/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2015, Joyent, Inc. All rights reserved. */ /* * Dump an elf file. */ #include #include #include #include #include <_libelf.h> #include #include #include #include #include #include #include #include #include <_elfdump.h> /* * VERSYM_STATE is used to maintain information about the VERSYM section * in the object being analyzed. It is filled in by versions(), and used * by init_symtbl_state() when displaying symbol information. * * There are three forms of symbol versioning known to us: * * 1) The original form, introduced with Solaris 2.5, in which * the Versym contains indexes to Verdef records, and the * Versym values for UNDEF symbols resolved by other objects * are all set to 0. * 2) The GNU form, which is backward compatible with the original * Solaris form, but which adds several extensions: * - The Versym also contains indexes to Verneed records, recording * which object/version contributed the external symbol at * link time. These indexes start with the next value following * the final Verdef index. The index is written to the previously * reserved vna_other field of the ELF Vernaux structure. * - The top bit of the Versym value is no longer part of the index, * but is used as a "hidden bit" to prevent binding to the symbol. * - Multiple implementations of a given symbol, contained in varying * versions are allowed, using special assembler pseudo ops, * and encoded in the symbol name using '@' characters. * 3) Modified Solaris form, in which we adopt the first GNU extension * (Versym indexes to Verneed records), but not the others. * * elfdump can handle any of these cases. The presence of a DT_VERSYM * dynamic element indicates a full GNU object. An object that lacks * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux * structures is a modified Solaris object. An object that has neither of * these uses the original form. * * max_verndx contains the largest version index that can appear * in a Versym entry. This can never be less than 1: In the case where * there is no verdef/verneed sections, the [0] index is reserved * for local symbols, and the [1] index for globals. If the original * Solaris versioning rules are in effect and there is a verdef section, * then max_verndex is the number of defined versions. If one of the * other versioning forms is in effect, then: * 1) If there is no verneed section, it is the same as for * original Solaris versioning. * 2) If there is a verneed section, the vna_other field of the * Vernaux structs contain versions, and max_verndx is the * largest such index. * * If gnu_full is True, the object uses the full GNU form of versioning. * The value of the gnu_full field is based on the presence of * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and * Solaris ld does not. * * The gnu_needed field is True if the Versym contains indexes to * Verneed records, as indicated by non-zero vna_other fields in the Verneed * section. If gnu_full is True, then gnu_needed will always be true. * However, gnu_needed can be true without gnu_full. This is the modified * Solaris form. */ typedef struct { Cache *cache; /* Pointer to cache entry for VERSYM */ Versym *data; /* Pointer to versym array */ int gnu_full; /* True if object uses GNU versioning rules */ int gnu_needed; /* True if object uses VERSYM indexes for */ /* VERNEED (subset of gnu_full) */ int max_verndx; /* largest versym index value */ } VERSYM_STATE; /* * SYMTBL_STATE is used to maintain information about a single symbol * table section, for use by the routines that display symbol information. */ typedef struct { const char *file; /* Name of file */ Ehdr *ehdr; /* ELF header for file */ Cache *cache; /* Cache of all section headers */ uchar_t osabi; /* OSABI to use */ Word shnum; /* # of sections in cache */ Cache *seccache; /* Cache of symbol table section hdr */ Word secndx; /* Index of symbol table section hdr */ const char *secname; /* Name of section */ uint_t flags; /* Command line option flags */ struct { /* Extended section index data */ int checked; /* TRUE if already checked for shxndx */ Word *data; /* NULL, or extended section index */ /* used for symbol table entries */ uint_t n; /* # items in shxndx.data */ } shxndx; VERSYM_STATE *versym; /* NULL, or associated VERSYM section */ Sym *sym; /* Array of symbols */ Word symn; /* # of symbols */ } SYMTBL_STATE; /* * A variable of this type is used to track information related to * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame(). */ typedef struct { Word frame_cnt; /* # .eh_frame sections seen */ Word frame_ndx; /* Section index of 1st .eh_frame */ Word hdr_cnt; /* # .eh_frame_hdr sections seen */ Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */ uint64_t frame_ptr; /* Value of FramePtr field from first */ /* .eh_frame_hdr section */ uint64_t frame_base; /* Data addr of 1st .eh_frame */ } gnu_eh_state_t; /* * C++ .exception_ranges entries make use of the signed ptrdiff_t * type to record self-relative pointer values. We need a type * for this that is matched to the ELFCLASS being processed. */ #if defined(_ELF64) typedef int64_t PTRDIFF_T; #else typedef int32_t PTRDIFF_T; #endif /* * The Sun C++ ABI uses this struct to define each .exception_ranges * entry. From the ABI: * * The field ret_addr is a self relative pointer to the start of the address * range. The name was chosen because in the current implementation the range * typically starts at the return address for a call site. * * The field length is the difference, in bytes, between the pc of the last * instruction covered by the exception range and the first. When only a * single call site is represented without optimization, this will equal zero. * * The field handler_addr is a relative pointer which stores the difference * between the start of the exception range and the address of all code to * catch exceptions and perform the cleanup for stack unwinding. * * The field type_block is a relative pointer which stores the difference * between the start of the exception range and the address of an array used * for storing a list of the types of exceptions which can be caught within * the exception range. */ typedef struct { PTRDIFF_T ret_addr; Xword length; PTRDIFF_T handler_addr; PTRDIFF_T type_block; Xword reserved; } exception_range_entry; /* * Focal point for verifying symbol names. */ static const char * string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name) { /* * If an error in this routine is due to a property of the string * section, as opposed to a bad offset into the section (a property of * the referencing section), then we will detect the same error on * every call involving those sections. We use these static variables * to retain the information needed to only issue each such error once. */ static Cache *last_refsec; /* Last referencing section seen */ static int strsec_err; /* True if error issued */ const char *strs; Word strn; if ((strsec->c_data == NULL) || (strsec->c_data->d_buf == NULL)) return (NULL); strs = (char *)strsec->c_data->d_buf; strn = strsec->c_data->d_size; /* * We only print a diagnostic regarding a bad string table once per * input section being processed. If the refsec has changed, reset * our retained error state. */ if (last_refsec != refsec) { last_refsec = refsec; strsec_err = 0; } /* Verify that strsec really is a string table */ if (strsec->c_shdr->sh_type != SHT_STRTAB) { if (!strsec_err) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB), file, strsec->c_ndx, refsec->c_ndx); strsec_err = 1; } return (MSG_INTL(MSG_STR_UNKNOWN)); } /* * Is the string table offset within range of the available strings? */ if (name >= strn) { /* * Do we have a empty string table? */ if (strs == NULL) { if (!strsec_err) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, strsec->c_name); strsec_err = 1; } } else { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF), file, refsec->c_name, EC_WORD(ndx), strsec->c_name, EC_WORD(name), EC_WORD(strn - 1)); } /* * Return the empty string so that the calling function can * continue it's output diagnostics. */ return (MSG_INTL(MSG_STR_UNKNOWN)); } return (strs + name); } /* * Relocations can reference section symbols and standard symbols. If the * former, establish the section name. */ static const char * relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum, Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file) { Sym *sym; const char *name; if (symndx >= symnum) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX), file, EC_WORD(symndx), EC_WORD(relndx)); return (MSG_INTL(MSG_STR_UNKNOWN)); } sym = (Sym *)(syms + symndx); name = string(csec, symndx, strsec, file, sym->st_name); /* * If the symbol represents a section offset construct an appropriate * string. Note, although section symbol table entries typically have * a NULL name pointer, entries do exist that point into the string * table to their own NULL strings. */ if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && ((sym->st_name == 0) || (*name == '\0'))) { (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION), cache[sym->st_shndx].c_name); return ((const char *)secstr); } return (name); } /* * Focal point for establishing a string table section. Data such as the * dynamic information simply points to a string table. Data such as * relocations, reference a symbol table, which in turn is associated with a * string table. */ static int stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file, Word *symnum, Cache **symsec, Cache **strsec) { Shdr *shdr = cache[ndx].c_shdr; /* * If symtab is non-zero, the ndx we are called with represents a * shdr which links to a symbol table (which then links to a string * table) */ if (symtab != 0) { /* * Validate the symbol table linkage. */ if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); return (0); } /* * Establish the symbol table index. */ ndx = shdr->sh_link; shdr = cache[ndx].c_shdr; if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, cache[ndx].c_name); return (0); } /* * Obtain, and verify the symbol table data. */ if ((cache[ndx].c_data == NULL) || (cache[ndx].c_data->d_buf == NULL)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, cache[ndx].c_name); return (0); } /* * Return symbol table information. */ if (symnum) *symnum = (shdr->sh_size / shdr->sh_entsize); if (symsec) *symsec = &cache[ndx]; } /* * Validate the string table linkage. */ if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, cache[ndx].c_name, EC_WORD(shdr->sh_link)); return (0); } if (strsec) *strsec = &cache[shdr->sh_link]; return (1); } /* * Lookup a symbol and set Sym accordingly. * * entry: * name - Name of symbol to lookup * cache - Cache of all section headers * shnum - # of sections in cache * sym - Address of pointer to receive symbol * target - NULL, or section to which the symbol must be associated. * symtab - Symbol table to search for symbol * file - Name of file * * exit: * If the symbol is found, *sym is set to reference it, and True is * returned. If target is non-NULL, the symbol must reference the given * section --- otherwise the section is not checked. * * If no symbol is found, False is returned. */ static int symlookup(const char *name, Cache *cache, Word shnum, Sym **sym, Cache *target, Cache *symtab, const char *file) { Shdr *shdr; Word symn, cnt; Sym *syms; if (symtab == 0) return (0); shdr = symtab->c_shdr; /* * Determine the symbol data and number. */ if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, symtab->c_name); return (0); } if ((symtab->c_data == NULL) || (symtab->c_data->d_buf == NULL)) return (0); /* LINTED */ symn = (Word)(shdr->sh_size / shdr->sh_entsize); syms = (Sym *)symtab->c_data->d_buf; /* * Get the associated string table section. */ if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, symtab->c_name, EC_WORD(shdr->sh_link)); return (0); } /* * Loop through the symbol table to find a match. */ *sym = NULL; for (cnt = 0; cnt < symn; syms++, cnt++) { const char *symname; symname = string(symtab, cnt, &cache[shdr->sh_link], file, syms->st_name); if (symname && (strcmp(name, symname) == 0) && ((target == NULL) || (target->c_ndx == syms->st_shndx))) { /* * It is possible, though rare, for a local and * global symbol of the same name to exist, each * contributed by a different input object. If the * symbol just found is local, remember it, but * continue looking. */ *sym = syms; if (ELF_ST_BIND(syms->st_info) != STB_LOCAL) break; } } return (*sym != NULL); } /* * Print section headers. */ static void sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi) { size_t seccnt; for (seccnt = 1; seccnt < shnum; seccnt++) { Cache *_cache = &cache[seccnt]; Shdr *shdr = _cache->c_shdr; const char *secname = _cache->c_name; /* * Although numerous section header entries can be zero, it's * usually a sign of trouble if the type is zero. */ if (shdr->sh_type == 0) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE), file, secname, EC_WORD(shdr->sh_type)); } if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type)) continue; /* * Identify any sections that are suspicious. A .got section * shouldn't exist in a relocatable object. */ if (ehdr->e_type == ET_REL) { if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT), MSG_ELF_GOT_SIZE) == 0) { (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file, secname); } } dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname); Elf_shdr(0, osabi, ehdr->e_machine, shdr); } } /* * Obtain a specified Phdr entry. */ static Phdr * getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf, size_t *phndx) { Word cnt, tcnt; Phdr *phdr; if (phndx != NULL) *phndx = 0; if ((phdr = elf_getphdr(elf)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); return (NULL); } for (cnt = 0; cnt < phnum; phdr++, cnt++) { for (tcnt = 0; tcnt < type_cnt; tcnt++) { if (phdr->p_type == type_arr[tcnt]) { if (phndx != NULL) { *phndx = cnt; } return (phdr); } } } return (NULL); } /* * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr * sections. * * entry: * cache - Cache of all section headers * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed * shnum - Total number of sections which exist * uphdr - NULL, or unwind program header associated with * the .eh_frame_hdr section. * ehdr - ELF header for file * eh_state - Data used across calls to this routine. The * caller should zero it before the first call, and * pass it on every call. * osabi - OSABI to use in displaying information * file - Name of file * flags - Command line option flags */ static void unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr, gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags) { #if defined(_ELF64) #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64 #else #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32 #endif Cache *_cache = &cache[shndx]; Shdr *shdr = _cache->c_shdr; uchar_t *data = (uchar_t *)(_cache->c_data->d_buf); size_t datasize = _cache->c_data->d_size; Conv_dwarf_ehe_buf_t dwarf_ehe_buf; uint64_t ndx, frame_ptr, fde_cnt, tabndx; uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc; uint64_t initloc, initloc0 = 0; uint64_t gotaddr = 0; int cnt; for (cnt = 1; cnt < shnum; cnt++) { if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), MSG_ELF_GOT_SIZE) == 0) { gotaddr = cache[cnt].c_shdr->sh_addr; break; } } if ((data == NULL) || (datasize == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, _cache ->c_name); return; } /* * Is this a .eh_frame_hdr? */ if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) || (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR), MSG_SCN_FRMHDR_SIZE) == 0)) { /* * There can only be a single .eh_frame_hdr. * Flag duplicates. */ if (++eh_state->hdr_cnt > 1) (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR), file, EC_WORD(shndx), _cache->c_name); dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR)); ndx = 0; vers = data[ndx++]; frame_ptr_enc = data[ndx++]; fde_cnt_enc = data[ndx++]; table_enc = data[ndx++]; dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers); switch (dwarf_ehe_extract(data, datasize, &ndx, &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr)) { case DW_OVERFLOW: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), file, _cache->c_name); return; case DW_BAD_ENCODING: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), file, _cache->c_name, frame_ptr_enc); return; case DW_SUCCESS: break; } if (eh_state->hdr_cnt == 1) { eh_state->hdr_ndx = shndx; eh_state->frame_ptr = frame_ptr; } dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC), conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf), EC_XWORD(frame_ptr)); switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt, fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr)) { case DW_OVERFLOW: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), file, _cache->c_name); return; case DW_BAD_ENCODING: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), file, _cache->c_name, fde_cnt_enc); return; case DW_SUCCESS: break; } dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC), conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf), EC_XWORD(fde_cnt)); dbg_print(0, MSG_ORIG(MSG_UNW_TABENC), conv_dwarf_ehe(table_enc, &dwarf_ehe_buf)); dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1)); dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2)); for (tabndx = 0; tabndx < fde_cnt; tabndx++) { uint64_t table; switch (dwarf_ehe_extract(data, datasize, &ndx, &initloc, table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr)) { case DW_OVERFLOW: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), file, _cache->c_name); return; case DW_BAD_ENCODING: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), file, _cache->c_name, table_enc); return; case DW_SUCCESS: break; } if ((tabndx != 0) && (initloc0 > initloc)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT), file, _cache->c_name, EC_WORD(tabndx)); switch (dwarf_ehe_extract(data, datasize, &ndx, &table, table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr)) { case DW_OVERFLOW: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW), file, _cache->c_name); return; case DW_BAD_ENCODING: (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC), file, _cache->c_name, table_enc); return; case DW_SUCCESS: break; } dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT), EC_XWORD(initloc), EC_XWORD(table)); initloc0 = initloc; } } else { /* Display the .eh_frame section */ eh_state->frame_cnt++; if (eh_state->frame_cnt == 1) { eh_state->frame_ndx = shndx; eh_state->frame_base = shdr->sh_addr; } else if ((eh_state->frame_cnt > 1) && (ehdr->e_type != ET_REL)) { Conv_inv_buf_t inv_buf; (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM), file, EC_WORD(shndx), _cache->c_name, conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf)); } dump_eh_frame(file, _cache->c_name, data, datasize, shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr); } /* * If we've seen the .eh_frame_hdr and the first .eh_frame section, * compare the header frame_ptr to the address of the actual frame * section to ensure the link-editor got this right. Note, this * diagnostic is only produced when unwind information is explicitly * asked for, as shared objects built with an older ld(1) may reveal * this inconsistency. Although an inconsistency, it doesn't seem to * have any adverse effect on existing tools. */ if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) && (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) && (eh_state->frame_ptr != eh_state->frame_base)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR), file, EC_WORD(eh_state->hdr_ndx), cache[eh_state->hdr_ndx].c_name, EC_XWORD(eh_state->frame_ptr), EC_WORD(eh_state->frame_ndx), cache[eh_state->frame_ndx].c_name, EC_XWORD(eh_state->frame_base)); #undef MSG_UNW_BINSRTAB2 #undef MSG_UNW_BINSRTABENT } /* * Convert a self relative pointer into an address. A self relative * pointer adds the address where the pointer resides to the offset * contained in the pointer. The benefit is that the value of the * pointer does not require relocation. * * entry: * base_addr - Address of the pointer. * delta - Offset relative to base_addr giving desired address * * exit: * The computed address is returned. * * note: * base_addr is an unsigned value, while ret_addr is signed. This routine * used explicit testing and casting to explicitly control type * conversion, and ensure that we handle the maximum possible range. */ static Addr srelptr(Addr base_addr, PTRDIFF_T delta) { if (delta < 0) return (base_addr - (Addr) (-delta)); return (base_addr + (Addr) delta); } /* * Byte swap a PTRDIFF_T value. */ static PTRDIFF_T swap_ptrdiff(PTRDIFF_T value) { PTRDIFF_T r; uchar_t *dst = (uchar_t *)&r; uchar_t *src = (uchar_t *)&value; UL_ASSIGN_BSWAP_XWORD(dst, src); return (r); } /* * Display exception_range_entry items from the .exception_ranges section * of a Sun C++ object. */ static void unwind_exception_ranges(Cache *_cache, const char *file, int do_swap) { /* * Translate a PTRDIFF_T self-relative address field of * an exception_range_entry struct into an address. * * entry: * exc_addr - Address of base of exception_range_entry struct * cur_ent - Pointer to data in the struct to be translated * * _f - Field of struct to be translated */ #define SRELPTR(_f) \ srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f) #if defined(_ELF64) #define MSG_EXR_TITLE MSG_EXR_TITLE_64 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64 #else #define MSG_EXR_TITLE MSG_EXR_TITLE_32 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32 #endif exception_range_entry scratch, *ent, *cur_ent = &scratch; char index[MAXNDXSIZE]; Word i, nelts; Addr addr, addr0 = 0, offset = 0; Addr exc_addr = _cache->c_shdr->sh_addr; dbg_print(0, MSG_INTL(MSG_EXR_TITLE)); ent = (exception_range_entry *)(_cache->c_data->d_buf); nelts = _cache->c_data->d_size / sizeof (exception_range_entry); for (i = 0; i < nelts; i++, ent++) { if (do_swap) { /* * Copy byte swapped values into the scratch buffer. * The reserved field is not used, so we skip it. */ scratch.ret_addr = swap_ptrdiff(ent->ret_addr); scratch.length = BSWAP_XWORD(ent->length); scratch.handler_addr = swap_ptrdiff(ent->handler_addr); scratch.type_block = swap_ptrdiff(ent->type_block); } else { cur_ent = ent; } /* * The table is required to be sorted by the address * derived from ret_addr, to allow binary searching. Ensure * that addresses grow monotonically. */ addr = SRELPTR(ret_addr); if ((i != 0) && (addr0 > addr)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT), file, _cache->c_name, EC_WORD(i)); (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(i)); dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset), EC_ADDR(addr), EC_ADDR(cur_ent->length), EC_ADDR(SRELPTR(handler_addr)), EC_ADDR(SRELPTR(type_block))); addr0 = addr; exc_addr += sizeof (exception_range_entry); offset += sizeof (exception_range_entry); } #undef SRELPTR #undef MSG_EXR_TITLE #undef MSG_EXR_ENTRY } /* * For program headers which reflect a single section, check that their values * and that of the section match. */ static void check_phdr_v_shdr(Phdr *phdr, size_t phndx, uchar_t osabi, Half mach, Cache *cache, const char *file) { Conv_inv_buf_t inv_buf; #define CHECK(str, pfield, sfield) \ if (phdr->pfield != cache->c_shdr->sfield) { \ fprintf(stderr, MSG_INTL(MSG_SHDR_PHDR_MISMATCH), \ file, \ cache->c_ndx, \ cache->c_name, \ str, \ conv_phdr_type(osabi, mach, phdr->p_type, \ CONV_FMT_ALT_CF, &inv_buf), \ #sfield, \ cache->c_shdr->sfield, \ phndx, \ #pfield, \ phdr->pfield); \ } CHECK(MSG_INTL(MSG_STR_VADDR), p_vaddr, sh_addr); CHECK(MSG_INTL(MSG_STR_OFFSET), p_offset, sh_offset); CHECK(MSG_INTL(MSG_STR_FILESIZE), p_filesz, sh_size); CHECK(MSG_INTL(MSG_STR_MEMSIZE), p_memsz, sh_size); CHECK(MSG_INTL(MSG_STR_ALIGNMENT), p_align, sh_addralign); #undef CHECK } /* * Display information from unwind/exception sections: * * - GNU/amd64 .eh_frame and .eh_frame_hdr * - Sun C++ .exception_ranges * */ static void unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi, const char *file, Elf *elf, uint_t flags) { static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME }; Word cnt; Phdr *uphdr = NULL; size_t phndx; gnu_eh_state_t eh_state; /* * Historical background: .eh_frame and .eh_frame_hdr sections * come from the GNU compilers (particularly C++), and are used * under all architectures. Their format is based on DWARF. When * the amd64 ABI was defined, these sections were adopted wholesale * from the existing practice. * * When amd64 support was added to Solaris, support for these * sections was added, using the SHT_AMD64_UNWIND section type * to identify them. At first, we ignored them in objects for * non-amd64 targets, but later broadened our support to include * other architectures in order to better support gcc-generated * objects. * * .exception_ranges implement the same basic concepts, but * were invented at Sun for the Sun C++ compiler. * * We match these sections by name, rather than section type, * because they can come in as either SHT_AMD64_UNWIND, or as * SHT_PROGBITS, and because the type isn't enough to determine * how they should be interpreted. */ /* Find the program header for .eh_frame_hdr if present */ if (phnum) { uphdr = getphdr(phnum, phdr_types, sizeof (phdr_types) / sizeof (*phdr_types), file, elf, &phndx); } /* * eh_state is used to retain data used by unwind_eh_frame() * across calls. */ bzero(&eh_state, sizeof (eh_state)); for (cnt = 1; cnt < shnum; cnt++) { Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; int is_exrange; /* * Skip sections of the wrong type. On amd64, they * can be SHT_AMD64_UNWIND. On all platforms, they * can be SHT_PROGBITS (including amd64, if using * the GNU compilers). * * Skip anything other than these two types. The name * test below will thin out the SHT_PROGBITS that don't apply. */ if ((shdr->sh_type != SHT_PROGBITS) && (shdr->sh_type != SHT_AMD64_UNWIND)) continue; /* * Only sections with certain well known names are of interest. * These are: * * .eh_frame - amd64/GNU-compiler unwind sections * .eh_frame_hdr - Sorted table referencing .eh_frame * .exception_ranges - Sun C++ unwind sections * * We do a prefix comparison, allowing for naming conventions * like .eh_frame.foo, hence the use of strncmp() rather than * strcmp(). This means that we only really need to test for * .eh_frame, as it's a prefix of .eh_frame_hdr. */ is_exrange = strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0; if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM), MSG_SCN_FRM_SIZE) != 0) && !is_exrange) continue; if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) continue; if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name); if (is_exrange) { unwind_exception_ranges(_cache, file, _elf_sys_encoding() != ehdr->e_ident[EI_DATA]); } else { if ((uphdr != NULL) && (strcmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR)) == 0)) { check_phdr_v_shdr(uphdr, phndx, osabi, ehdr->e_machine, _cache, file); } unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr, &eh_state, osabi, file, flags); } } } /* * Initialize a symbol table state structure * * entry: * state - State structure to be initialized * cache - Cache of all section headers * shnum - # of sections in cache * secndx - Index of symbol table section * ehdr - ELF header for file * versym - Information about versym section * file - Name of file * flags - Command line option flags */ static int init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx, Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file, uint_t flags) { Shdr *shdr; state->file = file; state->ehdr = ehdr; state->cache = cache; state->osabi = osabi; state->shnum = shnum; state->seccache = &cache[secndx]; state->secndx = secndx; state->secname = state->seccache->c_name; state->flags = flags; state->shxndx.checked = 0; state->shxndx.data = NULL; state->shxndx.n = 0; shdr = state->seccache->c_shdr; /* * Check the symbol data and per-item size. */ if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, state->secname); return (0); } if ((state->seccache->c_data == NULL) || (state->seccache->c_data->d_buf == NULL)) return (0); /* LINTED */ state->symn = (Word)(shdr->sh_size / shdr->sh_entsize); state->sym = (Sym *)state->seccache->c_data->d_buf; /* * Check associated string table section. */ if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, state->secname, EC_WORD(shdr->sh_link)); return (0); } /* * Determine if there is a associated Versym section * with this Symbol Table. */ if (versym && versym->cache && (versym->cache->c_shdr->sh_link == state->secndx)) state->versym = versym; else state->versym = NULL; return (1); } /* * Determine the extended section index used for symbol tables entries. */ static void symbols_getxindex(SYMTBL_STATE *state) { uint_t symn; Word symcnt; state->shxndx.checked = 1; /* Note that we've been called */ for (symcnt = 1; symcnt < state->shnum; symcnt++) { Cache *_cache = &state->cache[symcnt]; Shdr *shdr = _cache->c_shdr; if ((shdr->sh_type != SHT_SYMTAB_SHNDX) || (shdr->sh_link != state->secndx)) continue; if (shdr->sh_entsize == 0) symn = 0; else symn = (uint_t)(shdr->sh_size / shdr->sh_entsize); if (symn == 0) continue; if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; state->shxndx.data = _cache->c_data->d_buf; state->shxndx.n = symn; return; } } /* * Produce a line of output for the given symbol * * entry: * state - Symbol table state * symndx - Index of symbol within the table * info - Value of st_info (indicates local/global range) * symndx_disp - Index to display. This may not be the same * as symndx if the display is relative to the logical * combination of the SUNW_ldynsym/dynsym tables. * sym - Symbol to display */ static void output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx, Sym *sym) { /* * Symbol types for which we check that the specified * address/size land inside the target section. */ static const int addr_symtype[] = { 0, /* STT_NOTYPE */ 1, /* STT_OBJECT */ 1, /* STT_FUNC */ 0, /* STT_SECTION */ 0, /* STT_FILE */ 1, /* STT_COMMON */ 0, /* STT_TLS */ 0, /* 7 */ 0, /* 8 */ 0, /* 9 */ 0, /* 10 */ 0, /* 11 */ 0, /* 12 */ 0, /* STT_SPARC_REGISTER */ 0, /* 14 */ 0, /* 15 */ }; #if STT_NUM != (STT_TLS + 1) #error "STT_NUM has grown. Update addr_symtype[]" #endif char index[MAXNDXSIZE]; const char *symname, *sec; Versym verndx; int gnuver; uchar_t type; Shdr *tshdr; Word shndx = 0; Conv_inv_buf_t inv_buf; /* Ensure symbol index is in range */ if (symndx >= state->symn) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX), state->file, state->secname, EC_WORD(symndx)); return; } /* * If we are using extended symbol indexes, find the * corresponding SHN_SYMTAB_SHNDX table. */ if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0)) symbols_getxindex(state); /* LINTED */ symname = string(state->seccache, symndx, &state->cache[state->seccache->c_shdr->sh_link], state->file, sym->st_name); tshdr = NULL; sec = NULL; if (state->ehdr->e_type == ET_CORE) { sec = (char *)MSG_INTL(MSG_STR_UNKNOWN); } else if (state->flags & FLG_CTL_FAKESHDR) { /* * If we are using fake section headers derived from * the program headers, then the section indexes * in the symbols do not correspond to these headers. * The section names are not available, so all we can * do is to display them in numeric form. */ sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine, sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf); } else if ((sym->st_shndx < SHN_LORESERVE) && (sym->st_shndx < state->shnum)) { shndx = sym->st_shndx; tshdr = state->cache[shndx].c_shdr; sec = state->cache[shndx].c_name; } else if (sym->st_shndx == SHN_XINDEX) { if (state->shxndx.data) { Word _shxndx; if (symndx > state->shxndx.n) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMXINDEX1), state->file, state->secname, EC_WORD(symndx)); } else if ((_shxndx = state->shxndx.data[symndx]) > state->shnum) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMXINDEX2), state->file, state->secname, EC_WORD(symndx), EC_WORD(_shxndx)); } else { shndx = _shxndx; tshdr = state->cache[shndx].c_shdr; sec = state->cache[shndx].c_name; } } else { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMXINDEX3), state->file, state->secname, EC_WORD(symndx)); } } else if ((sym->st_shndx < SHN_LORESERVE) && (sym->st_shndx >= state->shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYM5), state->file, state->secname, EC_WORD(symndx), demangle(symname, state->flags), sym->st_shndx); } /* * If versioning is available display the * version index. If not, then use 0. */ if (state->versym) { Versym test_verndx; verndx = test_verndx = state->versym->data[symndx]; gnuver = state->versym->gnu_full; /* * Check to see if this is a defined symbol with a * version index that is outside the valid range for * the file. The interpretation of this depends on * the style of versioning used by the object. * * Versions >= VER_NDX_LORESERVE have special meanings, * and are exempt from this checking. * * GNU style version indexes use the top bit of the * 16-bit index value (0x8000) as the "hidden bit". * We must mask off this bit in order to compare * the version