/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * Copyright 2012 Joyent, Inc. All rights reserved. * * Copyright 2013 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Gary Mills * Copyright (c) 2016 Andrey Sokolov */ /* * lofiadm - administer lofi(7d). Very simple, add and remove file<->device * associations, and display status. All the ioctls are private between * lofi and lofiadm, and so are very simple - device information is * communicated via a minor number. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #include /* Only need the IV len #defines out of these files, nothing else. */ #include #include #include static const char USAGE[] = "Usage: %s [-r] [-l] -a file [ device ]\n" " %s [-r] -c crypto_algorithm -a file [device]\n" " %s [-r] -c crypto_algorithm -k raw_key_file -a file [device]\n" " %s [-r] -c crypto_algorithm -T [token]:[manuf]:[serial]:key " "-a file [device]\n" " %s [-r] -c crypto_algorithm -T [token]:[manuf]:[serial]:key " "-k wrapped_key_file -a file [device]\n" " %s [-r] -c crypto_algorithm -e -a file [device]\n" " %s -d file | device\n" " %s -C [gzip|gzip-6|gzip-9|lzma] [-s segment_size] file\n" " %s -U file\n" " %s [ file | device ]\n"; typedef struct token_spec { char *name; char *mfr; char *serno; char *key; } token_spec_t; typedef struct mech_alias { char *alias; CK_MECHANISM_TYPE type; char *name; /* for ioctl */ char *iv_name; /* for ioctl */ size_t iv_len; /* for ioctl */ iv_method_t iv_type; /* for ioctl */ size_t min_keysize; /* in bytes */ size_t max_keysize; /* in bytes */ token_spec_t *token; CK_SLOT_ID slot; } mech_alias_t; static mech_alias_t mech_aliases[] = { /* Preferred one should always be listed first. */ { "aes-256-cbc", CKM_AES_CBC, "CKM_AES_CBC", "CKM_AES_ECB", AES_IV_LEN, IVM_ENC_BLKNO, ULONG_MAX, 0L, NULL, (CK_SLOT_ID) -1 }, { "aes-192-cbc", CKM_AES_CBC, "CKM_AES_CBC", "CKM_AES_ECB", AES_IV_LEN, IVM_ENC_BLKNO, ULONG_MAX, 0L, NULL, (CK_SLOT_ID) -1 }, { "aes-128-cbc", CKM_AES_CBC, "CKM_AES_CBC", "CKM_AES_ECB", AES_IV_LEN, IVM_ENC_BLKNO, ULONG_MAX, 0L, NULL, (CK_SLOT_ID) -1 }, { "des3-cbc", CKM_DES3_CBC, "CKM_DES3_CBC", "CKM_DES3_ECB", DES_IV_LEN, IVM_ENC_BLKNO, ULONG_MAX, 0L, NULL, (CK_SLOT_ID)-1 }, { "blowfish-cbc", CKM_BLOWFISH_CBC, "CKM_BLOWFISH_CBC", "CKM_BLOWFISH_ECB", BLOWFISH_IV_LEN, IVM_ENC_BLKNO, ULONG_MAX, 0L, NULL, (CK_SLOT_ID)-1 } /* * A cipher without an iv requirement would look like this: * { "aes-xex", CKM_AES_XEX, "CKM_AES_XEX", NULL, 0, * IVM_NONE, ULONG_MAX, 0L, NULL, (CK_SLOT_ID)-1 } */ }; int mech_aliases_count = (sizeof (mech_aliases) / sizeof (mech_alias_t)); /* Preferred cipher, if one isn't specified on command line. */ #define DEFAULT_CIPHER (&mech_aliases[0]) #define DEFAULT_CIPHER_NUM 64 /* guess # kernel ciphers available */ #define DEFAULT_MECHINFO_NUM 16 /* guess # kernel mechs available */ #define MIN_PASSLEN 8 /* min acceptable passphrase size */ static int gzip_compress(void *src, size_t srclen, void *dst, size_t *destlen, int level); static int lzma_compress(void *src, size_t srclen, void *dst, size_t *destlen, int level); lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { {NULL, gzip_compress, 6, "gzip"}, /* default */ {NULL, gzip_compress, 6, "gzip-6"}, {NULL, gzip_compress, 9, "gzip-9"}, {NULL, lzma_compress, 0, "lzma"} }; /* For displaying lofi mappings */ #define FORMAT "%-20s %-30s %s\n" #define COMPRESS_ALGORITHM "gzip" #define COMPRESS_THRESHOLD 2048 #define SEGSIZE 131072 #define BLOCK_SIZE 512 #define KILOBYTE 1024 #define MEGABYTE (KILOBYTE * KILOBYTE) #define GIGABYTE (KILOBYTE * MEGABYTE) #define LIBZ "libz.so.1" const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; static void usage(const char *pname) { (void) fprintf(stderr, gettext(USAGE), pname, pname, pname, pname, pname, pname, pname, pname, pname, pname); exit(E_USAGE); } static int gzip_compress(void *src, size_t srclen, void *dst, size_t *dstlen, int level) { static int (*compress2p)(void *, ulong_t *, void *, size_t, int) = NULL; void *libz_hdl = NULL; /* * The first time we are called, attempt to dlopen() * libz.so.1 and get a pointer to the compress2() function */ if (compress2p == NULL) { if ((libz_hdl = openlib(LIBZ)) == NULL) die(gettext("could not find %s. " "gzip compression unavailable\n"), LIBZ); if ((compress2p = (int (*)(void *, ulong_t *, void *, size_t, int)) dlsym(libz_hdl, "compress2")) == NULL) { closelib(); die(gettext("could not find the correct %s. " "gzip compression unavailable\n"), LIBZ); } } if ((*compress2p)(dst, (ulong_t *)dstlen, src, srclen, level) != 0) return (-1); return (0); } /*ARGSUSED*/ static void *SzAlloc(void *p, size_t size) { return (malloc(size)); } /*ARGSUSED*/ static void SzFree(void *p, void *address, size_t size) { free(address); } static ISzAlloc g_Alloc = { SzAlloc, SzFree }; #define LZMA_UNCOMPRESSED_SIZE 8 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + LZMA_UNCOMPRESSED_SIZE) /*ARGSUSED*/ static int lzma_compress(void *src, size_t srclen, void *dst, size_t *dstlen, int level) { CLzmaEncProps props; size_t outsize2; size_t outsizeprocessed; size_t outpropssize = LZMA_PROPS_SIZE; uint64_t t = 0; SRes res; Byte *dstp; int i; outsize2 = *dstlen; LzmaEncProps_Init(&props); /* * The LZMA compressed file format is as follows - * * Offset Size(bytes) Description * 0 1 LZMA properties (lc, lp, lp (encoded)) * 1 4 Dictionary size (little endian) * 5 8 Uncompressed size (little endian) * 13 Compressed data */ /* set the dictionary size to be 8MB */ props.dictSize = 1 << 23; if (*dstlen < LZMA_HEADER_SIZE) return (SZ_ERROR_OUTPUT_EOF); dstp = (Byte *)dst; t = srclen; /* * Set the uncompressed size in the LZMA header * The LZMA properties (specified in 'props') * will be set by the call to LzmaEncode() */ for (i = 0; i < LZMA_UNCOMPRESSED_SIZE; i++, t >>= 8) { dstp[LZMA_PROPS_SIZE + i] = (Byte)t; } outsizeprocessed = outsize2 - LZMA_HEADER_SIZE; res = LzmaEncode(dstp + LZMA_HEADER_SIZE, &outsizeprocessed, src, srclen, &props, dstp, &outpropssize, 0, NULL, &g_Alloc, &g_Alloc); if (res != 0) return (-1); *dstlen = outsizeprocessed + LZMA_HEADER_SIZE; return (0); } /* * Translate a lofi device name to a minor number. We might be asked * to do this when there is no association (such as when the user specifies * a particular device), so we can only look at the string. */ static int name_to_minor(const char *devicename) { struct stat st; /* * If devicename does not exist, then devicename contains * the name of the device to be