */ if (!OFL_ALLOW_LDYNSYM(ofl)) return (1); /* .SUNW_dynsymsort */ if (ofl->ofl_dynsymsortcnt > 0) { if (new_section(ofl, SHT_SUNW_symsort, MSG_ORIG(MSG_SCN_DYNSYMSORT), ofl->ofl_dynsymsortcnt, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); if ((ofl->ofl_osdynsymsort = ld_place_section(ofl, isec, ld_targ.t_id.id_dynsort, 0)) == (Os_desc *)S_ERROR) return (S_ERROR); } /* .SUNW_dyntlssort */ if (ofl->ofl_dyntlssortcnt > 0) { if (new_section(ofl, SHT_SUNW_tlssort, MSG_ORIG(MSG_SCN_DYNTLSSORT), ofl->ofl_dyntlssortcnt, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); if ((ofl->ofl_osdyntlssort = ld_place_section(ofl, isec, ld_targ.t_id.id_dynsort, 0)) == (Os_desc *)S_ERROR) return (S_ERROR); } return (1); } /* * Helper routine for make_dynsym_shndx. Builds a * a SHT_SYMTAB_SHNDX for .dynsym or .SUNW_ldynsym, without knowing * which one it is. */ static uintptr_t make_dyn_shndx(Ofl_desc *ofl, const char *shname, Os_desc *symtab, Os_desc **ret_os) { Is_desc *isec; Is_desc *dynsymisp; Shdr *shdr, *dynshdr; Elf_Data *data; dynsymisp = (Is_desc *)symtab->os_isdescs.head->data; dynshdr = dynsymisp->is_shdr; if (new_section(ofl, SHT_SYMTAB_SHNDX, shname, (dynshdr->sh_size / dynshdr->sh_entsize), &isec, &shdr, &data) == S_ERROR) return (S_ERROR); if ((*ret_os = ld_place_section(ofl, isec, ld_targ.t_id.id_dynsym_ndx, 0)) == (Os_desc *)S_ERROR) return (S_ERROR); assert(*ret_os); return (1); } /* * Build a SHT_SYMTAB_SHNDX for the .dynsym, and .SUNW_ldynsym */ static uintptr_t make_dynsym_shndx(Ofl_desc *ofl) { /* * If there is a .SUNW_ldynsym, generate a section for its extended * index section as well. */ if (OFL_ALLOW_LDYNSYM(ofl)) { if (make_dyn_shndx(ofl, MSG_ORIG(MSG_SCN_LDYNSYM_SHNDX), ofl->ofl_osldynsym, &ofl->ofl_osldynshndx) == S_ERROR) return (S_ERROR); } /* The Generate a section for the dynsym */ if (make_dyn_shndx(ofl, MSG_ORIG(MSG_SCN_DYNSYM_SHNDX), ofl->ofl_osdynsym, &ofl->ofl_osdynshndx) == S_ERROR) return (S_ERROR); return (1); } /* * Build a string table for the section headers. */ static uintptr_t make_shstrtab(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; size_t size; if (new_section(ofl, SHT_STRTAB, MSG_ORIG(MSG_SCN_SHSTRTAB), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* * Place the section first, as it may effect the number of section * headers to account for. */ ofl->ofl_osshstrtab = ld_place_section(ofl, isec, ld_targ.t_id.id_note, 0); if (ofl->ofl_osshstrtab == (Os_desc *)S_ERROR) return (S_ERROR); size = st_getstrtab_sz(ofl->ofl_shdrsttab); assert(size > 0); data->d_size = size; shdr->sh_size = (Xword)size; return (1); } /* * Build a string section for the standard symbol table. */ static uintptr_t make_strtab(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; size_t size; /* * This string table consists of all the global and local symbols. * Account for null bytes at end of the file name and the beginning * of section. */ if (st_insert(ofl->ofl_strtab, ofl->ofl_name) == -1) return (S_ERROR); size = st_getstrtab_sz(ofl->ofl_strtab); assert(size > 0); if (new_section(ofl, SHT_STRTAB, MSG_ORIG(MSG_SCN_STRTAB), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* Set the size of the data area */ data->d_size = size; shdr->sh_size = (Xword)size; ofl->ofl_osstrtab = ld_place_section(ofl, isec, ld_targ.t_id.id_strtab, 0); return ((uintptr_t)ofl->ofl_osstrtab); } /* * Build a string table for the dynamic symbol table. */ static uintptr_t make_dynstr(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; size_t size; /* * If producing a .SUNW_ldynsym, account for the initial STT_FILE * symbol that precedes the scope reduced global symbols. */ if (OFL_ALLOW_LDYNSYM(ofl)) { if (st_insert(ofl->ofl_dynstrtab, ofl->ofl_name) == -1) return (S_ERROR); ofl->ofl_dynscopecnt++; } /* * Account for any local, named register symbols. These locals are * required for reference from DT_REGISTER .dynamic entries. */ if (ofl->ofl_regsyms) { int ndx; for (ndx = 0; ndx < ofl->ofl_regsymsno; ndx++) { Sym_desc *sdp; if ((sdp = ofl->ofl_regsyms[ndx]) == 0) continue; if (((sdp->sd_flags1 & FLG_SY1_HIDDEN) == 0) && (ELF_ST_BIND(sdp->sd_sym->st_info) != STB_LOCAL)) continue; if (sdp->sd_sym->st_name == 0) continue; if (st_insert(ofl->ofl_dynstrtab, sdp->sd_name) == -1) return (S_ERROR); } } /* * Reserve entries for any per-symbol auxiliary/filter strings. */ if (ofl->ofl_dtsfltrs != NULL) { Dfltr_desc *dftp; Aliste idx; for (ALIST_TRAVERSE(ofl->ofl_dtsfltrs, idx, dftp)) if (st_insert(ofl->ofl_dynstrtab, dftp->dft_str) == -1) return (S_ERROR); } size = st_getstrtab_sz(ofl->ofl_dynstrtab); assert(size > 0); if (new_section(ofl, SHT_STRTAB, MSG_ORIG(MSG_SCN_DYNSTR), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* Make it allocable if necessary */ if (!