/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * sadc.c writes system activity binary data to a file or stdout. * * Usage: sadc [t n] [file] * * if t and n are not specified, it writes a dummy record to data file. This * usage is particularly used at system booting. If t and n are specified, it * writes system data n times to file every t seconds. In both cases, if file * is not specified, it writes data to stdout. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sa.h" #define MAX(x1, x2) ((x1) >= (x2) ? (x1) : (x2)) static kstat_ctl_t *kc; /* libkstat cookie */ static int ncpus; static int oncpus; static kstat_t **cpu_stat_list = NULL; static kstat_t **ocpu_stat_list = NULL; static int ncaches; static kstat_t **kmem_cache_list = NULL; static kstat_t *sysinfo_ksp, *vminfo_ksp, *var_ksp; static kstat_t *system_misc_ksp, *ufs_inode_ksp, *kmem_oversize_ksp; static kstat_t *file_cache_ksp; static kstat_named_t *ufs_inode_size_knp, *nproc_knp; static kstat_named_t *file_total_knp, *file_avail_knp; static kstat_named_t *oversize_alloc_knp, *oversize_fail_knp; static int slab_create_index, slab_destroy_index, slab_size_index; static int buf_size_index, buf_avail_index, alloc_fail_index; static struct iodevinfo zeroiodev = { NULL, NULL }; static struct iodevinfo *firstiodev = NULL; static struct iodevinfo *lastiodev = NULL; static struct iodevinfo *snip = NULL; static ulong_t niodevs; static void all_stat_init(void); static int all_stat_load(void); static void fail(int, char *, ...); static void safe_zalloc(void **, int, int); static kid_t safe_kstat_read(kstat_ctl_t *, kstat_t *, void *); static kstat_t *safe_kstat_lookup(kstat_ctl_t *, char *, int, char *); static void *safe_kstat_data_lookup(kstat_t *, char *); static int safe_kstat_data_index(kstat_t *, char *); static void init_iodevs(void); static int iodevinfo_load(void); static int kstat_copy(const kstat_t *, kstat_t *); static void diff_two_arrays(kstat_t ** const [], size_t, size_t, kstat_t ** const []); static void compute_cpu_stat_adj(void); static char *cmdname = "sadc"; static struct var var; static struct sa d; static int64_t cpu_stat_adj[CPU_STATES] = {0}; static long ninode; int main(int argc, char *argv[]) { int ct; unsigned ti; int fp; time_t min; struct stat buf; char *fname; struct iodevinfo *iodev; off_t flength; ct = argc >= 3? atoi(argv[2]): 0; min = time((time_t *)0); ti = argc >= 3? atoi(argv[1]): 0; if ((kc = kstat_open()) == NULL) fail(1, "kstat_open(): can't open /dev/kstat"); all_stat_init(); init_iodevs(); if (argc == 3 || argc == 1) { /* * no data file is specified, direct data to stdout. */ fp = 1; } else { struct flock lock; fname = (argc == 2) ? argv[1] : argv[3]; /* * Open or Create a data file. If the file doesn't exist, then * it will be created. */ if ((fp = open(fname, O_WRONLY | O_APPEND | O_CREAT, 0644)) == -1) fail(1, "can't open data file"); /* * Lock the entire data file to prevent data corruption */ lock.l_type = F_WRLCK; lock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; if (fcntl(fp, F_SETLK, &lock) == -1) fail(1, "can't lock data file"); /* * Get data file statistics for use in determining whether * truncation required and where rollback recovery