/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2015 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sm_statd.h" static int local_state; /* fake local sm state */ /* client name-to-address translation table */ static name_addr_entry_t *name_addr = NULL; #define LOGHOST "loghost" static void delete_mon(char *mon_name, my_id *my_idp); static void insert_mon(mon *monp); static void pr_mon(char *); static int statd_call_lockd(mon *monp, int state); static int hostname_eq(char *host1, char *host2); static char *get_system_id(char *hostname); static void add_aliases(struct hostent *phost); static void *thr_send_notice(void *); static void delete_onemon(char *mon_name, my_id *my_idp, mon_entry **monitor_q); static void send_notice(char *mon_name, int state); static void add_to_host_array(char *host); static int in_host_array(char *host); static void pr_name_addr(name_addr_entry_t *name_addr); extern int self_check(char *hostname); extern struct lifconf *getmyaddrs(void); /* ARGSUSED */ void sm_stat_svc(void *arg1, void *arg2) { sm_name *namep = arg1; sm_stat_res *resp = arg2; if (debug) (void) printf("proc sm_stat: mon_name = %s\n", namep->mon_name); resp->res_stat = stat_succ; resp->state = LOCAL_STATE; } /* ARGSUSED */ void sm_mon_svc(void *arg1, void *arg2) { mon *monp = arg1; sm_stat_res *resp = arg2; mon_id *monidp; monidp = &monp->mon_id; rw_rdlock(&thr_rwlock); if (debug) { (void) printf("proc sm_mon: mon_name = %s, id = %d\n", monidp->mon_name, *((int *)monp->priv)); pr_mon(monp->mon_id.mon_name); } /* only monitor other hosts */ if (self_check(monp->mon_id.mon_name) == 0) { /* store monitor request into monitor_q */ insert_mon(monp); } pr_mon(monp->mon_id.mon_name); resp->res_stat = stat_succ; resp->state = local_state; rw_unlock(&thr_rwlock); } /* ARGSUSED */ void sm_unmon_svc(void *arg1, void *arg2) { mon_id *monidp = arg1; sm_stat *resp = arg2; rw_rdlock(&thr_rwlock); if (debug) { (void) printf( "proc sm_unmon: mon_name = %s, [%s, %d, %d, %d]\n", monidp->mon_name, monidp->my_id.my_name, monidp->my_id.my_prog, monidp->my_id.my_vers, monidp->my_id.my_proc); pr_mon(monidp->mon_name); } delete_mon(monidp->mon_name, &monidp->my_id); pr_mon(monidp->mon_name); resp->state = local_state; rw_unlock(&thr_rwlock); } /* ARGSUSED */ void sm_unmon_all_svc(void *arg1, void *arg2) { my_id *myidp = arg1; sm_stat *resp = arg2; rw_rdlock(&thr_rwlock); if (debug) (void) printf("proc sm_unmon_all: [%s, %d, %d, %d]\n", myidp->my_name, myidp->my_prog, myidp->my_vers, myidp->my_proc); delete_mon(NULL, myidp); pr_mon(NULL); resp->state = local_state; rw_unlock(&thr_rwlock); } /* * Notifies lockd specified by name that state has changed for this server. */ void sm_notify_svc(void *arg, void *arg1 __unused) { stat_chge *ntfp = arg; rw_rdlock(&thr_rwlock); if (debug) (void) printf("sm_notify: %s state =%d\n", ntfp->mon_name, ntfp->state); send_notice(ntfp->mon_name, ntfp->state); rw_unlock(&thr_rwlock); } /* ARGSUSED */ void sm_simu_crash_svc(void *myidp, void *arg __unused) { int i; struct mon_entry *monitor_q; int found = 0; if (debug) (void) printf("proc sm_simu_crash\n"); /* Only one crash should be running at a time. */ mutex_lock(&crash_lock); if (in_crash != 0) { mutex_unlock(&crash_lock); return; } in_crash = 1; mutex_unlock(&crash_lock); for (i = 0; i < MAX_HASHSIZE; i++) { mutex_lock(&mon_table[i].lock); monitor_q = mon_table[i].sm_monhdp; if (monitor_q != NULL) { mutex_unlock(&mon_table[i].lock); found = 1; break; } mutex_unlock(&mon_table[i].lock); } /* * If there are entries found in the monitor table, * initiate a crash, else zero out the in_crash variable. */ if (found) { mutex_lock(&crash_lock); die = 1; /* Signal sm_try() thread if sleeping. */ cond_signal(&retrywait); mutex_unlock(&crash_lock); rw_wrlock(&thr_rwlock); sm_crash(); rw_unlock(&thr_rwlock); } else { mutex_lock(&crash_lock); in_crash = 0; mutex_unlock(&crash_lock); } } /* ARGSUSED */ void nsmaddrproc1_reg(void *arg1, void *arg2) { reg1args *regargs = arg1; reg1res *regresp = arg2; nsm_addr_res status; name_addr_entry_t *entry; char *tmp_n_bytes; addr_entry_t *addr; rw_rdlock(&thr_rwlock); if (debug) { int i; (void) printf("nap1_reg: fam= %d, name= %s, len= %d\n", regargs->family, regargs->name, regargs->address.n_len); (void) printf("address is: "); for (i = 0; i < regargs->address.n_len; i++) { (void) printf("%d.", (unsigned char)regargs->address.n_bytes[i]); } (void) printf("\n"); } /* * Locate the entry with the name in the NSM_ADDR_REG request if * it exists. If it doesn't, create a new entry to hold this name. * The first time through this code, name_addr starts out as NULL. */ mutex_lock(&name_addrlock); for (entry = name_addr; entry; entry = entry->next) { if (strcmp(regargs->name, entry->name) == 0) { if (debug) { (void) printf("nap1_reg: matched name %s\n", entry->name); } break; } } if (entry == NULL) { entry = (name_addr_entry_t *)malloc(sizeof (*entry)); if (entry == NULL) { if (debug) { (void) printf( "nsmaddrproc1_reg: no memory for entry\n"); } status = nsm_addr_fail; goto done; } entry->name = strdup(regargs->name); if (entry->name == NULL) { if (debug) { (void) printf( "nsmaddrproc1_reg: no memory for name\n"); } free(entry); status = nsm_addr_fail; goto done; } entry->addresses = NULL; /* * Link the new entry onto the *head* of the name_addr * table. * * Note: there is code below in the address maintenance * section that assumes this behavior. */ entry->next = name_addr; name_addr = entry; } /* * Try to match the address in the request; if it doesn't match, * add it to the entry's address list. */ for (addr = entry->addresses; addr; addr = addr->next) { if (addr->family == (sa_family_t)regargs->family && addr->ah.n_len == regargs->address.n_len && memcmp(addr->ah.n_bytes, regargs->address.n_bytes, addr->ah.n_len) == 0) { if (debug) { int i; (void) printf("nap1_reg: matched addr "); for (i = 0; i < addr->ah.n_len; i++) { (void) printf("%d.", (unsigned char)addr->ah.n_bytes[i]); } (void) printf(" family %d for name %s\n", addr->family, entry->name); } break; } } if (addr == NULL) { addr = (addr_entry_t *)malloc(sizeof (*addr)); tmp_n_bytes = (char *)malloc(regargs->address.n_len); if (addr == NULL || tmp_n_bytes == NULL) { if (debug) { (void) printf("nap1_reg: no memory for addr\n"); } /* * If this name entry was just newly made in the * table, back it out now that we can't register * an address with it anyway. * * Note: we are making an assumption about how * names are added to (the head of) name_addr here. */ if (entry == name_addr && entry->addresses == NULL) { name_addr = name_addr->next; free(entry->name); free(entry); if (tmp_n_bytes) free(tmp_n_bytes); if (addr) free(addr); status = nsm_addr_fail; goto done; } } /* * Note: this check for address family assumes that we * will get something different here someday for * other supported