against the maximum value. */ if (gnuver) test_verndx &= ~0x8000; if ((test_verndx > state->versym->max_verndx) && (verndx < VER_NDX_LORESERVE)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER), state->file, state->secname, EC_WORD(symndx), EC_HALF(test_verndx), state->versym->max_verndx); } else { verndx = 0; gnuver = 0; } /* * Error checking for TLS. */ type = ELF_ST_TYPE(sym->st_info); if (type == STT_TLS) { if (tshdr && (sym->st_shndx != SHN_UNDEF) && ((tshdr->sh_flags & SHF_TLS) == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYM3), state->file, state->secname, EC_WORD(symndx), demangle(symname, state->flags)); } } else if ((type != STT_SECTION) && sym->st_size && tshdr && (tshdr->sh_flags & SHF_TLS)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYM4), state->file, state->secname, EC_WORD(symndx), demangle(symname, state->flags)); } /* * If a symbol with non-zero size has a type that * specifies an address, then make sure the location * it references is actually contained within the * section. UNDEF symbols don't count in this case, * so we ignore them. * * The meaning of the st_value field in a symbol * depends on the type of object. For a relocatable * object, it is the offset within the section. * For sharable objects, it is the offset relative to * the base of the object, and for other types, it is * the virtual address. To get an offset within the * section for non-ET_REL files, we subtract the * base address of the section. */ if (addr_symtype[type] && (sym->st_size > 0) && (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) || (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) { Word v = sym->st_value; if (state->ehdr->e_type != ET_REL) v -= tshdr->sh_addr; if (((v + sym->st_size) > tshdr->sh_size)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYM6), state->file, state->secname, EC_WORD(symndx), demangle(symname, state->flags), EC_WORD(shndx), EC_XWORD(tshdr->sh_size), EC_XWORD(sym->st_value), EC_XWORD(sym->st_size)); } } /* * A typical symbol table uses the sh_info field to indicate one greater * than the symbol table index of the last local symbol, STB_LOCAL. * Therefore, symbol indexes less than sh_info should have local * binding. Symbol indexes greater than, or equal to sh_info, should * have global binding. Note, we exclude UNDEF/NOTY symbols with zero * value and size, as these symbols may be the result of an mcs(1) * section deletion. */ if (info) { uchar_t bind = ELF_ST_BIND(sym->st_info); if ((symndx < info) && (bind != STB_LOCAL)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYM7), state->file, state->secname, EC_WORD(symndx), demangle(symname, state->flags), EC_XWORD(info)); } else if ((symndx >= info) && (bind == STB_LOCAL) && ((sym->st_shndx != SHN_UNDEF) || (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) || (sym->st_size != 0) || (sym->st_value != 0))) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYM8), state->file, state->secname, EC_WORD(symndx), demangle(symname, state->flags), EC_XWORD(info)); } } (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx)); Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi, state->ehdr->e_machine, sym, verndx, gnuver, sec, symname); } /* * Process a SHT_SUNW_cap capabilities section. */ static int cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache, uchar_t osabi, Ehdr *ehdr, uint_t flags) { SYMTBL_STATE state; Word cnum, capnum, nulls, symcaps; int descapndx, objcap, title; Cap *cap = (Cap *)ccache->c_data->d_buf; Shdr *cishdr = NULL, *cshdr = ccache->c_shdr; Cache *cicache = NULL, *strcache = NULL; Capinfo *capinfo = NULL; Word capinfonum = 0; const char *strs = NULL; size_t strs_size = 0; if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, ccache->c_name); return (0); } /* * If this capabilities section is associated with symbols, then the * sh_link field points to the associated capabilities information * section. The sh_link field of the capabilities information section * points to the associated symbol table. */ if (cshdr->sh_link) { Cache *scache; Shdr *sshdr; /* * Validate that the sh_link field points to a capabilities * information section. */ if (cshdr->sh_link >= shnum) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, ccache->c_name, EC_WORD(cshdr->sh_link)); return (0); } cicache = &cache[cshdr->sh_link]; cishdr = cicache->c_shdr; if (cishdr->sh_type != SHT_SUNW_capinfo) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), file, ccache->c_name, EC_WORD(cshdr->sh_link)); return (0); } capinfo = cicache->c_data->d_buf; capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize); /* * Validate that the sh_link field of the capabilities * information section points to a valid symbol table. */ if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, cicache->c_name, EC_WORD(cishdr->sh_link)); return (0); } scache = &cache[cishdr->sh_link]; sshdr = scache->c_shdr; if ((sshdr->sh_type != SHT_SYMTAB) && (sshdr->sh_type != SHT_DYNSYM)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1), file, cicache->c_name, EC_WORD(cishdr->sh_link)); return (0); } if (!init_symtbl_state(&state, cache, shnum, cishdr->sh_link, ehdr, osabi, NULL, file, flags)) return (0); } /* * If this capabilities section contains capability string entries, * then determine the associated string table. Capabilities entries * that define names require that the capability section indicate * which string table to use via sh_info. */ if (cshdr->sh_info) { Shdr *strshdr; /* * Validate that the sh_info field points to a string table. */ if (cshdr->sh_info >= shnum) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, ccache->c_name, EC_WORD(cshdr->sh_info)); return (0); } strcache = &cache[cshdr->sh_info]; strshdr = strcache->c_shdr; if (strshdr->sh_type != SHT_STRTAB) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), file, ccache->c_name, EC_WORD(cshdr->sh_info)); return (0); } strs = (const char *)strcache->c_data->d_buf; strs_size = strcache->c_data->d_size; } dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name); capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize); nulls = symcaps = 0; objcap = title = 1; descapndx = -1; /* * Traverse the capabilities section printing each capability group. * The first capabilities group defines any object capabilities. Any * following groups define symbol capabilities. In the case where no * object capabilities exist, but symbol capabilities do, a single * CA_SUNW_NULL terminator for the object capabilities exists. */ for (cnum = 0; cnum < capnum; cap++, cnum++) { if (cap->c_tag == CA_SUNW_NULL) { /* * A CA_SUNW_NULL tag terminates a capabilities group. * If the first capabilities tag is CA_SUNW_NULL, then * no object capabilities exist. */ if ((nulls++ == 0) && (cnum == 0)) objcap = 0; title = 1; } else { if (title) { if (nulls == 0) { /* * If this capabilities group represents * the object capabilities (i.e., no * CA_SUNW_NULL tag has been processed * yet), then display an object * capabilities title. */ dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_OBJ_CAP_TITLE)); } else { /* * If this is a symbols capabilities * group (i.e., a CA_SUNW_NULL tag has * already be found that terminates * the object capabilities group), then * display a symbol capabilities title, * and retain this capabilities index * for later processing. */ dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_SYM_CAP_TITLE)); descapndx = cnum; } Elf_cap_title(0); title = 0; } /* * Print the capabilities data. * * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID * entries require a string table, which should have * already been established. */ if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) || (cap->c_tag == CA_SUNW_MACH) || (cap->c_tag == CA_SUNW_ID))) { (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3), file, EC_WORD(elf_ndxscn(ccache->c_scn)), ccache->c_name, EC_WORD(cshdr->sh_info)); } Elf_cap_entry(0, cap, cnum, strs, strs_size, ehdr->e_machine); } /* * If this CA_SUNW_NULL tag terminates a symbol capabilities * group, determine the associated symbols. */ if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) && (descapndx != -1)) { Capinfo *cip; Word inum; symcaps++; /* * Make sure we've discovered a SHT_SUNW_capinfo table. */ if ((cip = capinfo) == NULL) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP), file, ccache->c_name, EC_WORD(cshdr->sh_link)); return (0); } /* * Determine what symbols reference this capabilities * group. */ dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES)); Elf_syms_table_title(0, ELF_DBG_ELFDUMP); for (inum = 1, cip++; inum < capinfonum; inum++, cip++) { Word gndx = (Word)ELF_C_GROUP(*cip); if (gndx && (gndx == descapndx)) { output_symbol(&state, inum, 0, inum, state.sym + inum); } } descapndx = -1; continue; } /* * An SF1_SUNW_ADDR32 software capability tag in a 32-bit * object is suspicious as it has no effect. */ if ((cap->c_tag == CA_SUNW_SF_1) && (ehdr->e_ident[EI_CLASS] == ELFCLASS32) && (cap->c_un.c_val & SF1_SUNW_ADDR32)) { (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1), file, ccache->c_name); } } /* * If this is a dynamic object, with symbol capabilities, then a * .SUNW_capchain section should exist. This section contains a chain * of symbol indexes for each capabilities family. This is the list * that is searched by ld.so.1 to determine the best capabilities * candidate. * * Note, more than one capabilities lead symbol can point to the same * family chain. For example, a weak/global pair of symbols can both * represent the same family of capabilities symbols. Therefore, to * display all possible families we traverse the capabilities * information section looking for CAPINFO_SUNW_GLOB lead symbols. * From these we determine the associated capabilities chain to inspect. */ if (symcaps && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { Capinfo *cip; Capchain *chain; Cache *chcache; Shdr *chshdr; Word chainnum, inum; /* * Validate that the sh_info field of the capabilities * information section points to a capabilities chain section. */ if (cishdr->sh_info >= shnum) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, cicache->c_name, EC_WORD(cishdr->sh_info)); return (0); } chcache = &cache[cishdr->sh_info]; chshdr = chcache->c_shdr; if (chshdr->sh_type != SHT_SUNW_capchain) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2), file, cicache->c_name, EC_WORD(cishdr->sh_info)); return (0); } chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize); chain = (Capchain *)chcache->c_data->d_buf; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name); /* * Traverse the capabilities information section looking for * CAPINFO_SUNW_GLOB lead capabilities symbols. */ cip = capinfo; for (inum = 1, cip++; inum < capinfonum; inum++, cip++) { const char *name; Sym *sym; Word sndx, cndx; Word gndx = (Word)ELF_C_GROUP(*cip); if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB)) continue; /* * Determine the symbol that is associated with this * capability information entry, and use this to * identify this capability family. */ sym = (Sym *)(state.sym + inum); name = string(cicache, inum, strcache, file, sym->st_name); dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name); dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY)); cndx = (Word)ELF_C_SYM(*cip); /* * Traverse this families chain and identify each * family member. */ for (;;) { char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE]; if (cndx >= chainnum) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO3), file, cicache->c_name, EC_WORD(inum), EC_WORD(cndx)); break; } if ((sndx = chain[cndx]) == 0) break; /* * Determine this entries symbol reference. */ if (sndx > state.symn) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_CHBADSYMNDX), file, EC_WORD(sndx), chcache->c_name, EC_WORD(cndx)); name = MSG_INTL(MSG_STR_UNKNOWN); } else { sym = (Sym *)(state.sym + sndx); name = string(chcache, sndx, strcache, file, sym->st_name); } /* * Display the family member. */ (void) snprintf(_chain, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), cndx); (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx)); dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO), _chain, _symndx, demangle(name, flags)); cndx++; } } } return (objcap); } /* * Print the capabilities. * * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated, * capabilities groups. The first group defines the object capabilities. * This group defines the minimum capability requirements of the entire * object file. If this is a dynamic object, this group should be associated * with a PT_SUNWCAP program header. * * Additional capabilities groups define the association of individual symbols * to specific capabilities. */ static void cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi, Elf *elf, uint_t flags) { Word cnt; Shdr *cshdr = NULL; Cache *ccache = NULL; Phdr *uphdr = NULL; size_t phndx; /* * Determine if a global capabilities header exists. */ if (phnum) { Phdr *phdr; if ((phdr = elf_getphdr(elf)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); return; } for (cnt = 0; cnt < phnum; phdr++, cnt++) { if (phdr->p_type == PT_SUNWCAP) { uphdr = phdr; phndx = cnt; break; } } } /* * Determine if a capabilities section exists. */ for (cnt = 1; cnt < shnum; cnt++) { Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; /* * Process any capabilities information. */ if (shdr->sh_type == SHT_SUNW_cap) { if (cap_section(file, cache, shnum, _cache, osabi, ehdr, flags)) { /* * If this section defined an object capability * group, retain the section information for * program header validation. */ ccache = _cache; cshdr = shdr; } continue; } } if ((cshdr == NULL) && (uphdr == NULL)) return; if ((uphdr != NULL) && (cshdr == NULL)) (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file); /* * If this object is an executable or shared object, and it provided * an object capabilities group, then the group should have an * accompanying PT_SUNWCAP program header. */ if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) { if (uphdr == NULL) { (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2), file, EC_WORD(elf_ndxscn(ccache->c_scn)), ccache->c_name); } else { check_phdr_v_shdr(uphdr, phndx, osabi, ehdr->e_machine, ccache, file); } } } /* * Print the interpreter. */ static void interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf, Ehdr *ehdr) { static Word phdr_types[] = { PT_INTERP }; Word cnt; Shdr *ishdr = NULL; Cache *icache = NULL; Phdr *iphdr = NULL; size_t phndx; /* * Determine if an interp header exists. */ if (phnum) { iphdr = getphdr(phnum, phdr_types, sizeof (phdr_types) / sizeof (*phdr_types), file, elf, &phndx); } if (iphdr == NULL) return; /* * Determine if an interp section exists. */ for (cnt = 1; cnt < shnum; cnt++) { Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; /* * Scan sections to find a section which contains the PT_INTERP * string. The target section can't be in a NOBITS section. */ if ((shdr->sh_type == SHT_NOBITS) || (iphdr->p_offset < shdr->sh_offset) || (iphdr->p_offset + iphdr->p_filesz) > (shdr->sh_offset + shdr->sh_size)) continue; icache = _cache; ishdr = shdr; break; } /* * Print the interpreter string based on the offset defined in the * program header, as this is the offset used by the kernel. */ if ((ishdr != NULL) && (icache != NULL) && (icache->c_data != NULL) && (icache->c_data->d_buf != NULL) && (icache->c_data->d_size > 0)) { dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name); dbg_print(0, MSG_ORIG(MSG_FMT_INDENT), (char *)icache->c_data->d_buf + (iphdr->p_offset - ishdr->sh_offset)); } else { (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file); } /* * If there are any inconsistences between the program header and * section information, flag them. */ if (icache != NULL) { check_phdr_v_shdr(iphdr, phndx, ELFOSABI_SOLARIS, ehdr->e_machine, icache, file); } } /* * Print the syminfo section. */ static void syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) { Shdr *infoshdr; Syminfo *info; Sym *syms; Dyn *dyns; Word infonum, cnt, ndx, symnum, dynnum; Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec; Boolean *dynerr = NULL; for (cnt = 1; cnt < shnum; cnt++) { if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) { infocache = &cache[cnt]; break; } } if (infocache == NULL) return; infoshdr = infocache->c_shdr; if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, infocache->c_name); return; } if ((infocache->c_data == NULL) || (infocache->c_data->d_buf == NULL)) return; infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize); info = (Syminfo *)infocache->c_data->d_buf; /* * If there is no associated dynamic section, determine if one * is needed, and if so issue a warning. If there is an * associated dynamic section, validate it and get the data buffer * for it. */ dyns = NULL; dynnum = 0; if (infoshdr->sh_info == 0) { Syminfo *_info = info + 1; for (ndx = 1; ndx < infonum; ndx++, _info++) { if ((_info->si_flags == 0) && (_info->si_boundto == 0)) continue; if (_info->si_boundto < SYMINFO_BT_LOWRESERVE) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), file, infocache->c_name, EC_WORD(infoshdr->sh_info)); } } else if ((infoshdr->sh_info >= shnum) || (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), file, infocache->c_name, EC_WORD(infoshdr->sh_info)); } else { dyncache = &cache[infoshdr->sh_info]; if ((dyncache->c_data == NULL) || ((dyns = dyncache->c_data->d_buf) == NULL)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, dyncache->c_name); } if (dyns != NULL) { if ((dyncache->c_shdr->sh_entsize == 0) || (dyncache->c_shdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, dyncache->c_name); return; } dynnum = dyncache->c_shdr->sh_size / dyncache->c_shdr->sh_entsize; /* * We validate the type of dynamic elements referenced * from the syminfo. This array is used report any * bad dynamic entries. */ if ((dynerr = calloc(dynnum, sizeof (*dynerr))) == NULL) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, strerror(err)); return; } } } /* * Get the data buffer for the associated symbol table and string table. */ if (stringtbl(cache, 1, cnt, shnum, file, &symnum, &symsec, &strsec) == 0) return; syms = symsec->c_data->d_buf; /* * Loop through the syminfo entries. */ dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name); Elf_syminfo_title(0); for (ndx = 1, info++; ndx < infonum; ndx++, info++) { Sym *sym; const char *needed, *name; Word expect_dt; Word boundto = info->si_boundto; if ((info->si_flags == 0) && (boundto == 0)) continue; sym = &syms[ndx]; name = string(infocache, ndx, strsec, file, sym->st_name); /* Is si_boundto set to one of the reserved values? */ if (boundto >= SYMINFO_BT_LOWRESERVE) { Elf_syminfo_entry(0, ndx, info, name, NULL); continue; } /* * si_boundto is referencing a dynamic section. If we don't * have one, an error was already issued above, so it suffices * to display an empty string. If we are out of bounds, then * report that and then display an empty string. */ if ((dyns == NULL) || (boundto >= dynnum)) { if (dyns != NULL) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSIDYNNDX), file, infocache->c_ndx, infocache->c_name, EC_WORD(ndx), EC_WORD(dynnum - 1), EC_WORD(boundto)); Elf_syminfo_entry(0, ndx, info, name, MSG_ORIG(MSG_STR_EMPTY)); continue; } /* * The si_boundto reference expects a specific dynamic element * type at the given index. The dynamic element is always a * string that gives an object name. The specific type depends * on the si_flags present. Ensure that we've got the right * type. */ if (info->si_flags & SYMINFO_FLG_FILTER) expect_dt = DT_SUNW_FILTER; else if (info->si_flags & SYMINFO_FLG_AUXILIARY) expect_dt = DT_SUNW_AUXILIARY; else if (info->si_flags & (SYMINFO_FLG_DIRECT | SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND)) expect_dt = DT_NEEDED; else expect_dt = DT_NULL; /* means we ignore the type */ if ((dyns[boundto].d_tag != expect_dt) && (expect_dt != DT_NULL)) { Conv_inv_buf_t buf1, buf2; /* Only complain about each dynamic element once */ if (!dynerr[boundto]) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSIDYNTAG), file, infocache->c_ndx, infocache->c_name, EC_WORD(ndx), dyncache->c_ndx, dyncache->c_name, EC_WORD(boundto), conv_dyn_tag(expect_dt, osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf1), conv_dyn_tag(dyns[boundto].d_tag, osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf2)); dynerr[boundto] = TRUE; } } /* * Whether or not the DT item we're pointing at is * of the right type, if it's a type we recognize as * providing a string, go ahead and show it. Otherwise * an empty string. */ switch (dyns[boundto].d_tag) { case DT_NEEDED: case DT_SONAME: case DT_RPATH: case DT_RUNPATH: case DT_CONFIG: case DT_DEPAUDIT: case DT_USED: case DT_AUDIT: case DT_SUNW_AUXILIARY: case DT_SUNW_FILTER: case DT_FILTER: case DT_AUXILIARY: needed = string(infocache, boundto, strsec, file, dyns[boundto].d_un.d_val); break; default: needed = MSG_ORIG(MSG_STR_EMPTY); } Elf_syminfo_entry(0, ndx, info, name, needed); } if (dyns != NULL) free(dynerr); } /* * Print version definition section entries. */ static void version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache, const char *file) { Word cnt; char index[MAXNDXSIZE]; Elf_ver_def_title(0); for (cnt = 1; cnt <= vdf_num; cnt++, vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) { Conv_ver_flags_buf_t ver_flags_buf; const char *name, *dep; Half vcnt = vdf->vd_cnt - 1; Half ndx = vdf->vd_ndx; Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux); /* * Obtain the name and first dependency (if any). */ name = string(vcache, cnt, scache, file, vdap->vda_name); vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); if (vcnt) dep = string(vcache, cnt, scache, file, vdap->vda_name); else dep = MSG_ORIG(MSG_STR_EMPTY); (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(ndx)); Elf_ver_line_1(0, index, name, dep, conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf)); /* * Print any additional dependencies. */ if (vcnt) { vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next); for (vcnt--; vcnt; vcnt--, vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next)) { dep = string(vcache, cnt, scache, file, vdap->vda_name); Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep); } } } } /* * Print version needed section entries. * * entry: * vnd - Address of verneed data * vnd_num - # of Verneed entries * vcache - Cache of verneed section being processed * scache - Cache of associated string table section * file - Name of object being processed. * versym - Information about versym section * * exit: * The versions have been printed. If GNU style versioning * is in effect, versym->max_verndx has been updated to * contain the largest version index seen. * * note: * The versym section of an object that follows the original * Solaris versioning rules only contains indexes into the verdef * section. Symbols defined in other objects (UNDEF) are given * a version of 0, indicating that they are not defined by * this file, and the Verneed entries do not have associated version * indexes. For these reasons, we do not display a version index * for original-style Verneed sections. * * The GNU versioning extensions alter this: Symbols defined in other * objects receive a version index in the range above those defined * by the Verdef section, and the vna_other field of the Vernaux * structs inside the Verneed section contain the version index for * that item. We therefore display the index when showing the * contents of a GNU style Verneed section. You should not * necessarily expect these indexes to appear in sorted * order --- it seems that the GNU ld assigns the versions as * symbols are encountered during linking, and then the results * are assembled into the Verneed section afterwards. */ static void version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache, const char *file, VERSYM_STATE *versym) { Word cnt; char index[MAXNDXSIZE]; const char *index_str; Elf_ver_need_title(0, versym->gnu_needed); for (cnt = 1; cnt <= vnd_num; cnt++, vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { Conv_ver_flags_buf_t ver_flags_buf; const char *name, *dep; Half vcnt = vnd->vn_cnt; Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); /* * Obtain the name of the needed file and the version name * within it that we're dependent on. Note that the count * should be at least one, otherwise this is a pretty bogus * entry. */ name = string(vcache, cnt, scache, file, vnd->vn_file); if (vcnt) dep = string(vcache, cnt, scache, file, vnap->vna_name); else dep = MSG_INTL(MSG_STR_NULL); if (vnap->vna_other == 0) { /* Traditional form */ index_str = MSG_ORIG(MSG_STR_EMPTY); } else { /* GNU form */ index_str = index; /* Format the version index value */ (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other)); if (vnap->vna_other > versym->max_verndx) versym->max_verndx = vnap->vna_other; } Elf_ver_line_1(0, index_str, name, dep, conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf)); /* * Print any additional version dependencies. */ if (vcnt) { vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); for (vcnt--; vcnt; vcnt--, vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next)) { dep = string(vcache, cnt, scache, file, vnap->vna_name); if (vnap->vna_other > 0) { /* Format the next index value */ (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other)); Elf_ver_line_1(0, index, MSG_ORIG(MSG_STR_EMPTY), dep, conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf)); if (vnap->vna_other > versym->max_verndx) versym->max_verndx = vnap->vna_other; } else { Elf_ver_line_3(0, MSG_ORIG(MSG_STR_EMPTY), dep, conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf)); } } } } } /* * Examine the Verneed section for information related to GNU * style Versym indexing: * - A non-zero vna_other field indicates that Versym indexes can * reference Verneed records. * - If the object uses GNU style Versym indexing, the * maximum index value is needed to detect bad Versym entries. * * entry: * vnd - Address of verneed data * vnd_num - # of Verneed entries * versym - Information about versym section * * exit: * If a non-zero vna_other field is seen, versym->gnu_needed is set. * * versym->max_verndx has been updated to contain the largest * version index seen. */ static void update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym) { Word cnt; for (cnt = 1; cnt <= vnd_num; cnt++, vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) { Half vcnt = vnd->vn_cnt; Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux); /* * A non-zero value of vna_other indicates that this * object references VERNEED items from the VERSYM * array. */ if (vnap->vna_other != 0) { versym->gnu_needed = 1; if (vnap->vna_other > versym->max_verndx) versym->max_verndx = vnap->vna_other; } /* * Check any additional version dependencies. */ if (vcnt) { vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next); for (vcnt--; vcnt; vcnt--, vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next)) { if (vnap->vna_other == 0) continue; versym->gnu_needed = 1; if (vnap->vna_other > versym->max_verndx) versym->max_verndx = vnap->vna_other; } } } } /* * Display version section information if the flags require it. * Return version information needed by other output. * * entry: * cache - Cache of all section headers * shnum - # of sections in cache * file - Name of file * flags - Command line option flags * versym - VERSYM_STATE block to be filled in. */ static void versions(Cache *cache, Word shnum, const char *file, uint_t flags, VERSYM_STATE *versym) { GElf_Word cnt; Cache *verdef_cache = NULL, *verneed_cache = NULL; /* Gather information about the version sections */ versym->max_verndx = 1; for (cnt = 1; cnt < shnum; cnt++) { Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; Dyn *dyn; ulong_t numdyn; switch (shdr->sh_type) { case SHT_DYNAMIC: /* * The GNU ld puts a DT_VERSYM entry in the dynamic * section so that the runtime linker can use it to * implement their versioning rules. They allow multiple * incompatible functions with the same name to exist * in different versions. The Solaris ld does not * support this mechanism, and as such, does not * produce DT_VERSYM. We use this fact to determine * which ld produced this object, and how to interpret * the version values. */ if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) || (_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; numdyn = shdr->sh_size / shdr->sh_entsize; dyn = (Dyn *)_cache->c_data->d_buf; for (; numdyn-- > 0; dyn++) if (dyn->d_tag == DT_VERSYM) { versym->gnu_full = versym->gnu_needed = 1; break; } break; case SHT_SUNW_versym: /* Record data address for later symbol processing */ if (_cache->c_data != NULL) { versym->cache = _cache; versym->data = _cache->c_data->d_buf; continue; } break; case SHT_SUNW_verdef: case SHT_SUNW_verneed: /* * Ensure the data is non-NULL and the number * of items is non-zero. Otherwise, we don't * understand the section, and will not use it. */ if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, _cache->c_name); continue; } if (shdr->sh_info == 0) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), file, _cache->c_name, EC_WORD(shdr->sh_info)); continue; } /* Make sure the string table index is in range */ if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, _cache->c_name, EC_WORD(shdr->sh_link)); continue; } /* * The section is usable. Save the cache entry. */ if (shdr->sh_type == SHT_SUNW_verdef) { verdef_cache = _cache; /* * Under Solaris rules, if there is a verdef * section, the max versym index is number * of version definitions it supplies. */ versym->max_verndx = shdr->sh_info; } else { verneed_cache = _cache; } break; } } /* * If there is a Verneed section, examine it for information * related to GNU style versioning. */ if (verneed_cache != NULL) update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf, verneed_cache->c_shdr->sh_info, versym); /* * Now that all the information is available, display the * Verdef and Verneed section contents, if requested. */ if ((flags & FLG_SHOW_VERSIONS) == 0) return; if (verdef_cache != NULL) { dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF), verdef_cache->c_name); version_def((Verdef *)verdef_cache->c_data->d_buf, verdef_cache->c_shdr->sh_info, verdef_cache, &cache[verdef_cache->c_shdr->sh_link], file); } if (verneed_cache != NULL) { dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED), verneed_cache->c_name); /* * If GNU versioning applies to this object, version_need() * will update versym->max_verndx, and it is not * necessary to call update_gnu_verndx(). */ version_need((Verneed *)verneed_cache->c_data->d_buf, verneed_cache->c_shdr->sh_info, verneed_cache, &cache[verneed_cache->c_shdr->sh_link], file, versym); } } /* * Search for and process any symbol tables. */ void symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file, uint_t flags) { SYMTBL_STATE state; Cache *_cache; Word secndx; for (secndx = 1; secndx < shnum; secndx++) { Word symcnt; Shdr *shdr; _cache = &cache[secndx]; shdr = _cache->c_shdr; if ((shdr->sh_type != SHT_SYMTAB) && (shdr->sh_type != SHT_DYNSYM) && ((shdr->sh_type != SHT_SUNW_LDYNSYM) || (osabi != ELFOSABI_SOLARIS))) continue; if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type)) continue; if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr, osabi, versym, file, flags)) continue; /* * Loop through the symbol tables entries. */ dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname); Elf_syms_table_title(0, ELF_DBG_ELFDUMP); for (symcnt = 0; symcnt < state.symn; symcnt++) output_symbol(&state, symcnt, shdr->sh_info, symcnt, state.sym + symcnt); } } /* * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections. * These sections are always associated with the .SUNW_ldynsym./.dynsym pair. */ static void sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file, uint_t flags) { SYMTBL_STATE ldynsym_state, dynsym_state; Cache *sortcache, *symcache; Shdr *sortshdr, *symshdr; Word sortsecndx, symsecndx; Word ldynsym_cnt; Word *ndx; Word ndxn; int output_cnt = 0; Conv_inv_buf_t inv_buf; for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) { sortcache = &cache[sortsecndx]; sortshdr = sortcache->c_shdr; if ((sortshdr->sh_type != SHT_SUNW_symsort) && (sortshdr->sh_type != SHT_SUNW_tlssort)) continue; if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx, sortshdr->sh_type)) continue; /* * If the section references a SUNW_ldynsym, then we * expect to see the associated .dynsym immediately * following. If it references a .dynsym, there is no * SUNW_ldynsym. If it is any other type, then we don't * know what to do with it. */ if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, sortcache->c_name, EC_WORD(sortshdr->sh_link)); continue; } symcache = &cache[sortshdr->sh_link]; symshdr = symcache->c_shdr; symsecndx = sortshdr->sh_link; ldynsym_cnt = 0; switch (symshdr->sh_type) { case SHT_SUNW_LDYNSYM: if (!init_symtbl_state(&ldynsym_state, cache, shnum, symsecndx, ehdr, osabi, versym, file, flags)) continue; ldynsym_cnt = ldynsym_state.symn; /* * We know that the dynsym follows immediately * after the SUNW_ldynsym, and