should * be applied. */ if (fstat(fp, &buf) == -1) fail(1, "can't get data file information"); /* * If the data file was opened and is too old, truncate it */ if (min - buf.st_mtime > 86400) if (ftruncate(fp, 0) == -1) fail(1, "can't truncate data file"); /* * Remember filesize for rollback on error (bug #1223549) */ flength = buf.st_size; } memset(&d, 0, sizeof (d)); /* * If n == 0, write the additional dummy record. */ if (ct == 0) { d.valid = 0; d.ts = min; d.niodevs = niodevs; if (write(fp, &d, sizeof (struct sa)) != sizeof (struct sa)) ftruncate(fp, flength), fail(1, "write failed"); for (iodev = firstiodev; iodev; iodev = iodev->next) { if (write(fp, iodev, sizeof (struct iodevinfo)) != sizeof (struct iodevinfo)) ftruncate(fp, flength), fail(1, "write failed"); } } for (;;) { do { (void) kstat_chain_update(kc); all_stat_init(); init_iodevs(); } while (all_stat_load() || iodevinfo_load()); d.ts = time((time_t *)0); d.valid = 1; d.niodevs = niodevs; if (write(fp, &d, sizeof (struct sa)) != sizeof (struct sa)) ftruncate(fp, flength), fail(1, "write failed"); for (iodev = firstiodev; iodev; iodev = iodev->next) { if (write(fp, iodev, sizeof (struct iodevinfo)) != sizeof (struct iodevinfo)) ftruncate(fp, flength), fail(1, "write failed"); } if (--ct > 0) { sleep(ti); } else { close(fp); return (0); } } /*NOTREACHED*/ } /* * Get various KIDs for subsequent all_stat_load operations. */ static void all_stat_init(void) { kstat_t *ksp; /* * Initialize global statistics */ sysinfo_ksp = safe_kstat_lookup(kc, "unix", 0, "sysinfo"); vminfo_ksp = safe_kstat_lookup(kc, "unix", 0, "vminfo"); kmem_oversize_ksp = safe_kstat_lookup(kc, "vmem", -1, "kmem_oversize"); var_ksp = safe_kstat_lookup(kc, "unix", 0, "var"); system_misc_ksp = safe_kstat_lookup(kc, "unix", 0, "system_misc"); file_cache_ksp = safe_kstat_lookup(kc, "unix", 0, "file_cache"); ufs_inode_ksp = kstat_lookup(kc, "ufs", 0, "inode_cache"); safe_kstat_read(kc, system_misc_ksp, NULL); nproc_knp = safe_kstat_data_lookup(system_misc_ksp, "nproc"); safe_kstat_read(kc, file_cache_ksp, NULL); file_avail_knp = safe_kstat_data_lookup(file_cache_ksp, "buf_avail"); file_total_knp = safe_kstat_data_lookup(file_cache_ksp, "buf_total"); safe_kstat_read(kc, kmem_oversize_ksp, NULL); oversize_alloc_knp = safe_kstat_data_lookup(kmem_oversize_ksp, "mem_total"); oversize_fail_knp = safe_kstat_data_lookup(kmem_oversize_ksp, "fail"); if (ufs_inode_ksp != NULL) { safe_kstat_read(kc, ufs_inode_ksp, NULL); ufs_inode_size_knp = safe_kstat_data_lookup(ufs_inode_ksp, "size"); ninode = ((kstat_named_t *) safe_kstat_data_lookup(ufs_inode_ksp, "maxsize"))->value.l; } /* * Load constant values now -- no need to reread each time */ safe_kstat_read(kc, var_ksp, (void *) &var); /* * Initialize per-CPU and per-kmem-cache statistics */ ncpus = ncaches = 0; for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) { if (strncmp(ksp->ks_name, "cpu_stat", 8) == 0) ncpus++; if (strcmp(ksp->ks_class, "kmem_cache") == 0) ncaches++; } safe_zalloc((void **)&cpu_stat_list, ncpus * sizeof (kstat_t *), 1); safe_zalloc((void **)&kmem_cache_list, ncaches * sizeof (kstat_t *), 1); ncpus = ncaches = 0; for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) { if (strncmp(ksp->ks_name, "cpu_stat", 8) == 0 && kstat_read(kc, ksp, NULL) != -1) cpu_stat_list[ncpus++] = ksp; if (strcmp(ksp->ks_class, "kmem_cache") == 0 && kstat_read(kc, ksp, NULL) != -1) kmem_cache_list[ncaches++] = ksp; } if (ncpus == 0) fail(1, "can't find any cpu statistics"); if (ncaches == 0) fail(1, "can't find any kmem_cache statistics"); ksp = kmem_cache_list[0]; safe_kstat_read(kc, ksp, NULL); buf_size_index = safe_kstat_data_index(ksp, "buf_size"); slab_create_index = safe_kstat_data_index(ksp, "slab_create"); slab_destroy_index = safe_kstat_data_index(ksp, "slab_destroy"); slab_size_index = safe_kstat_data_index(ksp, "slab_size"); buf_avail_index = safe_kstat_data_index(ksp, "buf_avail"); alloc_fail_index = safe_kstat_data_index(ksp, "alloc_fail"); } /* * load statistics, summing across CPUs where needed */ static int all_stat_load(void) { int i, j; cpu_stat_t cs; ulong_t *np, *tp; uint64_t cpu_tick[4] = {0, 0, 0, 0}; memset(&d, 0, sizeof (d)); /* * Global statistics */ safe_kstat_read(kc, sysinfo_ksp, (void *) &d.si); safe_kstat_read(kc, vminfo_ksp, (void *) &d.vmi); safe_kstat_read(kc, system_misc_ksp, NULL); safe_kstat_read(kc, file_cache_ksp, NULL); if (ufs_inode_ksp != NULL) { safe_kstat_read(kc, ufs_inode_ksp, NULL); d.szinode = ufs_inode_size_knp->value.ul; } d.szfile = file_total_knp->value.ui64 - file_avail_knp->value.ui64; d.szproc = nproc_knp->value.ul; d.mszinode = (ninode > d.szinode) ? ninode : d.szinode; d.mszfile = d.szfile; d.mszproc = var.v_proc; /* * Per-CPU statistics. */ for (i = 0; i < ncpus; i++) { if (kstat_read(kc, cpu_stat_list[i], (void *) &cs) == -1) return (1); np = (ulong_t *)&d.csi; tp = (ulong_t *)&cs.cpu_sysinfo; /* * Accumulate cpu ticks for CPU_IDLE, CPU_USER, CPU_KERNEL and * CPU_WAIT with respect to each of the cpus. */ for (j = 0; j < CPU_STATES; j++) cpu_tick[j] += tp[j]; for (j = 0; j < sizeof (cpu_sysinfo_t); j += sizeof (ulong_t)) *np++ += *tp++; np = (ulong_t *)&d.cvmi; tp = (ulong_t *)&cs.cpu_vminfo; for (j = 0; j < sizeof (cpu_vminfo_t); j += sizeof (ulong_t)) *np++ += *tp++; } /* * Per-cache kmem statistics. */ for (i = 0; i < ncaches; i++) { kstat_named_t *knp; u_longlong_t slab_create, slab_destroy, slab_size, mem_total; u_longlong_t buf_size, buf_avail, alloc_fail; int kmi_index; if (kstat_read(kc, kmem_cache_list[i], NULL) == -1) return (1); knp = kmem_cache_list[i]->ks_data; slab_create = knp[slab_create_index].value.ui64; slab_destroy = knp[slab_destroy_index].value.ui64; slab_size = knp[slab_size_index].value.ui64; buf_size = knp[buf_size_index].value.ui64; buf_avail = knp[buf_avail_index].value.ui64; alloc_fail = knp[alloc_fail_index].value.ui64; if (buf_size <= 256) kmi_index = KMEM_SMALL; else kmi_index = KMEM_LARGE; mem_total = (slab_create - slab_destroy) * slab_size; d.kmi.km_mem[kmi_index] += (ulong_t)mem_total; d.kmi.km_alloc[kmi_index] += (ulong_t)mem_total - buf_size * buf_avail; d.kmi.km_fail[kmi_index] += (ulong_t)alloc_fail; } safe_kstat_read(kc, kmem_oversize_ksp, NULL); d.kmi.km_alloc[KMEM_OSIZE] = d.kmi.km_mem[KMEM_OSIZE] = oversize_alloc_knp->value.ui64; d.kmi.km_fail[KMEM_OSIZE] = oversize_fail_knp->value.ui64; /* * Adjust CPU statistics so the delta calculations in