created. * Note we only allow non-labeled devices here. */ if (stat(devicename, &st)) { int minor, rv; rv = sscanf(devicename, "/dev/" LOFI_BLOCK_NAME "/%d", &minor); if (rv == 1) return (minor); rv = sscanf(devicename, "/dev/" LOFI_CHAR_NAME "/%d", &minor); if (rv == 1) return (minor); return (0); } /* * For disk devices we use modctl(MODGETNAME) to read driver name * for major device. */ if (st.st_mode & S_IFCHR || st.st_mode & S_IFBLK) { major_t maj; char mname[MODMAXNAMELEN]; maj = major(st.st_rdev); if (modctl(MODGETNAME, mname, MODMAXNAMELEN, &maj) == 0) { if (strncmp(mname, LOFI_DRIVER_NAME, sizeof (LOFI_DRIVER_NAME)) == 0) { return (LOFI_MINOR2ID(minor(st.st_rdev))); } } } return (0); } /* * This might be the first time we've used this minor number. If so, * it might also be that the /dev links are in the process of being created * by devfsadmd (or that they'll be created "soon"). We cannot return * until they're there or the invoker of lofiadm might try to use them * and not find them. This can happen if a shell script is running on * an MP. */ static int sleeptime = 2; /* number of seconds to sleep between stat's */ static int maxsleep = 120; /* maximum number of seconds to sleep */ static void make_blkdevname(struct lofi_ioctl *li, char *path, size_t len) { char *r1, *r2; size_t l1; if (li->li_devpath[0] == '\0') { if (li->li_labeled) (void) strlcpy(path, "unknown", len); else (void) snprintf(path, len, "/dev/" LOFI_BLOCK_NAME "/%d", li->li_id); return; } (void) strlcpy(path, li->li_devpath, len); r1 = strchr(path, 'r'); l1 = r1 - path; r2 = strchr(li->li_devpath, 'r'); (void) strlcpy(r1, r2+1, len - l1); if (li->li_labeled) { (void) strlcat(path, "p0", len); } } static void wait_until_dev_complete(struct lofi_ioctl *li) { struct stat64 buf; int cursleep; char blkpath[MAXPATHLEN]; char charpath[MAXPATHLEN]; di_devlink_handle_t hdl; make_blkdevname(li, blkpath, sizeof (blkpath)); (void) strlcpy(charpath, li->li_devpath, sizeof (charpath)); if (li->li_labeled) { (void) strlcat(charpath, "p0", sizeof (charpath)); } /* Check if links already present */ if (stat64(blkpath, &buf) == 0 && stat64(charpath, &buf) == 0) return; /* First use di_devlink_init() */ if (hdl = di_devlink_init("lofi", DI_MAKE_LINK)) { (void) di_devlink_fini(&hdl); goto out; } /* * Under normal conditions, di_devlink_init(DI_MAKE_LINK) above will * only fail if the caller is non-root. In that case, wait for * link creation via sysevents. */ for (cursleep = 0; cursleep < maxsleep; cursleep += sleeptime) { if (stat64(blkpath, &buf) == 0 && stat64(charpath, &buf) == 0) return; (void) sleep(sleeptime); } /* one last try */ out: if (stat64(blkpath, &buf) == -1) { die(gettext("%s was not created"), blkpath); } if (stat64(charpath, &buf) == -1) { die(gettext("%s was not created"), charpath); } } /* * Map the file and return the minor number the driver picked for the file * DO NOT use this function if the filename is actually the device name. */ static int lofi_map_file(int lfd, struct lofi_ioctl *li, const char *filename) { int minor; li->li_id = 0; (void) strlcpy(li->li_filename, filename, sizeof (li->li_filename)); minor = ioctl(lfd, LOFI_MAP_FILE, li); if (minor == -1) { if (errno == ENOTSUP) warn(gettext("encrypting compressed files is " "unsupported")); die(gettext("could not map file %s"), filename); } wait_until_dev_complete(li); return (minor); } /* * Add a device association. If devicename is NULL, let the driver * pick a device. */ static void add_mapping(int lfd, const char *devicename, const char *filename, mech_alias_t *cipher, const char *rkey, size_t rksz, boolean_t rdonly, boolean_t label) { struct lofi_ioctl li; bzero(&li, sizeof (li)); li.li_readonly = rdonly; li.li_labeled = label; li.li_crypto_enabled = B_FALSE; if (cipher != NULL) { /* set up encryption for mapped file */ li.li_crypto_enabled = B_TRUE; (void) strlcpy(li.li_cipher, cipher->name, sizeof (li.li_cipher)); if (rksz > sizeof (li.li_key)) { die(gettext("key too large")); } bcopy(rkey, li.li_key, rksz); li.li_key_len = rksz << 3; /* convert to bits */ li.li_iv_type = cipher->iv_type; li.li_iv_len = cipher->iv_len; /* 0 when no iv needed */ switch (cipher->iv_type) { case IVM_ENC_BLKNO: (void) strlcpy(li.li_iv_cipher, cipher->iv_name, sizeof (li.li_iv_cipher)); break; case IVM_NONE: /* FALLTHROUGH */ default: break; } } if (devicename == NULL) { int minor; char path[MAXPATHLEN]; /* pick one via the driver */ minor = lofi_map_file(lfd, &li, filename); if (minor > 0) { make_blkdevname(&li, path, sizeof (path)); /* if mapping succeeds, print the one picked */ (void) printf("%s\n", path); } return; } /* use device we were given */ li.li_id = name_to_minor(devicename); if (li.li_id == 0) { die(gettext("malformed device name %s\n"), devicename); } (void) strlcpy(li.li_filename, filename, sizeof (li.li_filename)); /* if device is already in use li.li_minor won't change */ if (ioctl(lfd, LOFI_MAP_FILE_MINOR, &li) == -1) { if (errno == ENOTSUP) warn(gettext("encrypting compressed files is " "unsupported")); die(gettext("could not map file %s to %s"), filename, devicename); } wait_until_dev_complete(&li); } /* * Remove an association. Delete by device name if non-NULL, or by * filename otherwise. */ static void delete_mapping(int lfd, const char *devicename, const char *filename, boolean_t force) { struct lofi_ioctl li; li.li_force = force; li.li_cleanup = B_FALSE; if (devicename == NULL) { /* delete by filename */ (void) strlcpy(li.li_filename, filename, sizeof (li.li_filename)); li.li_id = 0; if (ioctl(lfd, LOFI_UNMAP_FILE, &li) == -1) { die(gettext("could not unmap file %s"), filename); } return; } /* delete by device */ li.li_id = name_to_minor(devicename); if (li.li_id == 0) { die(gettext("malformed device name %s\n"), devicename); } if (ioctl(lfd, LOFI_UNMAP_FILE_MINOR, &li) == -1) { die(gettext("could not unmap device %s"), devicename); } } /* * Show filename given devicename, or devicename given filename. */ static void print_one_mapping(int lfd, const char *devicename, const char *filename) { struct lofi_ioctl li; char blkpath[MAXPATHLEN]; if (devicename == NULL) { /* given filename, print devicename */ li.li_id = 0; (void) strlcpy(li.li_filename, filename, sizeof (li.li_filename)); if (ioctl(lfd, LOFI_GET_MINOR, &li) == -1) { die(gettext("could not find device for %s"), filename); } make_blkdevname(&li, blkpath, sizeof (blkpath)); (void) printf("%s\n", blkpath); return; } /* given devicename, print filename */ li.li_id = name_to_minor(devicename); if (li.li_id == 0) { die(gettext("malformed device name %s\n"), devicename); } if (ioctl(lfd, LOFI_GET_FILENAME, &li) == -1) { die(gettext("could not find filename for %s"), devicename); } (void) printf("%s\n", li.li_filename); } /* * Print the list of all the mappings, including a header. */ static void print_mappings(int fd) { struct lofi_ioctl li; int minor; int maxminor; char path[MAXPATHLEN]; char options[MAXPATHLEN] = { 0 }; li.li_id = 0; if (ioctl(fd, LOFI_GET_MAXMINOR, &li) == -1) { die("ioctl"); } maxminor = li.li_id; (void) printf(FORMAT, gettext("Block Device"), gettext("File"), gettext("Options")); for (minor = 1; minor <= maxminor; minor++) { li.li_id = minor; if (ioctl(fd, LOFI_GET_FILENAME, &li) == -1) { if (errno == ENXIO) continue; warn("ioctl"); break; } make_blkdevname(&li, path, sizeof (path)); options[0] = '\0'; /* * Encrypted lofi and compressed lofi are mutually exclusive. */ if (li.li_crypto_enabled) (void) snprintf(options, sizeof (options), gettext("Encrypted")); else if (li.li_algorithm[0] != '\0') (void) snprintf(options, sizeof (options), gettext("Compressed(%s)"), li.li_algorithm); if (li.li_readonly) { if (strlen(options) != 0) { (void) strlcat(options, ",Readonly", sizeof (options)); } else { (void) snprintf(options, sizeof (options), gettext("Readonly")); } } if (li.li_labeled) { if (strlen(options) != 0) { (void) strlcat(options, ",Labeled", sizeof (options)); } else { (void) snprintf(options, sizeof (options), gettext("Labeled")); } } if (strlen(options) == 0) (void) snprintf(options, sizeof (options), "-"); (void) printf(FORMAT, path, li.li_filename, options); } } /* * Verify the cipher selected by user. */ static mech_alias_t * ciph2mech(const char *alias) { int i; for (i = 0; i < mech_aliases_count; i++) { if (strcasecmp(alias, mech_aliases[i].alias) == 0) return (&mech_aliases[i]); } return (NULL); } /* * Verify user selected cipher is also available in kernel. * * While traversing kernel list of mechs, if the cipher is supported in the * kernel for both encryption and decryption, it also picks up the min/max * key size. */ static boolean_t kernel_cipher_check(mech_alias_t *cipher) { boolean_t ciph_ok = B_FALSE; boolean_t iv_ok = B_FALSE; int i; int count; crypto_get_mechanism_list_t *kciphers = NULL; crypto_get_all_mechanism_info_t *kinfo = NULL; int fd = -1; size_t keymin; size_t keymax; /* if cipher doesn't need iv generating mech, bypass that check now */ if (cipher->iv_name == NULL) iv_ok = B_TRUE; /* allocate some space for the list of kernel ciphers */ count = DEFAULT_CIPHER_NUM; kciphers = malloc(sizeof (crypto_get_mechanism_list_t) + sizeof (crypto_mech_name_t) * (count - 1)); if (kciphers == NULL) die(gettext("failed to allocate memory for list of " "kernel mechanisms")); kciphers->ml_count = count; /* query crypto device to get list of kernel ciphers */ if ((fd = open("/dev/crypto", O_RDWR)) == -1) { warn(gettext("failed to open %s"), "/dev/crypto"); goto kcc_out; } if (ioctl(fd, CRYPTO_GET_MECHANISM_LIST, kciphers) == -1) { warn(gettext("CRYPTO_GET_MECHANISM_LIST ioctl failed")); goto kcc_out; } if (kciphers->ml_return_value == CRYPTO_BUFFER_TOO_SMALL) { count = kciphers->ml_count; free(kciphers); kciphers = malloc(sizeof (crypto_get_mechanism_list_t) + sizeof (crypto_mech_name_t) * (count - 1)); if (kciphers == NULL) { warn(gettext("failed to allocate memory for list of " "kernel mechanisms")); goto kcc_out; } kciphers->ml_count = count; if (ioctl(fd, CRYPTO_GET_MECHANISM_LIST, kciphers) == -1) { warn(gettext("CRYPTO_GET_MECHANISM_LIST ioctl failed")); goto kcc_out; } } if (kciphers->ml_return_value != CRYPTO_SUCCESS) { warn(gettext( "CRYPTO_GET_MECHANISM_LIST ioctl return value = %d\n"), kciphers->ml_return_value); goto kcc_out; } /* * scan list of kernel ciphers looking for the selected one and if * it needs an iv generated using another cipher, also look for that * additional cipher to be used for generating the iv */ count = kciphers->ml_count; for (i = 0; i < count && !(ciph_ok && iv_ok); i++) { if (!ciph_ok && strcasecmp(cipher->name, kciphers->ml_list[i]) == 0) ciph_ok = B_TRUE; if (!iv_ok && strcasecmp(cipher->iv_name, kciphers->ml_list[i]) == 0) iv_ok = B_TRUE; } free(kciphers); kciphers = NULL; if (!ciph_ok) warn(gettext("%s mechanism not supported in kernel\n"), cipher->name); if (!iv_ok) warn(gettext("%s mechanism not supported in kernel\n"), cipher->iv_name); if (ciph_ok) { /* Get the details about the user selected cipher */ count = DEFAULT_MECHINFO_NUM; kinfo = malloc(sizeof (crypto_get_all_mechanism_info_t) + sizeof (crypto_mechanism_info_t) * (count - 1)); if (kinfo == NULL) { warn(gettext("failed to allocate memory for " "kernel mechanism info")); goto kcc_out; } kinfo->mi_count = count; (void) strlcpy(kinfo->mi_mechanism_name, cipher->name, CRYPTO_MAX_MECH_NAME); if (ioctl(fd, CRYPTO_GET_ALL_MECHANISM_INFO, kinfo) == -1) { warn(gettext( "CRYPTO_GET_ALL_MECHANISM_INFO ioctl failed")); goto kcc_out; } if (kinfo->mi_return_value == CRYPTO_BUFFER_TOO_SMALL) { count = kinfo->mi_count; free(kinfo); kinfo = malloc( sizeof (crypto_get_all_mechanism_info_t) + sizeof (crypto_mechanism_info_t) * (count - 1)); if (kinfo == NULL) { warn(gettext("failed to allocate memory for " "kernel mechanism info")); goto kcc_out; } kinfo->mi_count = count; (void) strlcpy(kinfo->mi_mechanism_name, cipher->name, CRYPTO_MAX_MECH_NAME); if (ioctl(fd, CRYPTO_GET_ALL_MECHANISM_INFO, kinfo) == -1) { warn(gettext("CRYPTO_GET_ALL_MECHANISM_INFO " "ioctl failed")); goto kcc_out; } } if (kinfo->mi_return_value != CRYPTO_SUCCESS) { warn(gettext("CRYPTO_GET_ALL_MECHANISM_INFO ioctl " "return value = %d\n"), kinfo->mi_return_value); goto kcc_out; } /* Set key min and max size */ count = kinfo->mi_count; i = 0; if (i < count) { keymin = kinfo->mi_list[i].mi_min_key_size; keymax = kinfo->mi_list[i].mi_max_key_size; if (kinfo->mi_list[i].mi_keysize_unit & CRYPTO_KEYSIZE_UNIT_IN_BITS) { keymin = CRYPTO_BITS2BYTES(keymin); keymax = CRYPTO_BITS2BYTES(keymax); } cipher->min_keysize = keymin; cipher->max_keysize = keymax; } free(kinfo); kinfo = NULL; if (i == count) { (void) close(fd); die(gettext( "failed to find usable %s kernel mechanism, " "use \"cryptoadm list -m\" to find available " "mechanisms\n"), cipher->name); } } /* Note: key min/max, unit size, usage for iv cipher are not checked. */ return (ciph_ok && iv_ok); kcc_out: if (kinfo != NULL) free(kinfo); if (kciphers != NULL) free(kciphers); if (fd != -1) (void) close(fd); return (B_FALSE); } /* * Break up token spec into its components (non-destructive) */ static token_spec_t * parsetoken(char *spec) { #define FLD_NAME 0 #define FLD_MANUF 1 #define FLD_SERIAL 2 #define FLD_LABEL 3 #define NFIELDS 4 #define nullfield(i) ((field[(i)+1] - field[(i)]) <= 1) #define copyfield(fld, i) \ { \ int n; \ (fld) = NULL; \ if ((n = (field[(i)+1] - field[(i)])) > 1) { \ if (((fld) = malloc(n)) != NULL) { \ (void) strncpy((fld), field[(i)], n); \ ((fld))[n - 1] = '\0'; \ } \ } \ } int i; char *field[NFIELDS + 1]; /* +1 to catch extra delimiters */ token_spec_t *ti = NULL; if (spec == NULL) return (NULL); /* * Correct format is "[name]:[manuf]:[serial]:key". Can't use * strtok because it treats ":::key" and "key:::" and "key" all * as the same thing, and we can't have the :s compressed away. */ field[0] = spec; for (i = 1; i < NFIELDS + 1; i++) { field[i] = strchr(field[i-1], ':'); if (field[i] == NULL) break; field[i]++; } if (i < NFIELDS) /* not enough fields */ return (NULL); if (field[NFIELDS] != NULL) /* too many fields */ return (NULL); field[NFIELDS] = strchr(field[NFIELDS-1], '\0') + 1; /* key label can't be empty */ if (nullfield(FLD_LABEL)) return (NULL); ti = malloc(sizeof (token_spec_t)); if (ti == NULL) return (NULL); copyfield(ti->name, FLD_NAME); copyfield(ti->mfr, FLD_MANUF); copyfield(ti->serno, FLD_SERIAL); copyfield(ti->key, FLD_LABEL); /* * If token specified and it only contains a key label, then * search all tokens for the key, otherwise only those with * matching name, mfr, and serno are used. */ /* * That's how we'd like it to be, however, if only the key label * is specified, default to using softtoken. It's easier. */ if (ti->name == NULL && ti->mfr == NULL && ti->serno == NULL) ti->name = strdup(pkcs11_default_token()); return (ti); } /* * PBE the passphrase into a raw key */ static void getkeyfromuser(mech_alias_t *cipher, char **raw_key, size_t *raw_key_sz, boolean_t with_confirmation) { CK_SESSION_HANDLE sess; CK_RV rv; char *pass = NULL; size_t passlen = 0; void *salt = NULL; /* don't use NULL, see note on salt below */ size_t saltlen = 0; CK_KEY_TYPE ktype; void *kvalue; size_t klen; /* did init_crypto find a slot that supports this cipher? */ if (cipher->slot == (CK_SLOT_ID)-1 || cipher->max_keysize == 0) { rv = CKR_MECHANISM_INVALID; goto cleanup; } rv = pkcs11_mech2keytype(cipher->type, &ktype); if (rv != CKR_OK) goto cleanup; /* * use the passphrase to generate a PBE PKCS#5 secret key and * retrieve the raw key data to eventually pass it to the kernel; */ rv = C_OpenSession(cipher->slot, CKF_SERIAL_SESSION, NULL, NULL, &sess); if (rv != CKR_OK) goto cleanup; /* get user passphrase with 8 byte minimum */ if (pkcs11_get_pass(NULL, &pass, &passlen, MIN_PASSLEN, with_confirmation) < 0) { die(gettext("passphrases do not match\n")); } /* * salt should not be NULL, or else pkcs11_PasswdToKey() will * complain about CKR_MECHANISM_PARAM_INVALID; the following is * to make up for not having a salt until a proper one is used */ salt = pass; saltlen = passlen; klen = cipher->max_keysize; rv = pkcs11_PasswdToKey(sess, pass, passlen, salt, saltlen, ktype, cipher->max_keysize, &kvalue, &klen); (void) C_CloseSession(sess); if (rv != CKR_OK) { goto cleanup; } /* assert(klen == cipher->max_keysize); */ *raw_key_sz = klen; *raw_key = (char *)kvalue; return; cleanup: die(gettext("failed to generate %s key from passphrase: %s"), cipher->alias, pkcs11_strerror(rv)); } /* * Read raw key from file; also handles ephemeral keys. */ void getkeyfromfile(const char *pathname, mech_alias_t *cipher, char **key, size_t *ksz) { int fd; struct stat sbuf; boolean_t notplain = B_FALSE; ssize_t cursz; ssize_t nread; /* ephemeral keys are just random data */ if (pathname == NULL) { *ksz = cipher->max_keysize; *key = malloc(*ksz); if (*key == NULL) die(gettext("failed to allocate memory for" " ephemeral key")); if (pkcs11_get_urandom(*key, *ksz) < 0) { free(*key); die(gettext("failed to get enough random data")); } return; } /* * If the remaining section of code didn't also check for secure keyfile * permissions and whether the key is within cipher min and max lengths, * (or, if those things moved out of this block), we could have had: * if (pkcs11_read_data(pathname, key, ksz) < 0) * handle_error(); */ if ((fd = open(pathname, O_RDONLY, 0)) == -1) die(gettext("open of keyfile (%s) failed"), pathname); if (fstat(fd, &sbuf) == -1) die(gettext("fstat of keyfile (%s) failed"), pathname); if (S_ISREG(sbuf.st_mode)) { if ((sbuf.st_mode & (S_IWGRP | S_IWOTH)) != 0) die(gettext("insecure permissions on keyfile %s\n"), pathname); *ksz = sbuf.st_size; if (*ksz < cipher->min_keysize || cipher->max_keysize < *ksz) { warn(gettext("%s: invalid keysize: %d\n"), pathname, (int)*ksz); die(gettext("\t%d <= keysize <= %d\n"), cipher->min_keysize, cipher->max_keysize); } } else { *ksz = cipher->max_keysize; notplain = B_TRUE; } *key = malloc(*ksz); if (*key == NULL) die(gettext("failed to allocate memory for key from file")); for (cursz = 0, nread = 0; cursz < *ksz; cursz += nread) { nread = read(fd, *key, *ksz); if (nread > 0) continue; /* * nread == 0. If it's not a regular file we were trying to * get the maximum keysize of data possible for this cipher. * But if we've got at least the minimum keysize of data, * round down to the nearest keysize unit and call it good. * If we haven't met the minimum keysize, that's an error. * If it's a regular file, nread = 0 is also an error. */ if (nread == 0 && notplain && cursz >= cipher->min_keysize) { *ksz = (cursz / cipher->min_keysize) * cipher->min_keysize; break; } die(gettext("%s: can't read all keybytes"), pathname); } (void) close(fd); } /* * Read the raw key from token, or from a file that was wrapped with a * key from token */ void getkeyfromtoken(CK_SESSION_HANDLE sess, token_spec_t *token, const char *keyfile, mech_alias_t *cipher, char **raw_key, size_t *raw_key_sz) { CK_RV rv = CKR_OK; CK_BBOOL trueval = B_TRUE; CK_OBJECT_CLASS kclass; /* secret key or RSA private key */ CK_KEY_TYPE ktype; /* from selected cipher or CKK_RSA */ CK_KEY_TYPE raw_ktype; /* from selected cipher */ CK_ATTRIBUTE key_tmpl[] = { { CKA_CLASS, NULL, 0 }, /* re-used for token key and unwrap */ { CKA_KEY_TYPE, NULL, 0 }, /* ditto */ { CKA_LABEL, NULL, 0 }, { CKA_TOKEN, NULL, 0 }, { CKA_PRIVATE, NULL, 0 } }; CK_ULONG attrs = sizeof (key_tmpl) / sizeof (CK_ATTRIBUTE); int i; char *pass = NULL; size_t passlen = 0; CK_OBJECT_HANDLE obj, rawobj; CK_ULONG num_objs = 1; /* just want to find 1 token key */ CK_MECHANISM unwrap = { CKM_RSA_PKCS, NULL, 0 }; char *rkey; size_t rksz; if (token == NULL || token->key == NULL) return; /* did init_crypto find a slot that supports this cipher? */ if (cipher->slot == (CK_SLOT_ID)-1 || cipher->max_keysize == 0) { die(gettext("failed to find any cryptographic provider, " "use \"cryptoadm list -p\" to find providers: %s\n"), pkcs11_strerror(CKR_MECHANISM_INVALID)); } if (pkcs11_get_pass(token->name, &pass, &passlen, 0, B_FALSE) < 0) die(gettext("unable to get passphrase")); /* use passphrase to login to token */ if (pass != NULL && passlen > 0) { rv = C_Login(sess, CKU_USER, (CK_UTF8CHAR_PTR)pass, passlen); if (rv != CKR_OK) { die(gettext("cannot login to the token %s: %s\n"), token->name, pkcs11_strerror(rv)); } } rv = pkcs11_mech2keytype(cipher->type, &raw_ktype); if (rv != CKR_OK) { die(gettext("failed to get key type for cipher %s: %s\n"), cipher->name, pkcs11_strerror(rv)); } /* * If no keyfile was given, then the token key is secret key to * be used for encryption/decryption. Otherwise, the keyfile * contains a wrapped secret key, and the token is actually the * unwrapping RSA private key. */ if (keyfile == NULL) { kclass = CKO_SECRET_KEY; ktype = raw_ktype; } else { kclass = CKO_PRIVATE_KEY; ktype = CKK_RSA; } /* Find the key in the token first */ for (i = 0; i < attrs; i++) { switch (key_tmpl[i].type) { case CKA_CLASS: key_tmpl[i].pValue = &kclass; key_tmpl[i].ulValueLen = sizeof (kclass); break; case CKA_KEY_TYPE: key_tmpl[i].pValue = &ktype; key_tmpl[i].ulValueLen = sizeof (ktype); break; case CKA_LABEL: key_tmpl[i].pValue = token->key; key_tmpl[i].ulValueLen = strlen(token->key); break; case CKA_TOKEN: key_tmpl[i].pValue = &trueval; key_tmpl[i].ulValueLen = sizeof (trueval); break; case CKA_PRIVATE: key_tmpl[i].pValue = &trueval; key_tmpl[i].ulValueLen = sizeof (trueval); break; default: break; } } rv = C_FindObjectsInit(sess, key_tmpl, attrs); if (rv != CKR_OK) die(gettext("cannot find key %s: %s\n"), token->key, pkcs11_strerror(rv)); rv = C_FindObjects(sess, &obj, 1, &num_objs); (void) C_FindObjectsFinal(sess); if (num_objs == 0) { die(gettext("cannot find key %s\n"), token->key); } else if (rv != CKR_OK) { die(gettext("cannot find key %s: %s\n"), token->key, pkcs11_strerror(rv)); } /* * No keyfile means when token key is found, convert it to raw key, * and done. Otherwise still need do an unwrap to create yet another * obj and that needs to be converted to raw key before we're done. */ if (keyfile == NULL) { /* obj contains raw key, extract it */ rv = pkcs11_ObjectToKey(sess, obj, (void **)&rkey, &rksz, B_FALSE); if (rv != CKR_OK) { die(gettext("failed to get key value for %s" " from token %s, %s\n"), token->key, token->name, pkcs11_strerror(rv)); } } else { getkeyfromfile(keyfile, cipher, &rkey, &rksz); /* * Got the wrapping RSA obj and the wrapped key from file. * Unwrap the key from file with RSA obj to get rawkey obj. */ /* re-use the first two attributes of key_tmpl */ kclass = CKO_SECRET_KEY; ktype = raw_ktype; rv = C_UnwrapKey(sess, &unwrap, obj, (CK_BYTE_PTR)rkey, rksz, key_tmpl, 2, &rawobj); if (rv != CKR_OK) { die(gettext("failed to unwrap key in keyfile %s," " %s\n"), keyfile, pkcs11_strerror(rv)); } /* rawobj contains raw key, extract it */ rv = pkcs11_ObjectToKey(sess, rawobj, (void **)&rkey, &rksz, B_TRUE); if (rv != CKR_OK) { die(gettext("failed to get unwrapped key value for" " key in keyfile %s, %s\n"), keyfile, pkcs11_strerror(rv)); } } /* validate raw key size */ if (rksz < cipher->min_keysize || cipher->max_keysize < rksz) { warn(gettext("%s: invalid keysize: %d\n"), keyfile, (int)rksz); die(gettext("\t%d <= keysize <= %d\n"), cipher->min_keysize, cipher->max_keysize); } *raw_key_sz = rksz; *raw_key = (char *)rkey; } /* * Set up cipher key limits and verify PKCS#11 can be done * match_token_cipher is the function pointer used by * pkcs11_GetCriteriaSession() init_crypto. */ boolean_t match_token_cipher(CK_SLOT_ID slot_id, void *args, CK_RV *rv) { token_spec_t *token; mech_alias_t *cipher; CK_TOKEN_INFO tokinfo; CK_MECHANISM_INFO mechinfo; boolean_t token_match; /* * While traversing slot list, pick up the following info per slot: * - if token specified, whether it matches this slot's token info * - if the slot supports the PKCS#5 PBKD2 cipher * * If the user said on the command line * -T tok:mfr:ser:lab -k keyfile * -c cipher -T tok:mfr:ser:lab -k keyfile * the given cipher or the default cipher apply to keyfile, * If the user said instead * -T tok:mfr:ser:lab * -c cipher -T tok:mfr:ser:lab * the key named "lab" may or may not agree with the given * cipher or the default cipher. In those cases, cipher will * be overridden with the actual cipher type of the key "lab". */ *rv = CKR_FUNCTION_FAILED; if (args == NULL) { return (B_FALSE); } cipher = (mech_alias_t *)args; token = cipher->token; if (C_GetMechanismInfo(slot_id, cipher->type, &mechinfo) != CKR_OK) { return (B_FALSE); } if (token == NULL) { if (C_GetMechanismInfo(slot_id, CKM_PKCS5_PBKD2, &mechinfo) != CKR_OK) { return (B_FALSE); } goto foundit; } /* does the token match the token spec? */ if (token->key == NULL || (C_GetTokenInfo(slot_id, &tokinfo) != CKR_OK)) return (B_FALSE); token_match = B_TRUE; if (token->name != NULL && (token->name)[0] != '\0' && strncmp((char *)token->name, (char *)tokinfo.label, TOKEN_LABEL_SIZE) != 0) token_match = B_FALSE; if (token->mfr != NULL && (token->mfr)[0] != '\0' && strncmp((char *)token->mfr, (char *)tokinfo.manufacturerID, TOKEN_MANUFACTURER_SIZE) != 0) token_match = B_FALSE; if (token->serno != NULL && (token->serno)[0] != '\0' && strncmp((char *)token->serno, (char *)tokinfo.serialNumber, TOKEN_SERIAL_SIZE) != 0) token_match = B_FALSE; if (!token_match) return (B_FALSE); foundit: cipher->slot = slot_id; return (B_TRUE); } /* * Clean up crypto loose ends */ static void end_crypto(CK_SESSION_HANDLE sess) { (void) C_CloseSession(sess); (void) C_Finalize(NULL); } /* * Set up crypto, opening session on slot that matches token and cipher */ static void init_crypto(token_spec_t *token, mech_alias_t *cipher, CK_SESSION_HANDLE_PTR sess) { CK_RV rv; cipher->token = token; /* Turn off Metaslot so that we can see actual tokens */ if (setenv("METASLOT_ENABLED", "false", 1) < 0) { die(gettext("could not disable Metaslot")); } rv = pkcs11_GetCriteriaSession(match_token_cipher, (void *)cipher, sess); if (rv != CKR_OK) { end_crypto(*sess); if (rv == CKR_HOST_MEMORY) { die("malloc"); } die(gettext("failed to find any cryptographic provider, " "use \"cryptoadm list -p\" to find providers: %s\n"), pkcs11_strerror(rv)); } } /* * Uncompress a file. * * First map the file in to establish a device * association, then read from it. On-the-fly * decompression will automatically uncompress * the file if it's compressed * * If the file is mapped and a device association * has been established, disallow uncompressing * the file until it is unmapped. */ static void lofi_uncompress(int lfd, const char *filename) { struct lofi_ioctl li; char buf[MAXBSIZE]; char devicename[32]; char tmpfilename[MAXPATHLEN]; char *x; char *dir = NULL; char *file = NULL; int minor = 0; struct stat64 statbuf; int compfd = -1; int uncompfd = -1; ssize_t rbytes; /* * Disallow uncompressing the file if it is * already mapped. */ li.li_crypto_enabled = B_FALSE; li.li_id = 0; (void) strlcpy(li.li_filename, filename, sizeof (li.li_filename)); if (ioctl(lfd, LOFI_GET_MINOR, &li) != -1) die(gettext("%s must be unmapped before uncompressing"), filename); /* Zero length files don't need to be uncompressed */ if (stat64(filename, &statbuf) == -1) die(gettext("stat: %s"), filename); if (statbuf.st_size == 0) return; minor = lofi_map_file(lfd, &li, filename); (void) snprintf(devicename, sizeof (devicename), "/dev/%s/%d", LOFI_BLOCK_NAME, minor); /* If the file isn't compressed, we just return */ if ((ioctl(lfd, LOFI_CHECK_COMPRESSED, &li) == -1) || (li.li_algorithm[0] == '\0')) { delete_mapping(lfd, devicename, filename, B_TRUE); die("%s is not compressed\n", filename); } if ((compfd = open64(devicename, O_RDONLY | O_NONBLOCK)) == -1) { delete_mapping(lfd, devicename, filename, B_TRUE); die(gettext("open: %s"), filename); } /* Create a temp file in the same directory */ x = strdup(filename); dir = strdup(dirname(x)); free(x); x = strdup(filename); file = strdup(basename(x)); free(x); (void) snprintf(tmpfilename, sizeof (tmpfilename), "%s/.%sXXXXXX", dir, file); free(dir); free(file); if ((uncompfd = mkstemp64(tmpfilename)) == -1) { (void) close(compfd); delete_mapping(lfd, devicename, filename, B_TRUE); die("%s could not be uncompressed\n", filename); } /* * Set the mode bits and the owner of this temporary * file to be that of the original uncompressed file */ (void) fchmod(uncompfd, statbuf.st_mode); if (fchown(uncompfd, statbuf.st_uid, statbuf.st_gid) == -1) { (void) close(compfd); (void) close(uncompfd); delete_mapping(lfd, devicename, filename, B_TRUE); die("%s could not be uncompressed\n", filename); } /* Now read from the device in MAXBSIZE-sized chunks */ for (;;) { rbytes = read(compfd, buf, sizeof (buf)); if (rbytes <= 0) break; if (write(uncompfd, buf, rbytes) != rbytes) { rbytes = -1; break; } } (void) close(compfd); (void) close(uncompfd); /* Delete the mapping */ delete_mapping(lfd, devicename, filename, B_TRUE); /* * If an error occured while reading or writing, rbytes will * be negative */ if (rbytes < 0) { (void) unlink(tmpfilename); die(gettext("could not read from %s"), filename); } /* Rename the temp file to the actual file */ if (rename(tmpfilename, filename) == -1) (void) unlink(tmpfilename); } /* * Compress a file */ static void lofi_compress(int *lfd, const char *filename, int compress_index, uint32_t segsize) { struct lofi_ioctl lic; lofi_compress_info_t *li; struct flock lock; char tmpfilename[MAXPATHLEN]; char comp_filename[MAXPATHLEN]; char algorithm[MAXALGLEN]; char *x; char *dir = NULL, *file = NULL; uchar_t *uncompressed_seg = NULL; uchar_t *compressed_seg = NULL; uint32_t compressed_segsize; uint32_t len_compressed, count; uint32_t index_entries, index_sz; uint64_t *index = NULL; uint64_t offset; size_t real_segsize; struct stat64 statbuf; int compfd = -1, uncompfd = -1; int tfd = -1; ssize_t rbytes, wbytes, lastread; int i, type; /* * Disallow compressing the file if it is * already mapped */ lic.li_id = 0; (void) strlcpy(lic.li_filename, filename, sizeof (lic.li_filename)); if (ioctl(*lfd, LOFI_GET_MINOR, &lic) != -1) die(gettext("%s must be unmapped before compressing"), filename); /* * Close the control device so other operations * can use it */ (void) close(*lfd); *lfd = -1; li = &lofi_compress_table[compress_index]; /* * The size of the buffer to hold compressed data must * be slightly larger than the compressed segment size. * * The compress functions use part of the buffer as * scratch space to do calculations. * Ref: http://www.zlib.net/manual.html#compress2 */ compressed_segsize = segsize + (segsize >> 6); compressed_seg = (uchar_t *)malloc(compressed_segsize + SEGHDR); uncompressed_seg = (uchar_t *)malloc(segsize); if (compressed_seg == NULL || uncompressed_seg == NULL) die(gettext("No memory")); if ((uncompfd = open64(filename, O_RDWR|O_LARGEFILE, 0)) == -1) die(gettext("open: %s"), filename); lock.l_type = F_WRLCK; lock.l_whence = SEEK_SET; lock.l_start = 0; lock.l_len = 0; /* * Use an advisory lock to ensure that only a * single lofiadm process compresses a given * file at any given time * * A close on the file descriptor automatically * closes all lock state on the file */ if (fcntl(uncompfd, F_SETLKW, &lock) == -1) die(gettext("fcntl: %s"), filename); if (fstat64(uncompfd, &statbuf) == -1) { (void) close(uncompfd); die(gettext("fstat: %s"), filename); } /* Zero length files don't need to be compressed */ if (statbuf.st_size == 0) { (void) close(uncompfd); return; } /* * Create temporary files in the same directory that * will hold the intermediate data */ x = strdup(filename); dir = strdup(dirname(x)); free(x); x = strdup(filename); file = strdup(basename(x)); free(x); (void) snprintf(tmpfilename, sizeof (tmpfilename), "%s/.%sXXXXXX", dir, file); (void) snprintf(comp_filename, sizeof (comp_filename), "%s/.