(ofl->ofl_flags & FLG_OF_RELOBJ)) shdr->sh_flags |= SHF_ALLOC; /* Set the size of the data area */ data->d_size = size + DYNSTR_EXTRA_PAD; shdr->sh_size = (Xword)size; ofl->ofl_osdynstr = ld_place_section(ofl, isec, ld_targ.t_id.id_dynstr, 0); return ((uintptr_t)ofl->ofl_osdynstr); } /* * Generate an output relocation section which will contain the relocation * information to be applied to the `osp' section. * * If (osp == NULL) then we are creating the coalesced relocation section * for an executable and/or a shared object. */ static uintptr_t make_reloc(Ofl_desc *ofl, Os_desc *osp) { Shdr *shdr; Elf_Data *data; Is_desc *isec; size_t size; Xword sh_flags; char *sectname; Os_desc *rosp; Word relsize; const char *rel_prefix; /* LINTED */ if (ld_targ.t_m.m_rel_sht_type == SHT_REL) { /* REL */ relsize = sizeof (Rel); rel_prefix = MSG_ORIG(MSG_SCN_REL); } else { /* RELA */ relsize = sizeof (Rela); rel_prefix = MSG_ORIG(MSG_SCN_RELA); } if (osp) { size = osp->os_szoutrels; sh_flags = osp->os_shdr->sh_flags; if ((sectname = libld_malloc(strlen(rel_prefix) + strlen(osp->os_name) + 1)) == 0) return (S_ERROR); (void) strcpy(sectname, rel_prefix); (void) strcat(sectname, osp->os_name); } else if (ofl->ofl_flags & FLG_OF_COMREL) { size = (ofl->ofl_reloccnt - ofl->ofl_reloccntsub) * relsize; sh_flags = SHF_ALLOC; sectname = (char *)MSG_ORIG(MSG_SCN_SUNWRELOC); } else { size = ofl->ofl_relocrelsz; sh_flags = SHF_ALLOC; sectname = (char *)rel_prefix; } /* * Keep track of total size of 'output relocations' (to be stored * in .dynamic) */ /* LINTED */ ofl->ofl_relocsz += (Xword)size; if (new_section(ofl, ld_targ.t_m.m_rel_sht_type, sectname, 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); data->d_size = size; shdr->sh_size = (Xword)size; if (OFL_ALLOW_DYNSYM(ofl) && (sh_flags & SHF_ALLOC)) shdr->sh_flags = SHF_ALLOC; if (osp) { /* * The sh_info field of the SHT_REL* sections points to the * section the relocations are to be applied to. */ shdr->sh_flags |= SHF_INFO_LINK; } /* * Associate this relocation section to the section its going to * relocate. */ rosp = ld_place_section(ofl, isec, ld_targ.t_id.id_rel, 0); if (rosp == (Os_desc *)S_ERROR) return (S_ERROR); if (osp) { Listnode *lnp; Is_desc *risp; /* * We associate the input relocation sections - with * the newly created output relocation section. * * This is used primarily so that we can update * SHT_GROUP[sect_no] entries to point to the * created output relocation sections. */ for (LIST_TRAVERSE(&(osp->os_relisdescs), lnp, risp)) { risp->is_osdesc = rosp; /* * If the input relocation section had the SHF_GROUP * flag set - propagate it to the output relocation * section. */ if (risp->is_shdr->sh_flags & SHF_GROUP) { rosp->os_shdr->sh_flags |= SHF_GROUP; break; } } osp->os_relosdesc = rosp; } else ofl->ofl_osrel = rosp; /* * If this is the first relocation section we've encountered save it * so that the .dynamic entry can be initialized accordingly. */ if (ofl->ofl_osrelhead == (Os_desc *)0) ofl->ofl_osrelhead = rosp; return (1); } /* * Generate version needed section. */ static uintptr_t make_verneed(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; /* * verneed sections do not have a constant element size, so the * value of ent_cnt specified here (0) is meaningless. */ if (new_section(ofl, SHT_SUNW_verneed, MSG_ORIG(MSG_SCN_SUNWVERSION), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* During version processing we calculated the total size. */ data->d_size = ofl->ofl_verneedsz; shdr->sh_size = (Xword)ofl->ofl_verneedsz; ofl->ofl_osverneed = ld_place_section(ofl, isec, ld_targ.t_id.id_version, 0); return ((uintptr_t)ofl->ofl_osverneed); } /* * Generate a version definition section. * * o the SHT_SUNW_verdef section defines the versions that exist within this * image. */ static uintptr_t make_verdef(Ofl_desc *ofl) { Shdr *shdr; Elf_Data *data; Is_desc *isec; Ver_desc *vdp; /* * Reserve a string table entry for the base version dependency (other * dependencies have symbol representations, which will already be * accounted for during symbol processing). */ vdp = (Ver_desc *)ofl->ofl_verdesc.head->data; if (ofl->ofl_flags & FLG_OF_DYNAMIC) { if (st_insert(ofl->ofl_dynstrtab, vdp->vd_name) == -1) return (S_ERROR); } else { if (st_insert(ofl->ofl_strtab, vdp->vd_name) == -1) return (S_ERROR); } /* * verdef sections do not have a constant element size, so the * value of ent_cnt specified here (0) is meaningless. */ if (new_section(ofl, SHT_SUNW_verdef, MSG_ORIG(MSG_SCN_SUNWVERSION), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); /* During version processing we calculated the total size. */ data->d_size = ofl->ofl_verdefsz; shdr->sh_size = (Xword)ofl->ofl_verdefsz; ofl->ofl_osverdef = ld_place_section(ofl, isec, ld_targ.t_id.id_version, 0); return ((uintptr_t)ofl->ofl_osverdef); } /* * Common function used to build both the SHT_SUNW_versym * section and the SHT_SUNW_syminfo section. Each of these sections * provides additional symbol information. */ static Os_desc * make_sym_sec(Ofl_desc *ofl, const char *sectname, Word stype, int ident) { Shdr *shdr; Elf_Data *data; Is_desc *isec; /* * We don't know the size of this section yet, so set it to 0. * It gets filled in after the dynsym is sized. */ if (new_section(ofl, stype, sectname, 0, &isec, &shdr, &data) == S_ERROR) return ((Os_desc *)S_ERROR); return (ld_place_section(ofl, isec, ident, 0)); } /* * Build a .sunwbss section for allocation of tentative definitions. */ uintptr_t ld_make_sunwbss(Ofl_desc *ofl, size_t size, Xword align) { Shdr *shdr; Elf_Data *data; Is_desc *isec; /* * Allocate header structs. We will set the name ourselves below, * and there is no entcnt for a BSS. So, the shname and entcnt * arguments are 0. */ if (new_section(ofl, SHT_NOBITS, MSG_ORIG(MSG_SCN_SUNWBSS), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); data->d_size = size; data->d_align = align; shdr->sh_size = (Xword)size; shdr->sh_addralign = align; /* * Retain this .sunwbss input section as this will be where global * symbol references are added. */ ofl->ofl_issunwbss = isec; if (ld_place_section(ofl, isec, 0, 0) == (Os_desc *)S_ERROR) return (S_ERROR); return (1); } /* * This routine is called when -z nopartial is in effect. */ uintptr_t ld_make_sunwdata(Ofl_desc *ofl, size_t size, Xword align) { Shdr *shdr; Elf_Data *data; Is_desc *isec; Os_desc *osp; if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_SUNWDATA1), 0, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); shdr->sh_flags |= SHF_WRITE; data->d_size = size; shdr->sh_size = (Xword)size; if (align != 0) { data->d_align = align; shdr->sh_addralign = align; } if ((data->d_buf = libld_calloc(size, 1)) == 0) return (S_ERROR); /* * Retain this .sunwdata1 input section as this will * be where global * symbol references are added. */ ofl->ofl_issunwdata1 = isec; osp = ld_place_section(ofl, isec, ld_targ.t_id.id_data, 0); if (osp == (Os_desc *)S_ERROR) return (S_ERROR); if (!(osp->os_flags & FLG_OS_OUTREL)) { ofl->ofl_dynshdrcnt++; osp->os_flags |= FLG_OS_OUTREL; } return (1); } /* * Make .sunwmove section */ uintptr_t ld_make_sunwmove(Ofl_desc *ofl, int mv_nums) { Shdr *shdr; Elf_Data *data; Is_desc *isec; Listnode *lnp1; Psym_info *psym; int cnt = 1; if (new_section(ofl, SHT_SUNW_move, MSG_ORIG(MSG_SCN_SUNWMOVE), mv_nums, &isec, &shdr, &data) == S_ERROR) return (S_ERROR); if ((data->d_buf = libld_calloc(data->d_size, 1)) == 0) return (S_ERROR); /* * Copy move entries */ for (LIST_TRAVERSE(&ofl->ofl_parsym, lnp1, psym)) { Listnode *lnp2; Mv_itm *mvitm; if (psym->psym_symd->sd_flags & FLG_SY_PAREXPN) continue; for (LIST_TRAVERSE(&(psym->psym_mvs), lnp2, mvitm)) { if ((mvitm->mv_flag & FLG_MV_OUTSECT) == 0) continue; mvitm->mv_oidx = cnt; cnt++; } } if ((ofl->ofl_osmove = ld_place_section(ofl, isec, 0, 0)) == (Os_desc *)S_ERROR) return (S_ERROR); return (1); } /* * Given a relocation descriptor that references a string table * input section, locate the string referenced and return a pointer * to it. */ static const char * strmerge_get_reloc_str(Ofl_desc *ofl, Rel_desc *rsp) { Sym_desc *sdp = rsp->rel_sym; Xword str_off; /* * In the case of an STT_SECTION symbol, the addend of the * relocation gives the offset into the string section. For * other symbol types, the symbol value is the offset. */ if (ELF_ST_TYPE(sdp->sd_sym->st_info) != STT_SECTION) { str_off = sdp->sd_sym->st_value; } else if ((rsp->rel_flags & FLG_REL_RELA) == FLG_REL_RELA) { /* * For SHT_RELA, the addend value is found in the * rel_raddend field of the relocation. */ str_off = rsp->rel_raddend; } else { /* REL and STT_SECTION */ /* * For SHT_REL, the "addend" is not part of the relocation * record. Instead, it is found at the relocation target * address. */ uchar_t *addr = (uchar_t *)((uintptr_t)rsp->rel_roffset + (uintptr_t)rsp->rel_isdesc->is_indata->d_buf); if (ld_reloc_targval_get(ofl, rsp, addr, &str_off) == 0) return (0); } return (str_off + (char *)sdp->sd_isc->is_indata->d_buf); } /* * First pass over the relocation records for string table merging. * Build lists of relocations and symbols that will need modification, * and insert the strings they reference into the mstrtab string table. * * entry: * ofl, osp - As passed to ld_make_strmerge(). * mstrtab - String table to receive input strings. This table * must be in its first (initialization) pass and not * yet cooked (st_getstrtab_sz() not yet called). * rel_aplist - APlist to receive pointer to any relocation * descriptors with STT_SECTION symbols that reference * one of the input sections being merged. * sym_aplist - APlist to receive pointer to any symbols that reference * one of the input sections being merged. * reloc_list - List of relocation descriptors to examine. * Either ofl->&ofl->ofl_actrels (active relocations) * or &ofl->ofl_outrels (output relocations). * * exit: * On success, rel_aplist and sym_aplist are updated, and * any strings in the mergable input sections referenced by * a relocation has been entered into mstrtab. True (1) is returned. * * On failure, False (0) is returned. */ static int strmerge_pass1(Ofl_desc *ofl, Os_desc *osp, Str_tbl *mstrtab, APlist **rel_aplist, APlist **sym_aplist, List *reloc_list) { Listnode *lnp; Rel_cache *rcp; Sym_desc *sdp; Sym_desc *last_sdp = NULL; Rel_desc *rsp; const char *name; for (LIST_TRAVERSE(reloc_list, lnp, rcp)) { /* LINTED */ for (rsp = (Rel_desc *)(rcp + 1); rsp < rcp->rc_free; rsp++) { sdp = rsp->rel_sym; if ((sdp->sd_isc == NULL) || ((sdp->sd_isc->is_flags & (FLG_IS_DISCARD | FLG_IS_INSTRMRG)) != FLG_IS_INSTRMRG) || (sdp->sd_isc->is_osdesc != osp)) continue; /* * Remember symbol for use in the third pass. * There is no reason to save a given symbol more * than once, so we take advantage of the fact that * relocations to a given symbol tend to cluster * in the list. If this is the same symbol we saved * last time, don't bother. */ if (last_sdp != sdp) { if (aplist_append(sym_aplist, sdp, AL_CNT_STRMRGSYM) == 0) return (0); last_sdp = sdp; } /* Enter the string into our new string table */ name = strmerge_get_reloc_str(ofl, rsp); if (st_insert(mstrtab, name) == -1) return (0); /* * If this is an STT_SECTION symbol, then the * second pass will need to modify this relocation, * so hang on to it. */ if ((ELF_ST_TYPE(sdp->sd_sym->st_info) == STT_SECTION) && (aplist_append(rel_aplist, rsp, AL_CNT_STRMRGREL) == 0)) return (0); } } return (1); } /* * If the output section has any SHF_MERGE|SHF_STRINGS input sections, * replace them with a single merged/compressed input section. * * entry: * ofl - Output file descriptor * osp - Output section descriptor * rel_aplist, sym_aplist, - Address of 2 APlists, to be used * for internal processing. On the initial call to * ld_make_strmerge, these list pointers must be NULL. * The caller is