so, should be at * (sortshdr->sh_link + 1). However, elfdump is a * diagnostic tool, so we do the full paranoid * search instead. */ for (symsecndx = 1; symsecndx < shnum; symsecndx++) { symcache = &cache[symsecndx]; symshdr = symcache->c_shdr; if (symshdr->sh_type == SHT_DYNSYM) break; } if (symsecndx >= shnum) { /* Dynsym not found! */ (void) fprintf(stderr, MSG_INTL(MSG_ERR_NODYNSYM), file, sortcache->c_name); continue; } /* Fallthrough to process associated dynsym */ /* FALLTHROUGH */ case SHT_DYNSYM: if (!init_symtbl_state(&dynsym_state, cache, shnum, symsecndx, ehdr, osabi, versym, file, flags)) continue; break; default: (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC), file, sortcache->c_name, conv_sec_type(osabi, ehdr->e_machine, symshdr->sh_type, 0, &inv_buf)); continue; } /* * Output header */ dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); if (ldynsym_cnt > 0) { dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2), sortcache->c_name, ldynsym_state.secname, dynsym_state.secname); /* * The data for .SUNW_ldynsym and dynsym sections * is supposed to be adjacent with SUNW_ldynsym coming * first. Check, and issue a warning if it isn't so. */ if (((ldynsym_state.sym + ldynsym_state.symn) != dynsym_state.sym) && ((flags & FLG_CTL_FAKESHDR) == 0)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_LDYNNOTADJ), file, ldynsym_state.secname, dynsym_state.secname); } else { dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1), sortcache->c_name, dynsym_state.secname); } Elf_syms_table_title(0, ELF_DBG_ELFDUMP); /* If not first one, insert a line of white space */ if (output_cnt++ > 0) dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); /* * SUNW_dynsymsort and SUNW_dyntlssort are arrays of * symbol indices. Iterate over the array entries, * dispaying the referenced symbols. */ ndxn = sortshdr->sh_size / sortshdr->sh_entsize; ndx = (Word *)sortcache->c_data->d_buf; for (; ndxn-- > 0; ndx++) { if (*ndx >= ldynsym_cnt) { Word sec_ndx = *ndx - ldynsym_cnt; output_symbol(&dynsym_state, sec_ndx, 0, *ndx, dynsym_state.sym + sec_ndx); } else { output_symbol(&ldynsym_state, *ndx, 0, *ndx, ldynsym_state.sym + *ndx); } } } } /* * Search for and process any relocation sections. */ static void reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) { Word cnt; for (cnt = 1; cnt < shnum; cnt++) { Word type, symnum; Xword relndx, relnum, relsize; void *rels; Sym *syms; Cache *symsec, *strsec; Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; char *relname = _cache->c_name; Conv_inv_buf_t inv_buf; if (((type = shdr->sh_type) != SHT_RELA) && (type != SHT_REL)) continue; if (!match(MATCH_F_ALL, relname, cnt, type)) continue; /* * Decide entry size. */ if (((relsize = shdr->sh_entsize) == 0) || (relsize > shdr->sh_size)) { if (type == SHT_RELA) relsize = sizeof (Rela); else relsize = sizeof (Rel); } /* * Determine the number of relocations available. */ if (shdr->sh_size == 0) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, relname); continue; } if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; rels = _cache->c_data->d_buf; relnum = shdr->sh_size / relsize; /* * Get the data buffer for the associated symbol table and * string table. */ if (stringtbl(cache, 1, cnt, shnum, file, &symnum, &symsec, &strsec) == 0) continue; syms = symsec->c_data->d_buf; /* * Loop through the relocation entries. */ dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name); Elf_reloc_title(0, ELF_DBG_ELFDUMP, type); for (relndx = 0; relndx < relnum; relndx++, rels = (void *)((char *)rels + relsize)) { Half mach = ehdr->e_machine; char section[BUFSIZ]; const char *symname; Word symndx, reltype; Rela *rela; Rel *rel; /* * Unravel the relocation and determine the symbol with * which this relocation is associated. */ if (type == SHT_RELA) { rela = (Rela *)rels; symndx = ELF_R_SYM(rela->r_info); reltype = ELF_R_TYPE(rela->r_info, mach); } else { rel = (Rel *)rels; symndx = ELF_R_SYM(rel->r_info); reltype = ELF_R_TYPE(rel->r_info, mach); } symname = relsymname(cache, _cache, strsec, symndx, symnum, relndx, syms, section, BUFSIZ, file); /* * A zero symbol index is only valid for a few * relocations. */ if (symndx == 0) { int badrel = 0; if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) || (mach == EM_SPARCV9)) { if ((reltype != R_SPARC_NONE) && (reltype != R_SPARC_REGISTER) && (reltype != R_SPARC_RELATIVE)) badrel++; } else if (mach == EM_386) { if ((reltype != R_386_NONE) && (reltype != R_386_RELATIVE)) badrel++; } else if (mach == EM_AMD64) { if ((reltype != R_AMD64_NONE) && (reltype != R_AMD64_RELATIVE)) badrel++; } if (badrel) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADREL1), file, conv_reloc_type(mach, reltype, 0, &inv_buf)); } } Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP, MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type, rels, relname, symname, 0); } } } /* * This value controls which test dyn_test() performs. */ typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t; /* * Used by dynamic() to compare the value of a dynamic element against * the starting address of the section it references. * * entry: * test_type - Specify which dyn item is being tested. * sh_type - SHT_* type value for required section. * sec_cache - Cache entry for section, or NULL if the object lacks * a section of this type. * dyn - Dyn entry to be tested * dynsec_cnt - # of dynamic section being examined. The first * dynamic section is 1, the next is 2, and so on... * ehdr - ELF header for file * file - Name of file */ static void dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn, Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file) { Conv_inv_buf_t buf1, buf2; /* * These tests are based around the implicit assumption that * there is only one dynamic section in an object, and also only * one of the sections it references. We have therefore gathered * all of the necessary information to test this in a single pass * over the section headers, which is very efficient. We are not * aware of any case where more than one dynamic section would * be meaningful in an ELF object, so this is a reasonable solution. * * To test multiple dynamic sections correctly would be more * expensive in code and time. We would have to build a data structure * containing all the dynamic elements. Then, we would use the address * to locate the section it references and ensure the section is of * the right type and that the address in the dynamic element is * to the start of the section. Then, we could check the size and * entsize values against those same sections. This is O(n^2), and * also complicated. * * In the highly unlikely case that there is more than one dynamic * section, we only test the first one, and simply allow the values * of the subsequent one to be displayed unchallenged. */ if (dynsec_cnt != 1) return; /* * A DT_ item that references a section address should always find * the section in the file. */ if (sec_cache == NULL) { const char *name; /* * Supply section names instead of section types for * things that reference progbits so that the error * message will make more sense. */ switch (dyn->d_tag) { case DT_INIT: name = MSG_ORIG(MSG_ELF_INIT); break; case DT_FINI: name = MSG_ORIG(MSG_ELF_FINI); break; default: name = conv_sec_type(osabi, ehdr->e_machine, sh_type, 0, &buf1); break; } (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file, name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf2)); return; } switch (test_type) { case DYN_TEST_ADDR: /* The section address should match the DT_ item value */ if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr) (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNBADADDR), file, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val), sec_cache->c_ndx, sec_cache->c_name, EC_ADDR(sec_cache->c_shdr->sh_addr)); break; case DYN_TEST_SIZE: /* The section size should match the DT_ item value */ if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size) (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNBADSIZE), file, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), sec_cache->c_ndx, sec_cache->c_name, EC_XWORD(sec_cache->c_shdr->sh_size)); break; case DYN_TEST_ENTSIZE: /* The sh_entsize value should match the DT_ item value */ if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize) (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNBADENTSIZE), file, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val), sec_cache->c_ndx, sec_cache->c_name, EC_XWORD(sec_cache->c_shdr->sh_entsize)); break; } } /* * There are some DT_ entries that have corresponding symbols * (e.g. DT_INIT and _init). It is expected that these items will * both have the same value if both are present. This routine * examines the well known symbol tables for such symbols and * issues warnings for any that don't match. * * entry: * dyn - Dyn entry to be tested * symname - Name of symbol that corresponds to dyn * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check * target_cache - Section the symname section is expected to be * associated with. * cache - Cache of all section headers * shnum - # of sections in cache * ehdr - ELF header for file * osabi - OSABI to apply when interpreting object * file - Name of file */ static void dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache, Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file) { Conv_inv_buf_t buf; int i; Sym *sym; Cache *_cache = NULL; for (i = 0; i < 3; i++) { switch (i) { case 0: _cache = symtab_cache; break; case 1: _cache = dynsym_cache; break; case 2: _cache = ldynsym_cache; break; } if ((_cache != NULL) && symlookup(symname, cache, shnum, &sym, target_cache, _cache, file) && (sym->st_value != dyn->d_un.d_val)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL), file, _cache->c_name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf), symname, EC_ADDR(sym->st_value)); } } /* * Search for and process a .dynamic section. */ static void dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file, Word phnum, Elf *elf) { struct { Cache *symtab; Cache *dynstr; Cache *dynsym; Cache *hash; Cache *fini; Cache *fini_array; Cache *init; Cache *init_array; Cache *preinit_array; Cache *rel; Cache *rela; Cache *sunw_cap; Cache *sunw_capinfo; Cache *sunw_capchain; Cache *sunw_ldynsym; Cache *sunw_move; Cache *sunw_syminfo; Cache *sunw_symsort; Cache *sunw_tlssort; Cache *sunw_verdef; Cache *sunw_verneed; Cache *sunw_versym; } sec; Word dynsec_ndx; Word dynsec_num; int dynsec_cnt; Word cnt; int osabi_solaris = osabi == ELFOSABI_SOLARIS; Phdr *pt_dynamic = NULL; size_t phndx; static Word phdr_type[] = { PT_DYNAMIC }; /* * Make a pass over all the sections, gathering section information * we'll need below. */ dynsec_num = 0; bzero(&sec, sizeof (sec)); for (cnt = 1; cnt < shnum; cnt++) { Cache *_cache = &cache[cnt]; switch (_cache->c_shdr->sh_type) { case SHT_DYNAMIC: if (dynsec_num == 0) { dynsec_ndx = cnt; /* Does it have a valid string table? */ (void) stringtbl(cache, 0, cnt, shnum, file, 0, 0, &sec.dynstr); } dynsec_num++; break; case SHT_PROGBITS: /* * We want to detect the .init and .fini sections, * if present. These are SHT_PROGBITS, so all we * have to go on is the section name. Normally comparing * names is a bad idea, but there are some special * names (i.e. .init/.fini/.interp) that are very * difficult to use in any other context, and for * these symbols, we do the heuristic match. */ if (strcmp(_cache->c_name, MSG_ORIG(MSG_ELF_INIT)) == 0) { if (sec.init == NULL) sec.init = _cache; } else if (strcmp(_cache->c_name, MSG_ORIG(MSG_ELF_FINI)) == 0) { if (sec.fini == NULL) sec.fini = _cache; } break; case SHT_REL: /* * We want the SHT_REL section with the lowest * offset. The linker gathers them together, * and puts the address of the first one * into the DT_REL dynamic element. */ if ((sec.rel == NULL) || (_cache->c_shdr->sh_offset < sec.rel->c_shdr->sh_offset)) sec.rel = _cache; break; case SHT_RELA: /* RELA is handled just like RELA above */ if ((sec.rela == NULL) || (_cache->c_shdr->sh_offset < sec.rela->c_shdr->sh_offset)) sec.rela = _cache; break; /* * The GRAB macro is used for the simple case in which * we simply grab the first section of the desired type. */ #define GRAB(_sec_type, _sec_field) \ case _sec_type: \ if (sec._sec_field == NULL) \ sec._sec_field = _cache; \ break GRAB(SHT_SYMTAB, symtab); GRAB(SHT_DYNSYM, dynsym); GRAB(SHT_FINI_ARRAY, fini_array); GRAB(SHT_HASH, hash); GRAB(SHT_INIT_ARRAY, init_array); GRAB(SHT_SUNW_move, sunw_move); GRAB(SHT_PREINIT_ARRAY, preinit_array); GRAB(SHT_SUNW_cap, sunw_cap); GRAB(SHT_SUNW_capinfo, sunw_capinfo); GRAB(SHT_SUNW_capchain, sunw_capchain); GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym); GRAB(SHT_SUNW_syminfo, sunw_syminfo); GRAB(SHT_SUNW_symsort, sunw_symsort); GRAB(SHT_SUNW_tlssort, sunw_tlssort); GRAB(SHT_SUNW_verdef, sunw_verdef); GRAB(SHT_SUNW_verneed, sunw_verneed); GRAB(SHT_SUNW_versym, sunw_versym); #undef GRAB } } if (phnum) { pt_dynamic = getphdr(phnum, phdr_type, 1, file, elf, &phndx); } /* * If no dynamic section, return immediately. If more than one * dynamic section, then something odd is going on and an error * is in order, but then continue on and display them all. */ if (dynsec_num == 0) { return; } if (dynsec_num > 1) (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN), file, EC_WORD(dynsec_num)); dynsec_cnt = 0; for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num); cnt++) { Dyn *dyn; ulong_t numdyn; int ndx, end_ndx; Cache *_cache = &cache[cnt], *strsec; Shdr *shdr = _cache->c_shdr; int dumped = 0; if (shdr->sh_type != SHT_DYNAMIC) continue; dynsec_cnt++; /* * Verify the associated string table section. */ if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0) continue; if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, _cache->c_name); continue; } if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; /* The first time through, check v. PT_DYNAMIC */ if (dynsec_cnt == 1) { Conv_inv_buf_t inv_buf; if ((pt_dynamic == NULL) && (ehdr->e_type != ET_REL)) { fprintf(stderr, MSG_INTL(MSG_SHDR_NO_PHDR), file, _cache->c_ndx, _cache->c_name, conv_phdr_type(osabi, ehdr->e_machine, PT_DYNAMIC, CONV_FMT_ALT_CF, &inv_buf)); } if (pt_dynamic != NULL) { check_phdr_v_shdr(pt_dynamic, phndx, osabi, ehdr->e_machine, _cache, file); } } numdyn = shdr->sh_size / shdr->sh_entsize; dyn = (Dyn *)_cache->c_data->d_buf; /* * We expect the REL/RELA entries to reference the reloc * section with the lowest address. However, this is * not true for dumped objects. Detect if this object has * been dumped so that we can skip the reloc address test * in that case. */ for (ndx = 0; ndx < numdyn; dyn++, ndx++) { if (dyn->d_tag == DT_FLAGS_1) { dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0; break; } } dyn = (Dyn *)_cache->c_data->d_buf; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name); Elf_dyn_title(0); for (ndx = 0; ndx < numdyn; dyn++, ndx++) { union { Conv_inv_buf_t inv; Conv_dyn_flag_buf_t flag; Conv_dyn_flag1_buf_t flag1; Conv_dyn_posflag1_buf_t posflag1; Conv_dyn_feature1_buf_t feature1; } c_buf; const char *name = NULL; /* * Print the information numerically, and if possible * as a string. If a string is available, name is * set to reference it. * * Also, take this opportunity to sanity check * the values of DT elements. In the code above, * we gathered information on sections that are * referenced by the dynamic section. Here, we * compare the attributes of those sections to * the DT_ items that reference them and report * on inconsistencies. * * Things not currently tested that could be improved * in later revisions include: * - We don't check PLT or GOT related items * - We don't handle computing the lengths of * relocation arrays. To handle this * requires examining data that spans * across sections, in a contiguous span * within a single segment. * - DT_VERDEFNUM and DT_VERNEEDNUM can't be * verified without parsing the sections. * - We don't handle DT_SUNW_SYMSZ, which would * be the sum of the lengths of .dynsym and * .SUNW_ldynsym * - DT_SUNW_STRPAD can't be verified other than * to check that it's not larger than * the string table. * - Some items come in "all or none" clusters * that give an address, element size, * and data length in bytes. We don't * verify that there are no missing items * in such groups. */ switch (dyn->d_tag) { case DT_NULL: /* * Special case: DT_NULLs can come in groups * that we prefer to reduce to a single line. */ end_ndx = ndx; while ((end_ndx < (numdyn - 1)) && ((dyn + 1)->d_tag == DT_NULL)) { dyn++; end_ndx++; } Elf_dyn_null_entry(0, dyn, ndx, end_ndx); ndx = end_ndx; continue; /* * String items all reference the dynstr. The string() * function does the necessary sanity checking. */ case DT_NEEDED: case DT_SONAME: case DT_FILTER: case DT_AUXILIARY: case DT_CONFIG: case DT_RPATH: case DT_RUNPATH: case DT_USED: case DT_DEPAUDIT: case DT_AUDIT: name = string(_cache, ndx, strsec, file, dyn->d_un.d_ptr); break; case DT_SUNW_AUXILIARY: case DT_SUNW_FILTER: if (osabi_solaris) name = string(_cache, ndx, strsec, file, dyn->d_un.d_ptr); break; case DT_FLAGS: name = conv_dyn_flag(dyn->d_un.d_val, 0, &c_buf.flag); break; case DT_FLAGS_1: name = conv_dyn_flag1(dyn->d_un.d_val, 0, &c_buf.flag1); break; case DT_POSFLAG_1: name = conv_dyn_posflag1(dyn->d_un.d_val, 0, &c_buf.posflag1); break; case DT_FEATURE_1: name = conv_dyn_feature1(dyn->d_un.d_val, 0, &c_buf.feature1); break; case DT_DEPRECATED_SPARC_REGISTER: name = MSG_INTL(MSG_STR_DEPRECATED); break; case DT_SUNW_LDMACH: if (!osabi_solaris) break; name = conv_ehdr_mach((Half)dyn->d_un.d_val, 0, &c_buf.inv); break; /* * Cases below this point are strictly sanity checking, * and do not generate a name string. The TEST_ macros * are used to hide the boiler plate arguments neeeded * by dyn_test(). */ #define TEST_ADDR(_sh_type, _sec_field) \ dyn_test(DYN_TEST_ADDR, _sh_type, \ sec._sec_field, dyn, dynsec_cnt, ehdr, \ osabi, file) #define TEST_SIZE(_sh_type, _sec_field) \ dyn_test(DYN_TEST_SIZE, _sh_type, \ sec._sec_field, dyn, dynsec_cnt, ehdr, \ osabi, file) #define TEST_ENTSIZE(_sh_type, _sec_field) \ dyn_test(DYN_TEST_ENTSIZE, _sh_type, \ sec._sec_field, dyn, dynsec_cnt, ehdr, \ osabi, file) case DT_FINI: dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI), sec.symtab, sec.dynsym, sec.sunw_ldynsym, sec.fini, cache, shnum, ehdr, osabi, file); TEST_ADDR(SHT_PROGBITS, fini); break; case DT_FINI_ARRAY: TEST_ADDR(SHT_FINI_ARRAY, fini_array); break; case DT_FINI_ARRAYSZ: TEST_SIZE(SHT_FINI_ARRAY, fini_array); break; case DT_HASH: TEST_ADDR(SHT_HASH, hash); break; case DT_INIT: dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT), sec.symtab, sec.dynsym, sec.sunw_ldynsym, sec.init, cache, shnum, ehdr, osabi, file); TEST_ADDR(SHT_PROGBITS, init); break; case DT_INIT_ARRAY: TEST_ADDR(SHT_INIT_ARRAY, init_array); break; case DT_INIT_ARRAYSZ: TEST_SIZE(SHT_INIT_ARRAY, init_array); break; case DT_MOVEENT: TEST_ENTSIZE(SHT_SUNW_move, sunw_move); break; case DT_MOVESZ: TEST_SIZE(SHT_SUNW_move, sunw_move); break; case DT_MOVETAB: TEST_ADDR(SHT_SUNW_move, sunw_move); break; case DT_PREINIT_ARRAY: TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array); break; case DT_PREINIT_ARRAYSZ: TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array); break; case DT_REL: if (!dumped) TEST_ADDR(SHT_REL, rel); break; case DT_RELENT: TEST_ENTSIZE(SHT_REL, rel); break; case DT_RELA: if (!dumped) TEST_ADDR(SHT_RELA, rela); break; case DT_RELAENT: TEST_ENTSIZE(SHT_RELA, rela); break; case DT_STRTAB: TEST_ADDR(SHT_STRTAB, dynstr); break; case DT_STRSZ: TEST_SIZE(SHT_STRTAB, dynstr); break; case DT_SUNW_CAP: if (osabi_solaris) TEST_ADDR(SHT_SUNW_cap, sunw_cap); break; case DT_SUNW_CAPINFO: if (osabi_solaris) TEST_ADDR(SHT_SUNW_capinfo, sunw_capinfo); break; case DT_SUNW_CAPCHAIN: if (osabi_solaris) TEST_ADDR(SHT_SUNW_capchain, sunw_capchain); break; case DT_SUNW_SYMTAB: TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym); break; case DT_SYMENT: TEST_ENTSIZE(SHT_DYNSYM, dynsym); break; case DT_SYMINENT: TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo); break; case DT_SYMINFO: TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo); break; case DT_SYMINSZ: TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo); break; case DT_SYMTAB: TEST_ADDR(SHT_DYNSYM, dynsym); break; case DT_SUNW_SORTENT: /* * This entry is related to both the symsort and * tlssort sections. */ if (osabi_solaris) { int test_tls = (sec.sunw_tlssort != NULL); int test_sym = (sec.sunw_symsort != NULL) || !test_tls; if (test_sym) TEST_ENTSIZE(SHT_SUNW_symsort, sunw_symsort); if (test_tls) TEST_ENTSIZE(SHT_SUNW_tlssort, sunw_tlssort); } break; case DT_SUNW_SYMSORT: if (osabi_solaris) TEST_ADDR(SHT_SUNW_symsort, sunw_symsort); break; case DT_SUNW_SYMSORTSZ: if (osabi_solaris) TEST_SIZE(SHT_SUNW_symsort, sunw_symsort); break; case DT_SUNW_TLSSORT: if (osabi_solaris) TEST_ADDR(SHT_SUNW_tlssort, sunw_tlssort); break; case DT_SUNW_TLSSORTSZ: if (osabi_solaris) TEST_SIZE(SHT_SUNW_tlssort, sunw_tlssort); break; case DT_VERDEF: TEST_ADDR(SHT_SUNW_verdef, sunw_verdef); break; case DT_VERNEED: TEST_ADDR(SHT_SUNW_verneed, sunw_verneed); break; case DT_VERSYM: TEST_ADDR(SHT_SUNW_versym, sunw_versym); break; #undef TEST_ADDR #undef TEST_SIZE #undef TEST_ENTSIZE } if (name == NULL) name = MSG_ORIG(MSG_STR_EMPTY); Elf_dyn_entry(0, dyn, ndx, name, osabi, ehdr->e_machine); } } } /* * Search for and process a MOVE section. */ static void move(Cache *cache, Word shnum, const char *file, uint_t flags) { Word cnt; const char *fmt = NULL; for (cnt = 1; cnt < shnum; cnt++) { Word movenum, symnum, ndx; Sym *syms; Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; Cache *symsec, *strsec; Move *move; if (shdr->sh_type != SHT_SUNW_move) continue; if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) continue; /* * Determine the move data and number. */ if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, _cache->c_name); continue; } if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; move = (Move *)_cache->c_data->d_buf; movenum = shdr->sh_size / shdr->sh_entsize; /* * Get the data buffer for the associated symbol table and * string table. */ if (stringtbl(cache, 1, cnt, shnum, file, &symnum, &symsec, &strsec) == 0) return; syms = (Sym *)symsec->c_data->d_buf; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name); dbg_print(0, MSG_INTL(MSG_MOVE_TITLE)); if (fmt == NULL) fmt = MSG_INTL(MSG_MOVE_ENTRY); for (ndx = 0; ndx < movenum; move++, ndx++) { const char *symname; char index[MAXNDXSIZE], section[BUFSIZ]; Word symndx, shndx; Sym *sym; /* * Check for null entries */ if ((move->m_info == 0) && (move->m_value == 0) && (move->m_poffset == 0) && (move->m_repeat == 0) && (move->m_stride == 0)) { dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY), EC_XWORD(move->m_poffset), 0, 0, 0, EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY)); continue; } if (((symndx = ELF_M_SYM(move->m_info)) == 0) || (symndx >= symnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADMINFO), file, _cache->c_name, EC_XWORD(move->m_info)); (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); dbg_print(0, fmt, index, EC_XWORD(move->m_poffset), ELF_M_SIZE(move->m_info), move->m_repeat, move->m_stride, move->m_value, MSG_INTL(MSG_STR_UNKNOWN)); continue; } symname = relsymname(cache, _cache, strsec, symndx, symnum, ndx, syms, section, BUFSIZ, file); sym = (Sym *)(syms + symndx); /* * Additional sanity check. */ shndx = sym->st_shndx; if (!((shndx == SHN_COMMON) || (((shndx >= 1) && (shndx <= shnum)) && (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYM2), file, _cache->c_name, EC_WORD(symndx), demangle(symname, flags)); } (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx)); dbg_print(0, fmt, index, EC_XWORD(move->m_poffset), ELF_M_SIZE(move->m_info), move->m_repeat, move->m_stride, move->m_value, demangle(symname, flags)); } } } /* * parse_note_t is used to track the state used by parse_note_entry() * between calls, and also to return the results of each call. */ typedef struct { /* pns_ fields track progress through the data */ const char *pns_file; /* File name */ Cache *pns_cache; /* Note section cache entry */ size_t pns_size; /* # unprocessed data bytes */ Word *pns_data; /* # to next unused data byte */ /* pn_ fields return the results for a single call */ Word pn_namesz; /* Value of note namesz field */ Word pn_descsz; /* Value of note descsz field */ Word pn_type; /* Value of note type field */ const char *pn_name; /* if (namesz > 0) ptr to name bytes */ const char *pn_desc; /* if (descsx > 0) ptr to data bytes */ } parse_note_t; /* * Extract the various sub-parts of a note entry, and advance the * data pointer past it. * * entry: * The state pns_ fields contain current values for the Note section * * exit: * On success, True (1) is returned, the state pns_ fields have been * advanced to point at the start of the next entry, and the information * for the recovered note entry is found in the state pn_ fields. * * On failure, False (0) is returned. The values contained in state * are undefined. */ static int parse_note_entry(parse_note_t *state) { size_t pad, noteoff; noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size; /* * Make sure we can at least reference the 3 initial entries * (4-byte words) of the note information block. */ if (state->pns_size >= (sizeof (Word) * 3)) { state->pns_size -= (sizeof (Word) * 3); } else { (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ), state->pns_file, state->pns_cache->c_name, EC_WORD(noteoff)); return (0); } /* * Make sure any specified name string can be referenced. */ if ((state->pn_namesz = *state->pns_data++) != 0) { if (state->pns_size >= state->pn_namesz) { state->pns_size -= state->pn_namesz; } else { (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ), state->pns_file, state->pns_cache->c_name, EC_WORD(noteoff), EC_WORD(state->pn_namesz)); return (0); } } /* * Make sure any specified descriptor can be referenced. */ if ((state->pn_descsz = *state->pns_data++) != 0) { /* * If namesz isn't a 4-byte multiple, account for any * padding that must exist before the descriptor. */ if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) { pad = sizeof (Word) - pad; state->pns_size -= pad; } if (state->pns_size >= state->pn_descsz) { state->pns_size -= state->pn_descsz; } else { (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ), state->pns_file, state->pns_cache->c_name, EC_WORD(noteoff), EC_WORD(state->pn_namesz)); return (0); } } state->pn_type = *state->pns_data++; /* Name */ if (state->pn_namesz) { state->pn_name = (char *)state->pns_data; pad = (state->pn_namesz + (sizeof (Word) - 1)) & ~(sizeof (Word) - 1); /* LINTED */ state->pns_data = (Word *)(state->pn_name + pad); } /* * If multiple information blocks exist within a .note section * account for any padding that must exist before the next * information block. */ if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) { pad = sizeof (Word) - pad; if (state->pns_size > pad) state->pns_size -= pad; } /* Data */ if (state->pn_descsz) { state->pn_desc = (const char *)state->pns_data; /* LINTED */ state->pns_data = (Word *)(state->pn_desc + state->pn_descsz + pad); } return (1); } /* * Callback function for use with conv_str_to_c_literal() below. */ /*ARGSUSED2*/ static void c_literal_cb(const void *ptr, size_t size, void *uvalue) { (void) fwrite(ptr, size, 1, stdout); } /* * Traverse a note section analyzing each note information block. * The data buffers size is used to validate references before they are made, * and is decremented as each element is processed. */ void note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file) { int cnt = 0; int is_corenote; int do_swap; Conv_inv_buf_t inv_buf; parse_note_t pnstate; pnstate.pns_file = file; pnstate.pns_cache = cache; pnstate.pns_size = size; pnstate.pns_data = data; do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA]; /* * Print out a single `note' information block. */ while (pnstate.pns_size > 0) { if (parse_note_entry(&pnstate) == 0) return; /* * Is this a Solaris core note? Such notes all have * the name "CORE". */ is_corenote = (ehdr->e_type == ET_CORE) && (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) && (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name, MSG_STR_CORE_SIZE + 1) == 0); dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt)); cnt++; dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(pnstate.pn_namesz)); dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(pnstate.pn_descsz)); if (is_corenote) dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR), conv_cnote_type(pnstate.pn_type, 0, &inv_buf)); else dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(pnstate.pn_type)); if (pnstate.pn_namesz) { dbg_print(0, MSG_ORIG(MSG_NOTE_NAME)); /* * The name string can contain embedded 'null' * bytes and/or unprintable characters. Also, * the final NULL is documented in the ELF ABI * as being included in the namesz. So, display * the name using C literal string notation, and * include the terminating NULL in the output. * We don't show surrounding double quotes, as * that implies the termination that we are showing * explicitly. */ (void) fwrite(MSG_ORIG(MSG_STR_8SP), MSG_STR_8SP_SIZE, 1, stdout); conv_str_to_c_literal(pnstate.pn_name, pnstate.pn_namesz, c_literal_cb, NULL); dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); } if (pnstate.pn_descsz) { int hexdump = 1; /* * If this is a core note, let the corenote() * function handle it. */ if (is_corenote) { /* We only issue the bad arch error once */ static int badnote_done = 0; corenote_ret_t corenote_ret; corenote_ret = corenote(ehdr->e_machine, do_swap, pnstate.pn_type, pnstate.pn_desc, pnstate.pn_descsz); switch (corenote_ret) { case CORENOTE_R_OK_DUMP: hexdump = 1; break; case CORENOTE_R_OK: hexdump = 0; break; case CORENOTE_R_BADDATA: (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADCOREDATA), file); break; case CORENOTE_R_BADARCH: if (badnote_done) break; (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADCOREARCH), file, conv_ehdr_mach(ehdr->e_machine, 0, &inv_buf)); break; case CORENOTE_R_BADTYPE: (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADCORETYPE), file, EC_WORD(pnstate.pn_type)); break; } } /* * The default thing when we don't understand * the note data is to display it as hex bytes. */ if (hexdump) { dbg_print(0, MSG_ORIG(MSG_NOTE_DESC)); dump_hex_bytes(pnstate.pn_desc, pnstate.pn_descsz, 8, 4, 4); } } } } /* * Search for and process .note sections. * * Returns the number of note sections seen. */ static Word note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) { Word cnt, note_cnt = 0; /* * Otherwise look for any .note sections. */ for (cnt = 1; cnt < shnum; cnt++) { Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; if (shdr->sh_type != SHT_NOTE) continue; note_cnt++; if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type)) continue; /* * As these sections are often hand rolled, make sure they're * properly aligned before proceeding, and issue an error * as necessary. * * Note that we will continue on to display the note even * if it has bad alignment. We can do this safely, because * libelf knows the alignment required for SHT_NOTE, and * takes steps to deliver a properly aligned buffer to us * even if the actual file is misaligned. */ if (shdr->sh_offset & (sizeof (Word) - 1)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN), file, _cache->c_name); if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name); note_entry(_cache, (Word *)_cache->c_data->d_buf, /* LINTED */ (Word)_cache->c_data->d_size, ehdr, file); } return (note_cnt); } /* * The Linux Standard Base defines a special note named .note.ABI-tag * that is used to maintain Linux ABI information. Presence of this section * is a strong indication that the object should be considered to be * ELFOSABI_LINUX. * * This function returns True (1) if such a note is seen, and False (0) * otherwise. */ static int has_linux_abi_note(Cache *cache, Word shnum, const char *file) { Word cnt; for (cnt = 1; cnt < shnum; cnt++) { parse_note_t pnstate; Cache *_cache = &cache[cnt]; Shdr *shdr = _cache->c_shdr; /* * Section must be SHT_NOTE, must have the name * .note.ABI-tag, and must have data. */ if ((shdr->sh_type != SHT_NOTE) || (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG), _cache->c_name) != 0) || (_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; pnstate.pns_file = file; pnstate.pns_cache = _cache; pnstate.pns_size = _cache->c_data->d_size; pnstate.pns_data = (Word *)_cache->c_data->d_buf; while (pnstate.pns_size > 0) { Word *w; if (parse_note_entry(&pnstate) == 0) break; /* * The type must be 1, and the name must be "GNU". * The descsz must be at least 16 bytes. */ if ((pnstate.pn_type != 1) || (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) || (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name, MSG_STR_CORE_SIZE + 1) != 0) || (pnstate.pn_descsz < 16)) continue; /* * desc contains 4 32-bit fields. Field 0 must be 0, * indicating Linux. The second, third, and fourth * fields represent the earliest Linux kernel * version compatible with