%sXXXXXX", dir, file); free(dir); free(file); if ((tfd = mkstemp64(tmpfilename)) == -1) goto cleanup; if ((compfd = mkstemp64(comp_filename)) == -1) goto cleanup; /* * Set the mode bits and owner of the compressed * file to be that of the original uncompressed file */ (void) fchmod(compfd, statbuf.st_mode); if (fchown(compfd, statbuf.st_uid, statbuf.st_gid) == -1) goto cleanup; /* * Calculate the number of index entries required. * index entries are stored as an array. adding * a '2' here accounts for the fact that the last * segment may not be a multiple of the segment size */ index_sz = (statbuf.st_size / segsize) + 2; index = malloc(sizeof (*index) * index_sz); if (index == NULL) goto cleanup; offset = 0; lastread = segsize; count = 0; /* * Now read from the uncompressed file in 'segsize' * sized chunks, compress what was read in and * write it out to a temporary file */ for (;;) { rbytes = read(uncompfd, uncompressed_seg, segsize); if (rbytes <= 0) break; if (lastread < segsize) goto cleanup; /* * Account for the first byte that * indicates whether a segment is * compressed or not */ real_segsize = segsize - 1; (void) li->l_compress(uncompressed_seg, rbytes, compressed_seg + SEGHDR, &real_segsize, li->l_level); /* * If the length of the compressed data is more * than a threshold then there isn't any benefit * to be had from compressing this segment - leave * it uncompressed. * * NB. In case an error occurs during compression (above) * the 'real_segsize' isn't changed. The logic below * ensures that that segment is left uncompressed. */ len_compressed = real_segsize; if (segsize <= COMPRESS_THRESHOLD || real_segsize > (segsize - COMPRESS_THRESHOLD)) { (void) memcpy(compressed_seg + SEGHDR, uncompressed_seg, rbytes); type = UNCOMPRESSED; len_compressed = rbytes; } else { type = COMPRESSED; } /* * Set the first byte or the SEGHDR to * indicate if it's compressed or not */ *compressed_seg = type; wbytes = write(tfd, compressed_seg, len_compressed + SEGHDR); if (wbytes != (len_compressed + SEGHDR)) { rbytes = -1; break; } index[count] = BE_64(offset); offset += wbytes; lastread = rbytes; count++; } (void) close(uncompfd); if (rbytes < 0) goto cleanup; /* * The last index entry is a sentinel entry. It does not point to * an actual compressed segment but helps in computing the size of * the compressed segment. The size of each compressed segment is * computed by subtracting the current index value from the next * one (the compressed blocks are stored sequentially) */ index[count++] = BE_64(offset); /* * Now write the compressed data along with the * header information to this file which will * later be renamed to the original uncompressed * file name * * The header is as follows - * * Signature (name of the compression algorithm) * Compression segment size (a multiple of 512) * Number of index entries * Size of the last block * The array containing the index entries * * the header is always stored in network byte * order */ (void) bzero(algorithm, sizeof (algorithm)); (void) strlcpy(algorithm, li->l_name, sizeof (algorithm)); if (write(compfd, algorithm, sizeof (algorithm)) != sizeof (algorithm)) goto cleanup; segsize = htonl(segsize); if (write(compfd, &segsize, sizeof (segsize)) != sizeof (segsize)) goto cleanup; index_entries = htonl(count); if (write(compfd, &index_entries, sizeof (index_entries)) != sizeof (index_entries)) goto cleanup; lastread = htonl(lastread); if (write(compfd, &lastread, sizeof (lastread)) != sizeof (lastread)) goto cleanup; for (i = 0; i < count; i++) { if (write(compfd, index + i, sizeof (*index)) != sizeof (*index)) goto cleanup; } /* Header is written, now write the compressed data */ if (lseek(tfd, 0, SEEK_SET) != 0) goto cleanup; rbytes = wbytes = 0; for (;;) { rbytes = read(tfd, compressed_seg, compressed_segsize + SEGHDR); if (rbytes <= 0) break; if (write(compfd, compressed_seg, rbytes) != rbytes) goto cleanup; } if (fstat64(compfd, &statbuf) == -1) goto cleanup; /* * Round up the compressed file size to be a multiple of * DEV_BSIZE. lofi(7D) likes it that way. */ if ((offset = statbuf.st_size % DEV_BSIZE) > 0) { offset = DEV_BSIZE - offset; for (i = 0; i < offset; i++) uncompressed_seg[i] = '\0'; if (write(compfd, uncompressed_seg, offset) != offset) goto cleanup; } (void) close(compfd); (void) close(tfd); (void) unlink(tmpfilename); cleanup: if (rbytes < 0) { if (tfd != -1) (void) unlink(tmpfilename); if (compfd != -1) (void) unlink(comp_filename); die(gettext("error compressing file %s"), filename); } else { /* Rename the compressed file to the actual file */ if (rename(comp_filename, filename) == -1) { (void) unlink(comp_filename); die(gettext("error compressing file %s"), filename); } } if (compressed_seg != NULL) free(compressed_seg); if (uncompressed_seg != NULL) free(uncompressed_seg); if (index != NULL) free(index); if (compfd != -1) (void) close(compfd); if (uncompfd != -1) (void) close(uncompfd); if (tfd != -1) (void) close(tfd); } static int lofi_compress_select(const char *algname) { int i; for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { if (strcmp(lofi_compress_table[i].l_name, algname) == 0) return (i); } return (-1); } static void check_algorithm_validity(const char *algname, int *compress_index) { *compress_index = lofi_compress_select(algname); if (*compress_index < 0) die(gettext("invalid algorithm name: %s\n"), algname); } static void check_file_validity(const char *filename) { struct stat64 buf; int error; int fd; fd = open64(filename, O_RDONLY); if (fd == -1) { die(gettext("open: %s"), filename); } error = fstat64(fd, &buf); if (error == -1) { die(gettext("fstat: %s"), filename); } else if (!S_ISLOFIABLE(buf.st_mode)) { die(gettext("%s is not a regular file, " "block, or character device\n"), filename); } else if ((buf.st_size % DEV_BSIZE) != 0) { die(gettext("size of %s is not a multiple of %d\n"), filename, DEV_BSIZE); } (void) close(fd); if (name_to_minor(filename) != 0) { die(gettext("cannot use %s on itself\n"), LOFI_DRIVER_NAME); } } static boolean_t check_file_is_encrypted(const char *filename) { int fd; char buf[sizeof (lofi_crypto_magic)]; int got; int rest = sizeof (lofi_crypto_magic); fd = open64(filename, O_RDONLY); if (fd == -1) die(gettext("failed to open: %s"), filename); if (lseek(fd, CRYOFF, SEEK_SET) != CRYOFF) die(gettext("failed to seek to offset 0x%lx in file %s"), CRYOFF, filename); do { got = read(fd, buf + sizeof (lofi_crypto_magic) - rest, rest); if ((got == 0) || ((got == -1) && (errno != EINTR))) die(gettext("failed to read crypto header" " at offset 0x%lx in file %s"), CRYOFF, filename); if (got > 0) rest -= got; } while (rest > 0); while (close(fd) == -1) { if (errno != EINTR) die(gettext("failed to close file %s"), filename); } return (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0); } static uint32_t convert_to_num(const char *str) { int len; uint32_t segsize, mult = 1; len = strlen(str); if (len && isalpha(str[len - 1])) { switch (str[len - 1]) { case 'k': case 'K': mult = KILOBYTE; break; case 'b': case 'B': mult = BLOCK_SIZE; break; case 'm': case 'M': mult = MEGABYTE; break; case 'g': case 'G': mult = GIGABYTE; break; default: die(gettext("invalid segment size %s\n"), str); } } segsize = atol(str); segsize *= mult; return (segsize); } int main(int argc, char *argv[]) { int lfd; int c; const char *devicename = NULL; const char *filename = NULL; const char *algname = COMPRESS_ALGORITHM; int openflag; int minor; int compress_index; uint32_t segsize = SEGSIZE; static char *lofictl = "/dev/" LOFI_CTL_NAME; boolean_t force = B_FALSE; const char *pname; boolean_t errflag = B_FALSE; boolean_t addflag = B_FALSE; boolean_t labelflag = B_FALSE; boolean_t rdflag = B_FALSE; boolean_t deleteflag = B_FALSE; boolean_t ephflag = B_FALSE; boolean_t compressflag = B_FALSE; boolean_t uncompressflag = B_FALSE; /* the next two work together for -c, -k, -T, -e options only */ boolean_t need_crypto = B_FALSE; /* if any -c, -k, -T, -e */ boolean_t cipher_only = B_TRUE; /* if -c only */ const char *keyfile = NULL; mech_alias_t *cipher = NULL; token_spec_t *token = NULL; char *rkey = NULL; size_t rksz = 0; char realfilename[MAXPATHLEN]; pname = getpname(argv[0]); (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); while ((c = getopt(argc, argv, "a:c:Cd:efk:lrs:T:U")) != EOF) { switch (c) { case 'a': addflag = B_TRUE; if ((filename = realpath(optarg, realfilename)) == NULL) die("%s", optarg); if (((argc - optind) > 0) && (*argv[optind] != '-')) { /* optional device */ devicename = argv[optind]; optind++; } break; case 'C': compressflag = B_TRUE; if (((argc - optind) > 1) && (*argv[optind] != '-')) { /* optional algorithm */ algname = argv[optind]; optind++; } check_algorithm_validity(algname, &compress_index); break; case 'c': /* is the chosen cipher allowed? */ if ((cipher = ciph2mech(optarg)) == NULL) { errflag = B_TRUE; warn(gettext("cipher %s not allowed\n"), optarg); } need_crypto = B_TRUE; /* cipher_only is already set */ break; case 'd': deleteflag = B_TRUE; minor = name_to_minor(optarg); if (minor != 0) devicename = optarg; else { if ((filename = realpath(optarg, realfilename)) == NULL) die("%s", optarg); } break; case 'e': ephflag = B_TRUE; need_crypto = B_TRUE; cipher_only = B_FALSE; /* need to unset cipher_only */ break; case 'f': force = B_TRUE; break; case 'k': keyfile = optarg; need_crypto = B_TRUE; cipher_only = B_FALSE; /* need to unset cipher_only */ break; case 'l': labelflag = B_TRUE; break; case 'r': rdflag = B_TRUE; break; case 's': segsize = convert_to_num(optarg); if (segsize < DEV_BSIZE || !ISP2(segsize)) die(gettext("segment size %s is invalid " "or not a multiple of minimum block " "size %ld\n"), optarg, DEV_BSIZE); break; case 'T': if ((token = parsetoken(optarg)) == NULL) { errflag = B_TRUE; warn( gettext("invalid token key specifier %s\n"), optarg); } need_crypto = B_TRUE; cipher_only = B_FALSE; /* need to unset cipher_only */ break; case 'U': uncompressflag = B_TRUE; break; case '?': default: errflag = B_TRUE; break; } } /* Check for mutually exclusive combinations of options */ if (errflag || (addflag && deleteflag) || (labelflag && !addflag) || (rdflag && !addflag) || (!addflag && need_crypto) || (need_crypto && labelflag) || ((compressflag || uncompressflag) && (labelflag || addflag || deleteflag))) usage(pname); /* ephemeral key, and key from either file or token are incompatible */ if (ephflag && (keyfile != NULL || token != NULL)) { die(gettext("ephemeral key cannot be used with keyfile" " or token key\n")); } /* * "-c" but no "-k", "-T", "-e", or "-T -k" means derive key from * command line passphrase */ switch (argc - optind) { case 0: /* no more args */ if (compressflag || uncompressflag) /* needs filename */ usage(pname); break; case 1: if (addflag || deleteflag) usage(pname); /* one arg means compress/uncompress the file ... */ if (compressflag || uncompressflag) { if ((filename = realpath(argv[optind], realfilename)) == NULL) die("%s", argv[optind]); /* ... or without options means print the association */ } else { minor = name_to_minor(argv[optind]); if (minor != 0) devicename = argv[optind]; else { if ((filename = realpath(argv[optind], realfilename)) == NULL) die("%s", argv[optind]); } } break; default: usage(pname); break; } if (addflag || compressflag || uncompressflag) check_file_validity(filename); if (filename && !valid_abspath(filename)) exit(E_ERROR); /* * Here, we know the arguments are correct, the filename is an * absolute path, it exists and is a regular file. We don't yet * know that the device name is ok or not. */ openflag = O_EXCL; if (addflag || deleteflag || compressflag || uncompressflag) openflag |= O_RDWR; else openflag |= O_RDONLY; lfd = open(lofictl, openflag); if (lfd == -1) { if ((errno == EPERM) || (errno == EACCES)) { die(gettext("you do not have permission to perform " "that operation.\n")); } else { die(gettext("open: %s"), lofictl); } /*NOTREACHED*/ } /* * No passphrase is needed for ephemeral key, or when key is * in a file and not wrapped by another key from a token. * However, a passphrase is needed in these cases: * 1. cipher with no ephemeral key, key file, or token, * in which case the passphrase is used to build the key * 2. token with an optional cipher or optional key file, * in which case the passphrase unlocks the token * If only the cipher is specified, reconfirm the passphrase * to ensure the user hasn't mis-entered it. Otherwise, the * token will enforce the token passphrase. */ if (need_crypto) { CK_SESSION_HANDLE sess; /* pick a cipher if none specified */ if (cipher == NULL) cipher = DEFAULT_CIPHER; if (!kernel_cipher_check(cipher)) die(gettext( "use \"cryptoadm list -m\" to find available " "mechanisms\n")); init_crypto(token, cipher, &sess); if (cipher_only) { getkeyfromuser(cipher, &rkey, &rksz, !check_file_is_encrypted(filename)); } else if (token != NULL) { getkeyfromtoken(sess, token, keyfile, cipher, &rkey, &rksz); } else { /* this also handles ephemeral keys */ getkeyfromfile(keyfile, cipher, &rkey, &rksz); } end_crypto(sess); } /* * Now to the real work. */ if (addflag) add_mapping(lfd, devicename, filename, cipher, rkey, rksz, rdflag, labelflag); else if (compressflag) lofi_compress(&lfd, filename, compress_index, segsize); else if (uncompressflag) lofi_uncompress(lfd, filename); else if (deleteflag) delete_mapping(lfd, devicename, filename, force); else if (filename || devicename) print_one_mapping(lfd, devicename, filename); else print_mappings(lfd); if (lfd != -1) (void) close(lfd); closelib(); return (E_SUCCESS); }