encouraged to pass the same lists back for * successive calls to this function without freeing * them in between calls. This causes a single pair of * memory allocations to be reused multiple times. * * exit: * If section merging is possible, it is done. If no errors are * encountered, True (1) is returned. On error, S_ERROR. * * The contents of rel_aplist and sym_aplist on exit are * undefined. The caller can free them, or pass them back to a subsequent * call to this routine, but should not examine their contents. */ static uintptr_t ld_make_strmerge(Ofl_desc *ofl, Os_desc *osp, APlist **rel_aplist, APlist **sym_aplist) { Str_tbl *mstrtab; /* string table for string merge secs */ Is_desc *mstrsec; /* Generated string merge section */ Is_desc *isp; Shdr *mstr_shdr; Elf_Data *mstr_data; Sym_desc *sdp; Rel_desc *rsp; Aliste idx; size_t data_size; int st_setstring_status; size_t stoff; /* If string table compression is disabled, there's nothing to do */ if ((ofl->ofl_flags1 & FLG_OF1_NCSTTAB) != 0) return (1); /* * Pass over the mergeable input sections, and if they haven't * all been discarded, create a string table. */ mstrtab = NULL; for (APLIST_TRAVERSE(osp->os_mstrisdescs, idx, isp)) { if (isp->is_flags & FLG_IS_DISCARD) continue; /* * We have at least one non-discarded section. * Create a string table descriptor. */ if ((mstrtab = st_new(FLG_STNEW_COMPRESS)) == NULL) return (S_ERROR); break; } /* If no string table was created, we have no mergeable sections */ if (mstrtab == NULL) return (1); /* * This routine has to make 3 passes: * * 1) Examine all relocations, insert strings from relocations * to the mergable input sections into the string table. * 2) Modify the relocation values to be correct for the * new merged section. * 3) Modify the symbols used by the relocations to reference * the new section. * * These passes cannot be combined: * - The string table code works in two passes, and all * strings have to be loaded in pass one before the * offset of any strings can be determined. * - Multiple relocations reference a single symbol, so the * symbol cannot be modified until all relocations are * fixed. * * The number of relocations related to section merging is usually * a mere fraction of the overall active and output relocation lists, * and the number of symbols is usually a fraction of the number * of related relocations. We therefore build APlists for the * relocations and symbols in the first pass, and then use those * lists to accelerate the operation of pass 2 and 3. * * Reinitialize the lists to a completely empty state. */ aplist_reset(*rel_aplist); aplist_reset(*sym_aplist); /* * Pass 1: * * Every relocation related to this output section (and the input * sections that make it up) is found in either the active, or the * output relocation list, depending on whether the relocation is to * be processed by this invocation of the linker, or inserted into the * output object. * * Build lists of relocations and symbols that will need modification, * and insert the strings they reference into the mstrtab string table. */ if (strmerge_pass1(ofl, osp, mstrtab, rel_aplist, sym_aplist, &ofl->ofl_actrels) == 0) goto return_s_error; if (strmerge_pass1(ofl, osp, mstrtab, rel_aplist, sym_aplist, &ofl->ofl_outrels) == 0) goto return_s_error; /* * Get the size of the new input section. Requesting the * string table size "cooks" the table, and finalizes its contents. */ data_size = st_getstrtab_sz(mstrtab); /* Create a new input section to hold the merged strings */ if (new_section_from_template(ofl, isp, data_size, &mstrsec, &mstr_shdr, &mstr_data) == S_ERROR) goto return_s_error; mstrsec->is_flags |= FLG_IS_GNSTRMRG; /* * Allocate a data buffer for the new input section. * Then, associate the buffer with the string table descriptor. */ if ((mstr_data->d_buf = libld_malloc(data_size)) == 0) goto return_s_error; if (st_setstrbuf(mstrtab, mstr_data->d_buf, data_size) == -1) goto return_s_error; /* Add the new section to the output image */ if (ld_place_section(ofl, mstrsec, osp->os_scnsymndx, 0) == (Os_desc *)S_ERROR) goto return_s_error; /* * Pass 2: * * Revisit the