sar will * be correct when facing changes to the set of online CPUs. */ compute_cpu_stat_adj(); for (i = 0; i < CPU_STATES; i++) d.csi.cpu[i] = (cpu_tick[i] + cpu_stat_adj[i]) / ncpus; return (0); } static void fail(int do_perror, char *message, ...) { va_list args; va_start(args, message); fprintf(stderr, "%s: ", cmdname); vfprintf(stderr, message, args); va_end(args); if (do_perror) fprintf(stderr, ": %s", strerror(errno)); fprintf(stderr, "\n"); exit(2); } static void safe_zalloc(void **ptr, int size, int free_first) { if (free_first && *ptr != NULL) free(*ptr); if ((*ptr = malloc(size)) == NULL) fail(1, "malloc failed"); memset(*ptr, 0, size); } static kid_t safe_kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *data) { kid_t kstat_chain_id = kstat_read(kc, ksp, data); if (kstat_chain_id == -1) fail(1, "kstat_read(%x, '%s') failed", kc, ksp->ks_name); return (kstat_chain_id); } static kstat_t * safe_kstat_lookup(kstat_ctl_t *kc, char *ks_module, int ks_instance, char *ks_name) { kstat_t *ksp = kstat_lookup(kc, ks_module, ks_instance, ks_name); if (ksp == NULL) fail(0, "kstat_lookup('%s', %d, '%s') failed", ks_module == NULL ? "" : ks_module, ks_instance, ks_name == NULL ? "" : ks_name); return (ksp); } static void * safe_kstat_data_lookup(kstat_t *ksp, char *name) { void *fp = kstat_data_lookup(ksp, name); if (fp == NULL) fail(0, "kstat_data_lookup('%s', '%s') failed", ksp->ks_name, name); return (fp); } static int safe_kstat_data_index(kstat_t *ksp, char *name) { return ((int)((char *)safe_kstat_data_lookup(ksp, name) - (char *)ksp->ks_data) / (ksp->ks_data_size / ksp->ks_ndata)); } static int kscmp(kstat_t *ks1, kstat_t *ks2) { int cmp; cmp = strcmp(ks1->ks_module, ks2->ks_module); if (cmp != 0) return (cmp); cmp = ks1->ks_instance - ks2->ks_instance; if (cmp != 0) return (cmp); return (strcmp(ks1->ks_name, ks2->ks_name)); } static void init_iodevs(void) { struct iodevinfo *iodev, *previodev, *comp; kstat_t *ksp; iodev = &zeroiodev; niodevs = 0; /* * Patch the snip in the iodevinfo list (see below) */ if (snip) lastiodev->next = snip; for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) { if (ksp->ks_type != KSTAT_TYPE_IO) continue; previodev = iodev; if (iodev->next) iodev = iodev->next; else { safe_zalloc((void **) &iodev->next, sizeof (struct iodevinfo), 0); iodev = iodev->next; iodev->next = NULL; } iodev->ksp = ksp; iodev->ks = *ksp; memset((void *)&iodev->kios, 0, sizeof (kstat_io_t)); iodev->kios.wlastupdate = iodev->ks.ks_crtime; iodev->kios.rlastupdate = iodev->ks.ks_crtime; /* * Insertion sort on (ks_module, ks_instance, ks_name) */ comp = &zeroiodev; while (kscmp(&iodev->ks, &comp->next->ks) > 0) comp = comp->next; if (previodev != comp) { previodev->next = iodev->next; iodev->next = comp->next; comp->next = iodev; iodev = previodev; } niodevs++; } /* * Put a snip in the linked list of iodevinfos. The idea: * If there was a state change such that now there are fewer * iodevs, we snip the list and retain the tail, rather than * freeing it. At the next state change, we clip the tail back on. * This prevents a lot of malloc/free activity, and it's simpler. */ lastiodev = iodev; snip = iodev->next; iodev->next = NULL; firstiodev = zeroiodev.next; } static int iodevinfo_load(void) { struct iodevinfo *iodev; for (iodev = firstiodev; iodev; iodev = iodev->next) { if (kstat_read(kc, iodev->ksp, (void *) &iodev->kios) == -1) return (1); } return (0); } static int kstat_copy(const kstat_t *src, kstat_t *dst) { *dst = *src; if (src->ks_data != NULL) { if ((dst->ks_data = malloc(src->ks_data_size)) == NULL) return (-1); bcopy(src->ks_data, dst->ks_data, src->ks_data_size); } else { dst->ks_data = NULL; dst->ks_data_size = 0; } return (0); } /* * Determine what is different between two sets of kstats; s[0] and s[1] * are arrays of kstats of size ns0 and ns1, respectively, and sorted by * instance number. u[0] and u[1] are two arrays which must be * caller-zallocated; each must be of size MAX(ns0, ns1). When the * function terminates, u[0] contains all s[0]-unique items and u[1] * contains all s[1]-unique items. Any unused entries in u[0] and u[1] * are left NULL. */ static void diff_two_arrays(kstat_t ** const s[], size_t ns0, size_t ns1, kstat_t ** const u[]) { kstat_t **s0p = s[0], **s1p = s[1]; kstat_t **u0p = u[0], **u1p = u[1]; int i = 0, j = 0; while (i < ns0 && j < ns1) { if ((*s0p)->ks_instance == (*s1p)->ks_instance) { if ((*s0p)->ks_kid != (*s1p)->ks_kid) { /* * The instance is the same, but this * CPU has been offline during the * interval, so we consider *u0p to * be s0p-unique, and similarly for * *u1p. */ *(u0p++) = *s0p; *(u1p++) = *s1p; } s0p++; i++; s1p++; j++; } else if ((*s0p)->ks_instance < (*s1p)->ks_instance) { *(u0p++) = *(s0p++); i++; } else { *(u1p++) = *(s1p++); j++; } } while (i < ns0) { *(u0p++) = *(s0p++); i++; } while (j < ns1) { *(u1p++) = *(s1p++); j++; } } static int cpuid_compare(const void *p1, const void *p2) { return ((*(kstat_t **)p1)->ks_instance - (*(kstat_t **)p2)->ks_instance); } /* * Identify those CPUs which were not present for the whole interval so * their statistics can be removed from the aggregate. */ static void compute_cpu_stat_adj(void) { int i, j; if (ocpu_stat_list) { kstat_t **s[2]; kstat_t **inarray[2]; int max_cpus = MAX(ncpus, oncpus); qsort(cpu_stat_list, ncpus, sizeof (*cpu_stat_list), cpuid_compare); qsort(ocpu_stat_list, oncpus, sizeof (*ocpu_stat_list), cpuid_compare); s[0] = ocpu_stat_list; s[1] = cpu_stat_list; safe_zalloc((void *)&inarray[0], sizeof (**inarray) * max_cpus, 0); safe_zalloc((void *)&inarray[1], sizeof (**inarray) * max_cpus, 0); diff_two_arrays(s, oncpus, ncpus, inarray); for (i = 0; i < max_cpus; i++) { if (inarray[0][i]) for (j = 0; j < CPU_STATES; j++) cpu_stat_adj[j] += ((cpu_stat_t *)inarray[0][i] ->ks_data)->cpu_sysinfo.cpu[j]; if (inarray[1][i]) for (j = 0; j < CPU_STATES; j++) cpu_stat_adj[j] -= ((cpu_stat_t *)inarray[1][i] ->ks_data)->cpu_sysinfo.cpu[j]; } free(inarray[0]); free(inarray[1]); } /* * Preserve the last interval's CPU stats. */ if (cpu_stat_list) { for (i = 0; i < oncpus; i++) free(ocpu_stat_list[i]->ks_data); oncpus = ncpus; safe_zalloc((void **)&ocpu_stat_list, oncpus * sizeof (*ocpu_stat_list), 1); for (i = 0; i < ncpus; i++) { safe_zalloc((void *)&ocpu_stat_list[i], sizeof (*ocpu_stat_list[0]), 0); if (kstat_copy(cpu_stat_list[i], ocpu_stat_list[i])) fail(1, "kstat_copy() failed"); } } }