this object. */ /*LINTED*/ w = (Word *) pnstate.pn_desc; if (*w == 0) return (1); } } return (0); } /* * Determine an individual hash entry. This may be the initial hash entry, * or an associated chain entry. */ static void hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx, Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts, uint_t flags, int chain) { Sym *sym; const char *symname, *str; char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE]; ulong_t nbkt, nhash; if (symndx > symn) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file, EC_WORD(symndx), EC_WORD(hashndx)); symname = MSG_INTL(MSG_STR_UNKNOWN); } else { sym = (Sym *)(syms + symndx); symname = string(refsec, symndx, strsec, file, sym->st_name); } if (chain == 0) { (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), hashndx); str = (const char *)_bucket; } else str = MSG_ORIG(MSG_STR_EMPTY); (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(symndx)); dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx, demangle(symname, flags)); /* * Determine if this string is in the correct bucket. */ nhash = elf_hash(symname); nbkt = nhash % bkts; if (nbkt != hashndx) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file, hsecname, symname, EC_WORD(hashndx), nbkt); } } #define MAXCOUNT 500 static void hash(Cache *cache, Word shnum, const char *file, uint_t flags) { static int count[MAXCOUNT]; Word cnt; Word ndx, bkts, nchain; char number[MAXNDXSIZE]; for (cnt = 1; cnt < shnum; cnt++) { Word *hash, *chain; Cache *_cache = &cache[cnt]; Shdr *sshdr, *hshdr = _cache->c_shdr; char *ssecname, *hsecname = _cache->c_name; Sym *syms; Word symn; if (hshdr->sh_type != SHT_HASH) continue; /* * Check the hash table data and size. */ if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, hsecname); continue; } if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, hsecname); continue; } hash = (Word *)_cache->c_data->d_buf; bkts = *hash++; nchain = *hash++; chain = hash + bkts; /* * The section holds the sizes in addition to the buckets and * chains. */ if (_cache->c_data->d_size < (bkts + nchain + 2) * sizeof (uint_t)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, hsecname); continue; } /* * Get the data buffer for the associated symbol table. */ if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, hsecname, EC_WORD(hshdr->sh_link)); continue; } _cache = &cache[hshdr->sh_link]; ssecname = _cache->c_name; if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, ssecname); continue; } sshdr = _cache->c_shdr; if ((sshdr->sh_entsize == 0) || (sshdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, ssecname); continue; } /* LINTED */ symn = (Word)(sshdr->sh_size / sshdr->sh_entsize); /* * Check that there is a chain for each symbol. */ if (symn > nchain) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, ssecname); continue; } /* * Get the associated string table section. */ if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK), file, ssecname, EC_WORD(sshdr->sh_link)); continue; } dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname); dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO)); /* * Loop through the hash buckets, printing the appropriate * symbols. */ for (ndx = 0; ndx < bkts; ndx++, hash++) { Word _ndx, _cnt; if (*hash == 0) { count[0]++; continue; } /* * Each hash bucket must contain to a valid chain index. * Because the symbol table is checked to be the same * length as the chain array, this also implicitly * checks those bounds. */ if (*hash > nchain) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADCHAINIDX), file, ssecname, EC_WORD(*hash), EC_WORD(ndx), EC_WORD(nchain)); continue; } hash_entry(_cache, &cache[sshdr->sh_link], hsecname, ndx, *hash, symn, syms, file, bkts, flags, 0); /* * Determine if any other symbols are chained to this * bucket. */ _ndx = chain[*hash]; _cnt = 1; while (_ndx) { if (_ndx > nchain) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADCHAINIDX), file, ssecname, EC_WORD(_ndx), EC_WORD(ndx), EC_WORD(nchain)); break; } hash_entry(_cache, &cache[sshdr->sh_link], hsecname, ndx, _ndx, symn, syms, file, bkts, flags, 1); _ndx = chain[_ndx]; _cnt++; } if (_cnt >= MAXCOUNT) { (void) fprintf(stderr, MSG_INTL(MSG_HASH_OVERFLW), file, _cache->c_name, EC_WORD(ndx), EC_WORD(_cnt)); } else count[_cnt]++; } break; } /* * Print out the count information. */ bkts = cnt = 0; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); for (ndx = 0; ndx < MAXCOUNT; ndx++) { Word _cnt; if ((_cnt = count[ndx]) == 0) continue; (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), _cnt); dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number, EC_WORD(ndx)); bkts += _cnt; cnt += (Word)(ndx * _cnt); } if (cnt) { (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER), bkts); dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number, EC_WORD(cnt)); } } static void group(Cache *cache, Word shnum, const char *file, uint_t flags) { Word scnt; for (scnt = 1; scnt < shnum; scnt++) { Cache *_cache = &cache[scnt]; Shdr *shdr = _cache->c_shdr; Word *grpdata, gcnt, grpcnt, symnum, unknown; Cache *symsec, *strsec; Sym *syms, *sym; char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10]; const char *grpnam; if (shdr->sh_type != SHT_GROUP) continue; if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type)) continue; if ((_cache->c_data == NULL) || ((grpdata = (Word *)_cache->c_data->d_buf) == NULL)) continue; grpcnt = shdr->sh_size / sizeof (Word); /* * Get the data buffer for the associated symbol table and * string table. */ if (stringtbl(cache, 1, scnt, shnum, file, &symnum, &symsec, &strsec) == 0) return; syms = symsec->c_data->d_buf; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name); dbg_print(0, MSG_INTL(MSG_GRP_TITLE)); /* * The first element of the group defines the group. The * associated symbol is defined by the sh_link field. */ if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO), file, _cache->c_name, EC_WORD(shdr->sh_info)); return; } (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT)); if (grpdata[0] & GRP_COMDAT) { (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT)); } if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) { size_t len = strlen(flgstrbuf); (void) snprintf(&flgstrbuf[len], (MSG_GRP_COMDAT_SIZE + 10 - len), MSG_ORIG(MSG_GRP_UNKNOWN), unknown); } (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT)); sym = (Sym *)(syms + shdr->sh_info); /* * The GNU assembler can use section symbols as the signature * symbol as described by this comment in the gold linker * (found via google): * * It seems that some versions of gas will create a * section group associated with a section symbol, and * then fail to give a name to the section symbol. In * such a case, use the name of the section. * * In order to support such objects, we do the same. */ grpnam = string(_cache, 0, strsec, file, sym->st_name); if (((sym->st_name == 0) || (*grpnam == '\0')) && (ELF_ST_TYPE(sym->st_info) == STT_SECTION)) grpnam = cache[sym->st_shndx].c_name; dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf, demangle(grpnam, flags)); for (gcnt = 1; gcnt < grpcnt; gcnt++) { char index[MAXNDXSIZE]; const char *name; (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt)); if ((grpdata[gcnt] == 0) || (grpdata[gcnt] >= shnum)) name = MSG_INTL(MSG_GRP_INVALSCN); else name = cache[grpdata[gcnt]].c_name; (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name, EC_XWORD(grpdata[gcnt])); } } } static void got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file) { Cache *gotcache = NULL, *symtab = NULL; Addr gotbgn, gotend; Shdr *gotshdr; Word cnt, gotents, gotndx; size_t gentsize; Got_info *gottable; char *gotdata; Sym *gotsym; Xword gotsymaddr; uint_t sys_encoding; /* * First, find the got. */ for (cnt = 1; cnt < shnum; cnt++) { if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT), MSG_ELF_GOT_SIZE) == 0) { gotcache = &cache[cnt]; break; } } if (gotcache == NULL) return; /* * A got section within a relocatable object is suspicious. */ if (ehdr->e_type == ET_REL) { (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file, gotcache->c_name); } gotshdr = gotcache->c_shdr; if (gotshdr->sh_size == 0) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, gotcache->c_name); return; } gotbgn = gotshdr->sh_addr; gotend = gotbgn + gotshdr->sh_size; /* * Some architectures don't properly set the sh_entsize for the GOT * table. If it's not set, default to a size of a pointer. */ if ((gentsize = gotshdr->sh_entsize) == 0) gentsize = sizeof (Xword); if ((gotcache->c_data == NULL) || (gotcache->c_data->d_buf == NULL)) return; /* LINTED */ gotents = (Word)(gotshdr->sh_size / gentsize); gotdata = gotcache->c_data->d_buf; if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, strerror(err)); return; } /* * Now we scan through all the sections looking for any relocations * that may be against the GOT. Since these may not be isolated to a * .rel[a].got section we check them all. * While scanning sections save the symbol table entry (a symtab * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_. */ for (cnt = 1; cnt < shnum; cnt++) { Word type, symnum; Xword relndx, relnum, relsize; void *rels; Sym *syms; Cache *symsec, *strsec; Cache *_cache = &cache[cnt]; Shdr *shdr; shdr = _cache->c_shdr; type = shdr->sh_type; if ((symtab == 0) && (type == SHT_DYNSYM)) { symtab = _cache; continue; } if (type == SHT_SYMTAB) { symtab = _cache; continue; } if ((type != SHT_RELA) && (type != SHT_REL)) continue; /* * Decide entry size. */ if (((relsize = shdr->sh_entsize) == 0) || (relsize > shdr->sh_size)) { if (type == SHT_RELA) relsize = sizeof (Rela); else relsize = sizeof (Rel); } /* * Determine the number of relocations available. */ if (shdr->sh_size == 0) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, _cache->c_name); continue; } if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL)) continue; rels = _cache->c_data->d_buf; relnum = shdr->sh_size / relsize; /* * Get the data buffer for the associated symbol table and * string table. */ if (stringtbl(cache, 1, cnt, shnum, file, &symnum, &symsec, &strsec) == 0) continue; syms = symsec->c_data->d_buf; /* * Loop through the relocation entries. */ for (relndx = 0; relndx < relnum; relndx++, rels = (void *)((char *)rels + relsize)) { char section[BUFSIZ]; Addr offset; Got_info *gip; Word symndx, reltype; Rela *rela; Rel *rel; /* * Unravel the relocation. */ if (type == SHT_RELA) { rela = (Rela *)rels; symndx = ELF_R_SYM(rela->r_info); reltype = ELF_R_TYPE(rela->r_info, ehdr->e_machine); offset = rela->r_offset; } else { rel = (Rel *)rels; symndx = ELF_R_SYM(rel->r_info); reltype = ELF_R_TYPE(rel->r_info, ehdr->e_machine); offset = rel->r_offset; } /* * Only pay attention to relocations against the GOT. */ if ((offset < gotbgn) || (offset >= gotend)) continue; if ((gotshdr->sh_entsize == 0) || (gotshdr->sh_size == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ), file, gotcache->c_name); continue; } /* LINTED */ gotndx = (Word)((offset - gotbgn) / gotshdr->sh_entsize); gip = &gottable[gotndx]; if (gip->g_reltype != 0) { (void) fprintf(stderr, MSG_INTL(MSG_GOT_MULTIPLE), file, EC_WORD(gotndx), EC_ADDR(offset)); continue; } if (symndx) gip->g_symname = relsymname(cache, _cache, strsec, symndx, symnum, relndx, syms, section, BUFSIZ, file); gip->g_reltype = reltype; gip->g_rel = rels; } } if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL, symtab, file)) gotsymaddr = gotsym->st_value; else gotsymaddr = gotbgn; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name); Elf_got_title(0); sys_encoding = _elf_sys_encoding(); for (gotndx = 0; gotndx < gotents; gotndx++) { Got_info *gip; Sword gindex; Addr gaddr; Xword gotentry; gip = &gottable[gotndx]; gaddr = gotbgn + (gotndx * gentsize); gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize; if (gentsize == sizeof (Word)) /* LINTED */ gotentry = (Xword)(*((Word *)(gotdata) + gotndx)); else /* LINTED */ gotentry = *((Xword *)(gotdata) + gotndx); Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine, ehdr->e_ident[EI_DATA], sys_encoding, gip->g_reltype, gip->g_rel, gip->g_symname); } free(gottable); } void checksum(Elf *elf) { dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf)); } /* * This variable is used by regular() to communicate the address of * the section header cache to sort_shdr_ndx_arr(). Unfortunately, * the qsort() interface does not include a userdata argument by which * such arbitrary data can be passed, so we are stuck using global data. */ static Cache *sort_shdr_ndx_arr_cache; /* * Used with qsort() to sort the section indices so that they can be * used to access the section headers in order of increasing data offset. * * entry: * sort_shdr_ndx_arr_cache - Contains address of * section header cache. * v1, v2 - Point at elements of sort_shdr_bits array to be compared. * * exit: * Returns -1 (less than), 0 (equal) or 1 (greater than). */ static int sort_shdr_ndx_arr(const void *v1, const void *v2) { Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1); Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2); if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset) return (-1); if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset) return (1); return (0); } static int shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx, size_t shnum, Cache **cache_ret, Word flags) { Elf_Scn *scn; Elf_Data *data; size_t ndx; Shdr *nameshdr; char *names = NULL; Cache *cache, *_cache; size_t *shdr_ndx_arr, shdr_ndx_arr_cnt; /* * Obtain the .shstrtab data buffer to provide the required section * name strings. */ if (shstrndx == SHN_UNDEF) { /* * It is rare, but legal, for an object to lack a * header string table section. */ names = NULL; (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file); } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETSCN)); (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR), EC_XWORD(shstrndx)); } else if ((data = elf_getdata(scn, NULL)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETDATA)); (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA), EC_XWORD(shstrndx)); } else if ((nameshdr = elf_getshdr(scn)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), EC_WORD(elf_ndxscn(scn))); } else if ((names = data->d_buf) == NULL) (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file); /* * Allocate a cache to maintain a descriptor for each section. */ if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, strerror(err)); return (0); } *cache = cache_init; _cache = cache; _cache++; /* * Allocate an array that will hold the section index for * each section that has data in the ELF file: * * - Is not a NOBITS section * - Data has non-zero length * * Note that shnum is an upper bound on the size required. It * is likely that we won't use a few of these array elements. * Allocating a modest amount of extra memory in this case means * that we can avoid an extra loop to count the number of needed * items, and can fill this array immediately in the first loop * below. */ if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, strerror(err)); return (0); } shdr_ndx_arr_cnt = 0; /* * Traverse the sections of the file. This gathering of data is * carried out in two passes. First, the section headers are captured * and the section header names are evaluated. A verification pass is * then carried out over the section information. Files have been * known to exhibit overlapping (and hence erroneous) section header * information. * * Finally, the data for each section is obtained. This processing is * carried out after section verification because should any section * header overlap occur, and a file needs translating (ie. xlate'ing * information from a non-native architecture file), then the process * of translation can corrupt the section header information. Of * course, if there is any section overlap, the data related to the * sections is going to be compromised. However, it is the translation * of this data that has caused problems with elfdump()'s ability to * extract the data. */ for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn); ndx++, _cache++) { char scnndxnm[100]; _cache->c_ndx = ndx; _cache->c_scn = scn; if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), EC_WORD(elf_ndxscn(scn))); } /* * If this section has data in the file, include it in * the array of sections to check for address overlap. */ if ((_cache->c_shdr->sh_size != 0) && (_cache->c_shdr->sh_type != SHT_NOBITS)) shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx; /* * If a shstrtab exists, assign the section name. */ if (names && _cache->c_shdr) { if (_cache->c_shdr->sh_name && /* LINTED */ (nameshdr->sh_size > _cache->c_shdr->sh_name)) { const char *symname; char *secname; secname = names + _cache->c_shdr->sh_name; /* * A SUN naming convention employs a "%" within * a section name to indicate a section/symbol * name. This originated from the compilers * -xF option, that places functions into their * own sections. This convention (which has no * formal standard) has also been followed for * COMDAT sections. To demangle the symbol * name, the name must be separated from the * section name. */ if (((flags & FLG_CTL_DEMANGLE) == 0) || ((symname = strchr(secname, '%')) == NULL)) _cache->c_name = secname; else { size_t secsz = ++symname - secname; size_t strsz; symname = demangle(symname, flags); strsz = secsz + strlen(symname) + 1; if ((_cache->c_name = malloc(strsz)) == NULL) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, strerror(err)); return (0); } (void) snprintf(_cache->c_name, strsz, MSG_ORIG(MSG_FMT_SECSYM), EC_WORD(secsz), secname, symname); } continue; } /* * Generate an error if the section name index is zero * or exceeds the shstrtab data. Fall through to * fabricate a section name. */ if ((_cache->c_shdr->sh_name == 0) || /* LINTED */ (nameshdr->sh_size <= _cache->c_shdr->sh_name)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHNAME), file, EC_WORD(ndx), EC_XWORD(_cache->c_shdr->sh_name)); } } /* * If there exists no shstrtab data, or a section header has no * name (an invalid index of 0), then compose a name for the * section. */ (void) snprintf(scnndxnm, sizeof (scnndxnm), MSG_INTL(MSG_FMT_SCNNDX), ndx); if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file, strerror(err)); return (0); } (void) strcpy(_cache->c_name, scnndxnm); } /* * Having collected all the sections, validate their address range. * Cases have existed where the section information has been invalid. * This can lead to all sorts of other, hard to diagnose errors, as * each section is processed individually (ie. with elf_getdata()). * Here, we carry out some address comparisons to catch a family of * overlapping memory issues we have observed (likely, there are others * that we have yet to discover). * * Note, should any memory overlap occur, obtaining any additional * data from the file is questionable. However, it might still be * possible to inspect the ELF header, Programs headers, or individual * sections, so rather than bailing on an error condition, continue * processing to see if any data can be salvaged. */ if (shdr_ndx_arr_cnt > 1) { sort_shdr_ndx_arr_cache = cache; qsort(shdr_ndx_arr, shdr_ndx_arr_cnt, sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr); } for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) { Cache *_cache = cache + shdr_ndx_arr[ndx]; Shdr *shdr = _cache->c_shdr; Off bgn1, bgn = shdr->sh_offset; Off end1, end = shdr->sh_offset + shdr->sh_size; size_t ndx1; /* * Check the section against all following ones, reporting * any overlaps. Since we've sorted the sections by offset, * we can stop after the first comparison that fails. There * are no overlaps in a properly formed ELF file, in which * case this algorithm runs in O(n) time. This will degenerate * to O(n^2) for a completely broken file. Such a file is * (1) highly unlikely, and (2) unusable, so it is reasonable * for the analysis to take longer. */ for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) { Cache *_cache1 = cache + shdr_ndx_arr[ndx1]; Shdr *shdr1 = _cache1->c_shdr; bgn1 = shdr1->sh_offset; end1 = shdr1->sh_offset + shdr1->sh_size; if (((bgn1 <= bgn) && (end1 > bgn)) || ((bgn1 < end) && (end1 >= end))) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_SECMEMOVER), file, EC_WORD(elf_ndxscn(_cache->c_scn)), _cache->c_name, EC_OFF(bgn), EC_OFF(end), EC_WORD(elf_ndxscn(_cache1->c_scn)), _cache1->c_name, EC_OFF(bgn1), EC_OFF(end1)); } else { /* No overlap, so can stop */ break; } } /* * In addition to checking for sections overlapping * each other (done above), we should also make sure * the section doesn't overlap the section header array. */ bgn1 = ehdr->e_shoff; end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum); if (((bgn1 <= bgn) && (end1 > bgn)) || ((bgn1 < end) && (end1 >= end))) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1), EC_OFF(end1), EC_WORD(elf_ndxscn(_cache->c_scn)), _cache->c_name, EC_OFF(bgn), EC_OFF(end)); } } /* * Obtain the data for each section. */ for (ndx = 1; ndx < shnum; ndx++) { Cache *_cache = &cache[ndx]; Elf_Scn *scn = _cache->c_scn; if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETDATA)); (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA), EC_WORD(elf_ndxscn(scn))); } /* * If a string table, verify that it has NULL first and * final bytes. */ if ((_cache->c_shdr->sh_type == SHT_STRTAB) && (_cache->c_data != NULL) && (_cache->c_data->d_buf != NULL) && (_cache->c_data->d_size > 0)) { const char *s = _cache->c_data->d_buf; if ((*s != '\0') || (*(s + _cache->c_data->d_size - 1) != '\0')) (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR), file, _cache->c_name); } } return (1); } /* * Generate a cache of section headers and related information * for use by the rest of elfdump. If requested (or the file * contains no section headers), we generate a fake set of * headers from the information accessible from the program headers. * Otherwise, we use the real section headers contained in the file. */ static int create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache, size_t shstrndx, size_t *shnum, uint_t *flags) { /* * If there are no section headers, then resort to synthesizing * section headers from the program headers. This is normally * only done by explicit request, but in this case there's no * reason not to go ahead, since the alternative is simply to quit. */ if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file); *flags |= FLG_CTL_FAKESHDR; } if (*flags & FLG_CTL_FAKESHDR) { if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0) return (0); } else { if (shdr_cache(file, elf, ehdr, shstrndx, *shnum, cache, *flags) == 0) return (0); } return (1); } int regular(const char *file, int fd, Elf *elf, uint_t flags, const char *wname, int wfd, uchar_t osabi) { enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED; Elf_Scn *scn; Ehdr *ehdr; size_t ndx, shstrndx, shnum, phnum; Shdr *shdr; Cache *cache; VERSYM_STATE versym = { 0 }; int ret = 0; int addr_align; if ((ehdr = elf_getehdr(elf)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETEHDR)); return (ret); } if (elf_getshdrnum(elf, &shnum) == -1) { failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM)); return (ret); } if (elf_getshdrstrndx(elf, &shstrndx) == -1) { failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX)); return (ret); } if (elf_getphdrnum(elf, &phnum) == -1) { failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM)); return (ret); } /* * If the user requested section headers derived from the * program headers (-P option) and this file doesn't have * any program headers (i.e. ET_REL), then we can't do it. */ if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) { (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file); return (ret); } if ((scn = elf_getscn(elf, 0)) != NULL) { if ((shdr = elf_getshdr(scn)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETSHDR)); (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0); return (ret); } } else shdr = NULL; /* * Print the elf header. */ if (flags & FLG_SHOW_EHDR) Elf_ehdr(0, ehdr, shdr); /* * If the section headers or program headers have inadequate * alignment for the class of object, print a warning. libelf * can handle such files, but programs that use them can crash * when they dereference unaligned items. * * Note that the AMD64 ABI, although it is a 64-bit architecture, * allows access to data types smaller than 128-bits to be on * word alignment. */ if (ehdr->e_machine == EM_AMD64) addr_align = sizeof (Word); else addr_align = sizeof (Addr); if (ehdr->e_phoff & (addr_align - 1)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file); if (ehdr->e_shoff & (addr_align - 1)) (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file); /* * Determine the Operating System ABI (osabi) we will use to * interpret the object. */ if (flags & FLG_CTL_OSABI) { /* * If the user explicitly specifies '-O none', we need * to display a completely generic view of the file. * However, libconv is written to assume that ELFOSABI_NONE * is equivalent to ELFOSABI_SOLARIS. To get the desired * effect, we use an osabi that libconv has no knowledge of. */ if (osabi == ELFOSABI_NONE) osabi = ELFOSABI_UNKNOWN4; } else { /* Determine osabi from file */ osabi = ehdr->e_ident[EI_OSABI]; if (osabi == ELFOSABI_NONE) { /* * Chicken/Egg scenario: * * Ideally, we wait to create the section header cache * until after the program headers are printed. If we * only output program headers, we can skip building * the cache entirely. * * Proper interpretation of program headers requires * the osabi, which is supposed to be in the ELF header. * However, many systems (Solaris and Linux included) * have a history of setting the osabi to the generic * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS * in such cases, but would like to check the object * to see if it has a Linux .note.ABI-tag section, * which implies ELFOSABI_LINUX. This requires a * section header cache. * * To break the cycle, we create section headers now * if osabi is ELFOSABI_NONE, and later otherwise. * If it succeeds, we use them, if not, we defer * exiting until after the program headers are out. */ if (create_cache(file, fd, elf, ehdr, &cache, shstrndx, &shnum, &flags) == 0) { cache_state = CACHE_FAIL; } else { cache_state = CACHE_OK; if (has_linux_abi_note(cache, shnum, file)) { Conv_inv_buf_t ibuf1, ibuf2; (void) fprintf(stderr, MSG_INTL(MSG_INFO_LINUXOSABI), file, conv_ehdr_osabi(osabi, 0, &ibuf1), conv_ehdr_osabi(ELFOSABI_LINUX, 0, &ibuf2)); osabi = ELFOSABI_LINUX; } } } /* * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS. * Mapping NONE to SOLARIS simplifies the required test. */ if (osabi == ELFOSABI_NONE) osabi = ELFOSABI_SOLARIS; } /* * Print the program headers. */ if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) { Phdr *phdr; if ((phdr = elf_getphdr(elf)) == NULL) { failure(file, MSG_ORIG(MSG_ELF_GETPHDR)); return (ret); } for (ndx = 0; ndx < phnum; phdr++, ndx++) { if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE, NULL, ndx, phdr->p_type)) continue; dbg_print(0, MSG_ORIG(MSG_STR_EMPTY)); dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx)); Elf_phdr(0, osabi, ehdr->e_machine, phdr); } } /* * If we have flag bits set that explicitly require a show or calc * operation, but none of them require the section headers, then * we are done and can return now. */ if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) && ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0)) return (ret); /* * Everything from this point on requires section headers. * If we have no section headers, there is no reason to continue. * * If we tried above to create the section header cache and failed, * it is time to exit. Otherwise, create it if needed. */ switch (cache_state) { case CACHE_NEEDED: if (create_cache(file, fd, elf, ehdr, &cache, shstrndx, &shnum, &flags) == 0) return (ret); break; case CACHE_OK: break; case CACHE_FAIL: return (ret); } if (shnum <= 1) goto done; /* * If -w was specified, find and write out the section(s) data. */ if (wfd) { for (ndx = 1; ndx < shnum; ndx++) { Cache *_cache = &cache[ndx]; if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, ndx, _cache->c_shdr->sh_type) && _cache->c_data && _cache->c_data->d_buf) { if (write(wfd, _cache->c_data->d_buf, _cache->c_data->d_size) != _cache->c_data->d_size) { int err = errno; (void) fprintf(stderr, MSG_INTL(MSG_ERR_WRITE), wname, strerror(err)); /* * Return an exit status of 1, because * the failure is not related to the * ELF file, but by system resources. */ ret = 1; goto done; } } } } /* * If we have no flag bits set that explicitly require a show or calc * operation, but match options (-I, -N, -T) were used, then run * through the section headers and see if we can't deduce show flags * from the match options given. * * We don't do this if -w was specified, because (-I, -N, -T) used * with -w in lieu of some other option is supposed to be quiet. */ if ((wfd == 0) && (flags & FLG_CTL_MATCH) && ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) { for (ndx = 1; ndx < shnum; ndx++) { Cache *_cache = &cache[ndx]; if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name, ndx, _cache->c_shdr->sh_type)) continue; switch (_cache->c_shdr->sh_type) { case SHT_PROGBITS: /* * Heuristic time: It is usually bad form * to assume the meaning/format of a PROGBITS * section based on its name. However, there * are ABI mandated exceptions. Check for * these special names. */ /* The ELF ABI specifies .interp and .got */ if (strcmp(_cache->c_name, MSG_ORIG(MSG_ELF_INTERP)) == 0) { flags |= FLG_SHOW_INTERP; break; } if (strcmp(_cache->c_name, MSG_ORIG(MSG_ELF_GOT)) == 0) { flags |= FLG_SHOW_GOT; break; } /* * The GNU compilers, and amd64 ABI, define * .eh_frame and .eh_frame_hdr. The Sun * C++ ABI defines .exception_ranges. */ if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM), MSG_SCN_FRM_SIZE) == 0) || (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0)) { flags |= FLG_SHOW_UNWIND; break; } break; case SHT_SYMTAB: case SHT_DYNSYM: case SHT_SUNW_LDYNSYM: case SHT_SUNW_versym: case SHT_SYMTAB_SHNDX: flags |= FLG_SHOW_SYMBOLS; break; case SHT_RELA: case SHT_REL: flags |= FLG_SHOW_RELOC; break; case SHT_HASH: flags |= FLG_SHOW_HASH; break; case SHT_DYNAMIC: flags |= FLG_SHOW_DYNAMIC; break; case SHT_NOTE: flags |= FLG_SHOW_NOTE; break; case SHT_GROUP: flags |= FLG_SHOW_GROUP; break; case SHT_SUNW_symsort: case SHT_SUNW_tlssort: flags |= FLG_SHOW_SORT; break; case SHT_SUNW_cap: flags |= FLG_SHOW_CAP; break; case SHT_SUNW_move: flags |= FLG_SHOW_MOVE; break; case SHT_SUNW_syminfo: flags |= FLG_SHOW_SYMINFO; break; case SHT_SUNW_verdef: case SHT_SUNW_verneed: flags |= FLG_SHOW_VERSIONS; break; case SHT_AMD64_UNWIND: flags |= FLG_SHOW_UNWIND; break; } } } if (flags & FLG_SHOW_SHDR) sections(file, cache, shnum, ehdr, osabi); if (flags & FLG_SHOW_INTERP) interp(file, cache, shnum, phnum, elf, ehdr); if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)) versions(cache, shnum, file, flags, &versym); if (flags & FLG_SHOW_SYMBOLS) symbols(cache, shnum, ehdr, osabi, &versym, file, flags); if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS)) sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags); if (flags & FLG_SHOW_HASH) hash(cache, shnum, file, flags); if (flags & FLG_SHOW_GOT) got(cache, shnum, ehdr, file); if (flags & FLG_SHOW_GROUP) group(cache, shnum, file, flags); if (flags & FLG_SHOW_SYMINFO) syminfo(cache, shnum, ehdr, osabi, file); if (flags & FLG_SHOW_RELOC) reloc(cache, shnum, ehdr, file); if (flags & FLG_SHOW_DYNAMIC) dynamic(cache, shnum, ehdr, osabi, file, phnum, elf); if (flags & FLG_SHOW_NOTE) { Word note_cnt; size_t note_shnum; Cache *note_cache; note_cnt = note(cache, shnum, ehdr, file); /* * Solaris core files have section headers, but these * headers do not include SHT_NOTE sections that reference * the core note sections. This means that note() won't * find the core notes. Fake section headers (-P option) * recover these sections, but it is inconvenient to require * users to specify -P in this situation. If the following * are all true: * * - No note sections were found * - This is a core file * - We are not already using fake section headers * * then we will automatically generate fake section headers * and then process them in a second call to note(). */ if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) && !(flags & FLG_CTL_FAKESHDR) && (fake_shdr_cache(file, fd, elf, ehdr, ¬e_cache, ¬e_shnum) != 0)) { (void) note(note_cache, note_shnum, ehdr, file); fake_shdr_cache_free(note_cache, note_shnum); } } if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS)) move(cache, shnum, file, flags); if (flags & FLG_CALC_CHECKSUM) checksum(elf); if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS)) cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags); if ((flags & FLG_SHOW_UNWIND) && ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))) unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags); /* Release the memory used to cache section headers */ done: if (flags & FLG_CTL_FAKESHDR) fake_shdr_cache_free(cache, shnum); else free(cache); return (ret); }