relocation descriptors with STT_SECTION symbols * that were saved by the first pass. Update each relocation * record so that the offset it contains is for the new section * instead of the original. */ for (APLIST_TRAVERSE(*rel_aplist, idx, rsp)) { const char *name; /* Put the string into the merged string table */ name = strmerge_get_reloc_str(ofl, rsp); st_setstring_status = st_setstring(mstrtab, name, &stoff); if (st_setstring_status == -1) { /* * A failure to insert at this point means that * something is corrupt. This isn't a resource issue. */ assert(st_setstring_status != -1); goto return_s_error; } /* * Alter the relocation to access the string at the * new offset in our new string table. * * For SHT_RELA platforms, it suffices to simply * update the rel_raddend field of the relocation. * * For SHT_REL platforms, the new "addend" value * needs to be written at the address being relocated. * However, we can't alter the input sections which * are mapped readonly, and the output image has not * been created yet. So, we defer this operation, * using the rel_raddend field of the relocation * which is normally 0 on a REL platform, to pass the * new "addend" value to ld_perform_outreloc() or * ld_do_activerelocs(). The FLG_REL_NADDEND flag * tells them that this is the case. */ if ((rsp->rel_flags & FLG_REL_RELA) == 0) /* REL */ rsp->rel_flags |= FLG_REL_NADDEND; rsp->rel_raddend = (Sxword)stoff; /* * Change the descriptor name to reflect the fact that it * points at our merged section. This shows up in debug * output and helps show how the relocation has changed * from its original input section to our merged one. */ rsp->rel_sname = ld_section_reld_name(rsp->rel_sym, mstrsec); if (rsp->rel_sname == NULL) goto return_s_error; } /* * Pass 3: * * Modify the symbols referenced by the relocation descriptors * so that they reference the new input section containing the * merged strings instead of the original input sections. */ for (APLIST_TRAVERSE(*sym_aplist, idx, sdp)) { /* * If we've already processed this symbol, don't do it * twice. strmerge_pass1() uses a heuristic (relocations to * the same symbol clump together) to avoid inserting a * given symbol more than once, but repeat symbols in * the list can occur. */ if ((sdp->sd_isc->is_flags & FLG_IS_INSTRMRG) == 0) continue; if (ELF_ST_TYPE(sdp->sd_sym->st_info) != STT_SECTION) { /* * This is not an STT_SECTION symbol, so its * value is the offset of the string within the * input section. Update the address to reflect * the address in our new merged section. */ const char *name = sdp->sd_sym->st_value + (char *)sdp->sd_isc->is_indata->d_buf; st_setstring_status = st_setstring(mstrtab, name, &stoff); if (st_setstring_status == -1) { /* * A failure to insert at this point means * something is corrupt. This isn't a * resource issue. */ assert(st_setstring_status != -1); goto return_s_error; } if (ld_sym_copy(sdp) == S_ERROR) goto return_s_error; sdp->sd_sym->st_value = (Word)stoff; } /* Redirect the symbol to our new merged section */ sdp->sd_isc = mstrsec; } /* * There are no references left to the original input string sections. * Mark them as discarded so they don't go into the output image. * At the same time, add up the sizes of the replaced sections. */ data_size = 0; for (APLIST_TRAVERSE(osp->os_mstrisdescs, idx, isp)) { if (isp->is_flags & (FLG_IS_DISCARD | FLG_IS_GNSTRMRG)) continue; data_size += isp->is_indata->d_size; isp->is_flags |= FLG_IS_DISCARD; DBG_CALL(Dbg_sec_discarded(ofl->ofl_lml, isp, mstrsec)); } /* Report how much space we saved in the output section */ Dbg_sec_genstr_compress(ofl->ofl_lml, osp->os_name, data_size, mstr_data->d_size); st_destroy(mstrtab); return (1); return_s_error: st_destroy(mstrtab); return (S_ERROR); } /* * The following sections are built after all input file processing and symbol * validation has been carried out. The order is important (because the * addition of a section adds a new symbol there is a chicken and egg problem * of maintaining the appropriate counts). By maintaining a known order the * individual routines can compensate for later, known, additions. */ uintptr_t ld_make_sections(Ofl_desc *ofl) { ofl_flag_t flags = ofl->ofl_flags; Listnode *lnp1; Sg_desc *sgp; /* * Generate any special sections. */ if (flags & FLG_OF_ADDVERS) if (make_comment(ofl) == S_ERROR) return (S_ERROR); if (make_interp(ofl) == S_ERROR) return (S_ERROR); if (make_cap(ofl) == S_ERROR) return (S_ERROR); if (make_array(ofl, SHT_INIT_ARRAY, MSG_ORIG(MSG_SCN_INITARRAY), &ofl->ofl_initarray) == S_ERROR) return (S_ERROR); if (make_array(ofl, SHT_FINI_ARRAY, MSG_ORIG(MSG_SCN_FINIARRAY), &ofl->ofl_finiarray) == S_ERROR) return (S_ERROR); if (make_array(ofl, SHT_PREINIT_ARRAY, MSG_ORIG(MSG_SCN_PREINITARRAY), &ofl->ofl_preiarray) == S_ERROR) return (S_ERROR); /* * Make the .plt section. This occurs after any other relocation * sections are generated (see reloc_init()) to ensure that the * associated relocation section is after all the other relocation * sections. */ if ((ofl->ofl_pltcnt) || (ofl->ofl_pltpad)) if (make_plt(ofl) == S_ERROR) return (S_ERROR); /* * Determine whether any sections or files are not referenced. Under * -Dunused a diagnostic for any unused components is generated, under * -zignore the component is removed from the final output. */ if (DBG_ENABLED || (ofl->ofl_flags1 & FLG_OF1_IGNPRC)) { if (ignore_section_processing(ofl) == S_ERROR) return (S_ERROR); } /* * Do any of the output sections contain input sections that * are candidates for string table merging? For each such case, * we create a replacement section, insert it, and discard the * originals. * * rel_aplist and sym_aplist are used by ld_make_strmerge() * for its internal processing. We are responsible for the * initialization and cleanup, and ld_make_strmerge() handles the rest. * This allows us to reuse a single pair of memory buffers allocatated * for this processing for all the output sections. */ if ((ofl->ofl_flags1 & FLG_OF1_NCSTTAB) == 0) { int error_seen = 0; APlist *rel_aplist = NULL; APlist *sym_aplist = NULL; for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { Os_desc *osp; Aliste idx; for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) if ((osp->os_mstrisdescs != NULL) && (ld_make_strmerge(ofl, osp, &rel_aplist, &sym_aplist) == S_ERROR)) { error_seen = 1; break; } } if (rel_aplist != NULL) free(rel_aplist); if (sym_aplist != NULL) free(sym_aplist); if (error_seen != 0) return (S_ERROR); } /* * Add any necessary versioning information. */ if (!(flags & FLG_OF_NOVERSEC)) { if ((flags & FLG_OF_VERNEED) && (make_verneed(ofl) == S_ERROR)) return (S_ERROR); if ((flags & FLG_OF_VERDEF) && (make_verdef(ofl) == S_ERROR)) return (S_ERROR); if ((flags & (FLG_OF_VERNEED | FLG_OF_VERDEF)) && ((ofl->ofl_osversym = make_sym_sec(ofl, MSG_ORIG(MSG_SCN_SUNWVERSYM), SHT_SUNW_versym, ld_targ.t_id.id_version)) == (Os_desc*)S_ERROR)) return (S_ERROR); } /* * Create a syminfo section if necessary. */ if (flags & FLG_OF_SYMINFO) { if ((ofl->ofl_ossyminfo = make_sym_sec(ofl, MSG_ORIG(MSG_SCN_SUNWSYMINFO), SHT_SUNW_syminfo, ld_targ.t_id.id_syminfo)) == (Os_desc *)S_ERROR) return (S_ERROR); } if (flags & FLG_OF_COMREL) { /* * If -zcombreloc is enabled then all relocations (except for * the PLT's) are coalesced into a single relocation section. */ if (ofl->ofl_reloccnt) { if (make_reloc(ofl, NULL) == S_ERROR) return (S_ERROR); } } else { /* * Create the required output relocation sections. Note, new * sections may be added to the section list that is being * traversed. These insertions can move the elements of the * Alist such that a section descriptor is re-read. Recursion * is prevented by maintaining a previous section pointer and * insuring that this pointer isn't re-examined. */ for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { Os_desc *osp, *posp = 0; Aliste idx; for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) { if ((osp != posp) && osp->os_szoutrels && (osp != ofl->ofl_osplt)) { if (make_reloc(ofl, osp) == S_ERROR) return (S_ERROR); } posp = osp; } } /* * If we're not building a combined relocation section, then * build a .rel[a] section as required. */ if (ofl->ofl_relocrelsz) { if (make_reloc(ofl, NULL) == S_ERROR) return (S_ERROR); } } /* * The PLT relocations are always in their own section, and we try to * keep them at the end of the PLT table. We do this to keep the hot * "data" PLT's at the head of the table nearer the .dynsym & .hash. */ if (ofl->ofl_osplt && ofl->ofl_relocpltsz) { if (make_reloc(ofl, ofl->ofl_osplt) == S_ERROR) return (S_ERROR); } /* * Finally build the symbol and section header sections. */ if (flags & FLG_OF_DYNAMIC) { if (make_dynamic(ofl) == S_ERROR) return (S_ERROR); if (make_dynstr(ofl) == S_ERROR) return (S_ERROR); /* * There is no use for .hash and .dynsym sections in a * relocatable object. */ if (!(flags & FLG_OF_RELOBJ)) { if (make_hash(ofl) == S_ERROR) return (S_ERROR); if (make_dynsym(ofl) == S_ERROR) return (S_ERROR); #if defined(_ELF64) if ((ld_targ.t_uw.uw_make_unwindhdr != NULL) && ((*ld_targ.t_uw.uw_make_unwindhdr)(ofl) == S_ERROR)) return (S_ERROR); #endif if (make_dynsort(ofl) == S_ERROR) return (S_ERROR); } } if (!(flags & FLG_OF_STRIP) || (flags & FLG_OF_RELOBJ) || ((flags & FLG_OF_STATIC) && ofl->ofl_osversym)) { /* * Do we need to make a SHT_SYMTAB_SHNDX section * for the dynsym. If so - do it now. */ if (ofl->ofl_osdynsym && ((ofl->ofl_shdrcnt + 3) >= SHN_LORESERVE)) { if (make_dynsym_shndx(ofl) == S_ERROR) return (S_ERROR); } if (make_strtab(ofl) == S_ERROR) return (S_ERROR); if (make_symtab(ofl) == S_ERROR) return (S_ERROR); } else { /* * Do we need to make a SHT_SYMTAB_SHNDX section * for the dynsym. If so - do it now. */ if (ofl->ofl_osdynsym && ((ofl->ofl_shdrcnt + 1) >= SHN_LORESERVE)) { if (make_dynsym_shndx(ofl) == S_ERROR) return (S_ERROR); } } if (make_shstrtab(ofl) == S_ERROR) return (S_ERROR); /* * Now that we've created all of our sections adjust the size * of SHT_SUNW_versym & SHT_SUNW_syminfo which are dependent on * the symbol table sizes. */ if (ofl->ofl_osversym || ofl->ofl_ossyminfo) { Shdr *shdr; Is_desc *isec; Elf_Data *data; size_t size; ulong_t cnt; Os_desc *osp; if (flags & (FLG_OF_RELOBJ | FLG_OF_STATIC)) { osp = ofl->ofl_ossymtab; } else { osp = ofl->ofl_osdynsym; } isec = (Is_desc *)osp->os_isdescs.head->data; cnt = (isec->is_shdr->sh_size / isec->is_shdr->sh_entsize); if (ofl->ofl_osversym) { osp = ofl->ofl_osversym; isec = (Is_desc *)osp->os_isdescs.head->data; data = isec->is_indata; shdr = osp->os_shdr; size = cnt * shdr->sh_entsize; shdr->sh_size = (Xword)size; data->d_size = size; } if (ofl->ofl_ossyminfo) { osp = ofl->ofl_ossyminfo; isec = (Is_desc *)osp->os_isdescs.head->data; data = isec->is_indata; shdr = osp->os_shdr; size = cnt * shdr->sh_entsize; shdr->sh_size = (Xword)size; data->d_size = size; } } return (1); } /* * Build an additional data section - used to back OBJT symbol definitions * added with a mapfile. */ Is_desc * ld_make_data(Ofl_desc *ofl, size_t size) { Shdr *shdr; Elf_Data *data; Is_desc *isec; if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_DATA), 0, &isec, &shdr, &data) == S_ERROR) return ((Is_desc *)S_ERROR); data->d_size = size; shdr->sh_size = (Xword)size; shdr->sh_flags |= SHF_WRITE; if (ld_place_section(ofl, isec, ld_targ.t_id.id_data, 0) == (Os_desc *)S_ERROR) return ((Is_desc *)S_ERROR); return (isec); } /* * Build an additional text section - used to back FUNC symbol definitions * added with a mapfile. */ Is_desc * ld_make_text(Ofl_desc *ofl, size_t size) { Shdr *shdr; Elf_Data *data; Is_desc *isec; /* * Insure the size is sufficient to contain the minimum return * instruction. */ if (size < ld_targ.t_nf.nf_size) size = ld_targ.t_nf.nf_size; if (new_section(ofl, SHT_PROGBITS, MSG_ORIG(MSG_SCN_TEXT), 0, &isec, &shdr, &data) == S_ERROR) return ((Is_desc *)S_ERROR); data->d_size = size; shdr->sh_size = (Xword)size; shdr->sh_flags |= SHF_EXECINSTR; /* * Fill the buffer with the appropriate return instruction. * Note that there is no need to swap bytes on a non-native, * link, as the data being copied is given in bytes. */ if ((data->d_buf = libld_calloc(size, 1)) == 0) return ((Is_desc *)S_ERROR); (void) memcpy(data->d_buf, ld_targ.t_nf.nf_template, ld_targ.t_nf.nf_size); if (ld_place_section(ofl, isec, ld_targ.t_id.id_text, 0) == (Os_desc *)S_ERROR) return ((Is_desc *)S_ERROR); return (isec); }