address types, such as IPv6. */ addr->ah.n_len = regargs->address.n_len; addr->ah.n_bytes = tmp_n_bytes; addr->family = regargs->family; if (debug) { if ((addr->family != AF_INET) && (addr->family != AF_INET6)) { (void) printf( "nap1_reg: unknown addr family %d\n", addr->family); } } (void) memcpy(addr->ah.n_bytes, regargs->address.n_bytes, addr->ah.n_len); addr->next = entry->addresses; entry->addresses = addr; } status = nsm_addr_succ; done: regresp->status = status; if (debug) { pr_name_addr(name_addr); } mutex_unlock(&name_addrlock); rw_unlock(&thr_rwlock); } /* * Insert an entry into the monitor_q. Space for the entry is allocated * here. It is then filled in from the information passed in. */ static void insert_mon(mon *monp) { mon_entry *new, *found; my_id *my_idp, *nl_idp; mon_entry *monitor_q; unsigned int hash; name_addr_entry_t *entry; addr_entry_t *addr; /* Allocate entry for new */ if ((new = (mon_entry *) malloc(sizeof (mon_entry))) == 0) { syslog(LOG_ERR, "statd: insert_mon: malloc error on mon %s (id=%d)\n", monp->mon_id.mon_name, *((int *)monp->priv)); return; } /* Initialize and copy contents of monp to new */ (void) memset(new, 0, sizeof (mon_entry)); (void) memcpy(&new->id, monp, sizeof (mon)); /* Allocate entry for new mon_name */ if ((new->id.mon_id.mon_name = strdup(monp->mon_id.mon_name)) == 0) { syslog(LOG_ERR, "statd: insert_mon: malloc error on mon %s (id=%d)\n", monp->mon_id.mon_name, *((int *)monp->priv)); free(new); return; } /* Allocate entry for new my_name */ if ((new->id.mon_id.my_id.my_name = strdup(monp->mon_id.my_id.my_name)) == 0) { syslog(LOG_ERR, "statd: insert_mon: malloc error on mon %s (id=%d)\n", monp->mon_id.mon_name, *((int *)monp->priv)); free(new->id.mon_id.mon_name); free(new); return; } if (debug) (void) printf("add_mon(%x) %s (id=%d)\n", (int)new, new->id.mon_id.mon_name, *((int *)new->id.priv)); /* * Record the name, and all addresses which have been registered * for this name, in the filesystem name space. */ record_name(new->id.mon_id.mon_name, 1); if (regfiles_only == 0) { mutex_lock(&name_addrlock); for (entry = name_addr; entry; entry = entry->next) { if (strcmp(new->id.mon_id.mon_name, entry->name) != 0) { continue; } for (addr = entry->addresses; addr; addr = addr->next) { record_addr(new->id.mon_id.mon_name, addr->family, &addr->ah); } break; } mutex_unlock(&name_addrlock); } SMHASH(new->id.mon_id.mon_name, hash); mutex_lock(&mon_table[hash].lock); monitor_q = mon_table[hash].sm_monhdp; /* If mon_table hash list is empty. */ if (monitor_q == NULL) { if (debug) (void) printf("\nAdding to monitor_q hash %d\n", hash); new->nxt = new->prev = NULL; mon_table[hash].sm_monhdp = new; mutex_unlock(&mon_table[hash].lock); return; } else { found = 0; my_idp = &new->id.mon_id.my_id; while (monitor_q != NULL) { /* * This list is searched sequentially for the * tuple (hostname, prog, vers, proc). The tuples * are inserted in the beginning of the monitor_q, * if the hostname is not already present in the list. * If the hostname is found in the list, the incoming * tuple is inserted just after all the tuples with the * same hostname. However, if the tuple matches exactly * with an entry in the list, space allocated for the * new entry is released and nothing is inserted in the * list. */ if (str_cmp_unqual_hostname( monitor_q->id.mon_id.mon_name, new->id.mon_id.mon_name) == 0) { /* found */ nl_idp = &monitor_q->id.mon_id.my_id; if ((str_cmp_unqual_hostname(my_idp->my_name, nl_idp->my_name) == 0) && my_idp->my_prog == nl_idp->my_prog && my_idp->my_vers == nl_idp->my_vers && my_idp->my_proc == nl_idp->my_proc) { /* * already exists an identical one, * release the space allocated for the * mon_entry */ free(new->id.mon_id.mon_name); free(new->id.mon_id.my_id.my_name); free(new); mutex_unlock(&mon_table[hash].lock); return; } else { /* * mark the last callback that is * not matching; new is inserted * after this */ found = monitor_q; } } else if (found) break; monitor_q = monitor_q->nxt; } if (found) { /* * insert just after the entry having matching tuple. */ new->nxt = found->nxt; new->prev = found; if (found->nxt != NULL) found->nxt->prev = new; found->nxt = new; } else { /* * not found, insert in front of list. */ new->nxt = mon_table[hash].sm_monhdp; new->prev = (mon_entry *) NULL; if (new->nxt != (mon_entry *) NULL) new->nxt->prev = new; mon_table[hash].sm_monhdp = new; } mutex_unlock(&mon_table[hash].lock); return; } } /* * Deletes a specific monitor name or deletes all monitors with same id * in hash table. */ static void delete_mon(char *mon_name, my_id *my_idp) { unsigned int hash; if (mon_name != NULL) { record_name(mon_name, 0); SMHASH(mon_name, hash); mutex_lock(&mon_table[hash].lock); delete_onemon(mon_name, my_idp, &mon_table[hash].sm_monhdp); mutex_unlock(&mon_table[hash].lock); } else { for (hash = 0; hash < MAX_HASHSIZE; hash++) { mutex_lock(&mon_table[hash].lock); delete_onemon(mon_name, my_idp, &mon_table[hash].sm_monhdp); mutex_unlock(&mon_table[hash].lock); } } } /* * Deletes a monitor in list. * IF mon_name is NULL, delete all mon_names that have the same id, * else delete specific monitor. */ void delete_onemon(char *mon_name, my_id *my_idp, mon_entry **monitor_q) { mon_entry *next, *nl; my_id *nl_idp; next = *monitor_q; while ((nl = next) != NULL) { next = next->nxt; if (mon_name == NULL || (mon_name != NULL && str_cmp_unqual_hostname(nl->id.mon_id.mon_name, mon_name) == 0)) { nl_idp = &nl->id.mon_id.my_id; if ((str_cmp_unqual_hostname(my_idp->my_name, nl_idp->my_name) == 0) && my_idp->my_prog == nl_idp->my_prog && my_idp->my_vers == nl_idp->my_vers && my_idp->my_proc == nl_idp->my_proc) { /* found */ if (debug) (void) printf("delete_mon(%x): %s\n", (int)nl, mon_name ? mon_name : ""); /* * Remove the monitor name from the * record_q, if id matches. */ record_name(nl->id.mon_id.mon_name, 0); /* if nl is not the first entry on list */ if (nl->prev != NULL) nl->prev->nxt = nl->nxt; else { *monitor_q = nl->nxt; } if (nl->nxt != NULL) nl->nxt->prev = nl->prev; free(nl->id.mon_id.mon_name); free(nl_idp->my_name); free(nl); } } /* end of if mon */ } } /* * Notify lockd of host specified by mon_name that the specified state * has changed. */ static void send_notice(char *mon_name, int state) { struct mon_entry *next; mon_entry *monitor_q; unsigned int hash; moninfo_t *minfop; mon *monp; SMHASH(mon_name, hash); mutex_lock(&mon_table[hash].lock); monitor_q = mon_table[hash].sm_monhdp; next = monitor_q; while (next != NULL) { if (hostname_eq(next->id.mon_id.mon_name, mon_name)) { monp = &next->id; /* * Prepare the minfop structure to pass to * thr_create(). This structure is a copy of * mon info and state. */ if ((minfop = (moninfo_t *)xmalloc(sizeof (moninfo_t))) != NULL) { (void) memcpy(&minfop->id, monp, sizeof (mon)); /* Allocate entry for mon_name */ if ((minfop->id.mon_id.mon_name = strdup(monp->mon_id.mon_name)) == 0) { syslog(LOG_ERR, "statd: send_notice: " "malloc error on mon %s (id=%d)\n", monp->mon_id.mon_name, *((int *)monp->priv)); free(minfop); continue; } /* Allocate entry for my_name */ if ((minfop->id.mon_id.my_id.my_name = strdup(monp->mon_id.my_id.my_name)) == 0) { syslog(LOG_ERR, "statd: send_notice: " "malloc error on mon %s (id=%d)\n", monp->mon_id.mon_name, *((int *)monp->priv)); free(minfop->id.mon_id.mon_name); free(minfop); continue; } minfop->state = state; /* * Create detached threads to process each host * to notify. If error, print out msg, free * resources and continue. */ if (thr_create(NULL, 0, thr_send_notice, minfop, THR_DETACHED, NULL)) { syslog(LOG_ERR, "statd: unable to " "create thread to send_notice to " "%s.\n", mon_name); free(minfop->id.mon_id.mon_name); free(minfop->id.mon_id.my_id.my_name); free(minfop); continue; } } } next = next->nxt; } mutex_unlock(&mon_table[hash].lock); } /* * Work thread created to do the actual statd_call_lockd */ static void * thr_send_notice(void *arg) { moninfo_t *minfop; minfop = (moninfo_t *)arg; if (statd_call_lockd(&minfop->id, minfop->state) == -1) { if (debug && minfop->id.mon_id.mon_name) (void) printf("problem with notifying %s failure, " "give up\n", minfop->id.mon_id.mon_name); } else { if (debug) (void) printf("send_notice: %s, %d notified.\n", minfop->id.mon_id.mon_name, minfop->state); } free(minfop->id.mon_id.mon_name); free(minfop->id.mon_id.my_id.my_name); free(minfop); thr_exit((void *) 0); #ifdef lint /*NOTREACHED*/ return ((void *)0); #endif } /* * Contact lockd specified by monp. */ static int statd_call_lockd(mon *monp, int state) { enum clnt_stat clnt_stat; struct timeval tottimeout; struct sm_status stat; my_id *my_idp; char *mon_name; int i; int rc = 0; CLIENT *clnt; mon_name = monp->mon_id.mon_name; my_idp = &monp->mon_id.my_id; (void) memset(&stat, 0, sizeof (stat)); stat.mon_name = mon_name; stat.state = state; for (i = 0; i < 16; i++) { stat.priv[i] = monp->priv[i]; } if (debug) (void) printf("statd_call_lockd: %s state = %d\n", stat.mon_name, stat.state); tottimeout.tv_sec = SM_RPC_TIMEOUT; tottimeout.tv_usec = 0; clnt = create_client(my_idp->my_name, my_idp->my_prog, my_idp->my_vers, "ticotsord", &tottimeout); if (clnt == NULL) { return (-1); } clnt_stat = clnt_call(clnt, my_idp->my_proc, xdr_sm_status, (char *)&stat, xdr_void, NULL, tottimeout); if (debug) { (void) printf("clnt_stat=%s(%d)\n", clnt_sperrno(clnt_stat), clnt_stat); } if (clnt_stat != (int)RPC_SUCCESS) { syslog(LOG_WARNING, "statd: cannot talk to lockd at %s, %s(%d)\n", my_idp->my_name, clnt_sperrno(clnt_stat), clnt_stat); rc = -1; } clnt_destroy(clnt); return (rc); } /* * Client handle created. */ CLIENT * create_client(char *host, int prognum, int versnum, char *netid, struct timeval *utimeout) { int fd; struct timeval timeout; CLIENT *client; struct t_info tinfo; if (netid == NULL) { client = clnt_create_timed(host, prognum, versnum, "netpath", utimeout); } else { struct netconfig *nconf; nconf = getnetconfigent(netid); if (nconf == NULL) { return (NULL); } client = clnt_tp_create_timed(host, prognum, versnum, nconf, utimeout); freenetconfigent(nconf); } if (client == NULL) { return (NULL); } (void) CLNT_CONTROL(client, CLGET_FD, (caddr_t)&fd); if (t_getinfo(fd, &tinfo) != -1) { if (tinfo.servtype == T_CLTS) { /* * Set time outs for connectionless case */ timeout.tv_usec = 0; timeout.tv_sec = SM_CLTS_TIMEOUT; (void) CLNT_CONTROL(client, CLSET_RETRY_TIMEOUT, (caddr_t)&timeout); } } else return (NULL); return (client); } /* * ONLY for debugging. * Debug messages which prints out the monitor table information. * If name is specified, just print out the hash list corresponding * to name, otherwise print out the entire monitor table. */ static void pr_mon(char *name) { mon_entry *nl; int hash; if (!debug) return; /* print all */ if (name == NULL) { for (hash = 0; hash < MAX_HASHSIZE; hash++) { mutex_lock(&mon_table[hash].lock); nl = mon_table[hash].sm_monhdp; if (nl == NULL) { (void) printf( "*****monitor_q = NULL hash %d\n", hash); mutex_unlock(&mon_table[hash].lock); continue; } (void) printf("*****monitor_q:\n "); while (nl != NULL) { (void) printf("%s:(%x), ", nl->id.mon_id.mon_name, (int)nl); nl = nl->nxt; } mutex_unlock(&mon_table[hash].lock); (void) printf("\n"); } } else { /* print one hash list */ SMHASH(name, hash); mutex_lock(&mon_table[hash].lock); nl = mon_table[hash].sm_monhdp; if (nl == NULL) { (void) printf("*****monitor_q = NULL hash %d\n", hash); } else { (void) printf("*****monitor_q:\n "); while (nl != NULL) { (void) printf("%s:(%x), ", nl->id.mon_id.mon_name, (int)nl); nl = nl->nxt; } (void) printf("\n"); } mutex_unlock(&mon_table[hash].lock); } } /* * Only for debugging. * Dump the host name-to-address translation table passed in `name_addr'. */ static void pr_name_addr(name_addr_entry_t *name_addr) { name_addr_entry_t *entry; addr_entry_t *addr; struct in_addr ipv4_addr; char *ipv6_addr; char abuf[INET6_ADDRSTRLEN]; assert(MUTEX_HELD(&name_addrlock)); (void) printf("name-to-address translation table:\n"); for (entry = name_addr; entry != NULL; entry = entry->next) { (void) printf("\t%s: ", (entry->name ? entry->name : "(null)")); for (addr = entry->addresses; addr; addr = addr->next) { switch (addr->family) { case AF_INET: ipv4_addr = *(struct in_addr *)addr->ah.n_bytes; (void) printf(" %s (fam %d)", inet_ntoa(ipv4_addr), addr->family); break; case AF_INET6: ipv6_addr = (char *)addr->ah.n_bytes; (void) printf(" %s (fam %d)", inet_ntop(addr->family, ipv6_addr, abuf, sizeof (abuf)), addr->family); break; default: return; } } printf("\n"); } } /* * First, try to compare the hostnames as strings. If the hostnames does not * match we might deal with the hostname aliases. In this case two different * aliases for the same machine don't match each other when using strcmp. To * deal with this, the hostnames must be translated into some sort of universal * identifier. These identifiers can be compared. Universal network addresses * are currently used for this identifier because it is general and easy to do. * Other schemes are possible and this routine could be converted if required. * * If it can't find an address for some reason, 0 is returned. */ static int hostname_eq(char *host1, char *host2) { char *sysid1; char *sysid2; int rv; /* Compare hostnames as strings */ if (host1 != NULL && host2 != NULL && strcmp(host1, host2) == 0) return (1); /* Try harder if hostnames do not match */ sysid1 = get_system_id(host1); sysid2 = get_system_id(host2); if ((sysid1 == NULL) || (sysid2 == NULL)) rv = 0; else rv = (strcmp(sysid1, sysid2) == 0); free(sysid1); free(sysid2); return (rv); } /* * Convert a hostname character string into its network address. * A network address is found by searching through all the entries * in /etc/netconfig and doing a netdir_getbyname() for each inet * entry found. The netbuf structure returned is converted into * a universal address format. * * If a NULL hostname is given, then the name of the current host * is used. If the hostname doesn't map to an address, a NULL * pointer is returned. * * N.B. the character string returned is allocated in taddr2uaddr() * and should be freed by the caller using free(). */ static char * get_system_id(char *hostname) { void *hp; struct netconfig *ncp; struct nd_hostserv service; struct nd_addrlist *addrs; char *uaddr; int rv; if (hostname == NULL) service.h_host = HOST_SELF; else service.h_host = hostname; service.h_serv = NULL; hp = setnetconfig(); if (hp == (void *) NULL) { return (NULL); } while ((ncp = getnetconfig(hp)) != NULL) { if ((strcmp(ncp->nc_protofmly, NC_INET) == 0) || (strcmp(ncp->nc_protofmly, NC_INET6) == 0)) { addrs = NULL; rv = netdir_getbyname(ncp, &service, &addrs); if (rv != 0) { continue; } if (addrs) { uaddr = taddr2uaddr(ncp, addrs->n_addrs); netdir_free(addrs, ND_ADDRLIST); endnetconfig(hp); return (uaddr); } } else continue; } endnetconfig(hp); return (NULL); } void merge_hosts(void) { struct lifconf *lifc = NULL; int sock = -1; struct lifreq *lifrp; struct lifreq lifr; int n; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; struct sockaddr_storage *sa; int af; struct hostent *phost; char *addr; size_t alen; int errnum; /* * This function will enumerate all the interfaces for * this platform, then get the hostent for each i/f. * With the hostent structure, we can get all of the * aliases for the i/f. Then we'll merge all the aliases * with the existing host_name[] list to come up with * all of the known names for each interface. This solves * the problem of a multi-homed host not knowing which * name to publish when statd is started. All the aliases * will be stored in the array, host_name. * * NOTE: Even though we will use all of the aliases we * can get from the i/f hostent, the receiving statd * will still need to handle aliases with hostname_eq. * This is because the sender's aliases may not match * those of the receiver. */ lifc = getmyaddrs(); if (lifc == NULL) { goto finish; } lifrp = lifc->lifc_req; for (n = lifc->lifc_len / sizeof (struct lifreq); n > 0; n--, lifrp++) { (void) strncpy(lifr.lifr_name, lifrp->lifr_name, sizeof (lifr.lifr_name)); af = lifrp->lifr_addr.ss_family; sock = socket(af, SOCK_DGRAM, 0); if (sock == -1) { syslog(LOG_ERR, "statd: socket failed\n"); goto finish; } /* If it's the loopback interface, ignore */ if (ioctl(sock, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) { syslog(LOG_ERR, "statd: SIOCGLIFFLAGS failed, error: %m\n"); goto finish; } if (lifr.lifr_flags & IFF_LOOPBACK) continue; if (ioctl(sock, SIOCGLIFADDR, (caddr_t)&lifr) < 0) { syslog(LOG_ERR, "statd: SIOCGLIFADDR failed, error: %m\n"); goto finish; } sa = (struct sockaddr_storage *)&(lifr.lifr_addr); if (sa->ss_family == AF_INET) { sin = (struct sockaddr_in *)&lifr.lifr_addr; addr = (char *)(&sin->sin_addr); alen = sizeof (struct in_addr); } else if (sa->ss_family == AF_INET6) { sin6 = (struct sockaddr_in6 *)&lifr.lifr_addr; addr = (char *)(&sin6->sin6_addr); alen = sizeof (struct in6_addr); } else { syslog(LOG_WARNING, "unexpected address family (%d)", sa->ss_family); continue; } phost = getipnodebyaddr(addr, alen, sa->ss_family, &errnum); if (phost) add_aliases(phost); } /* * Now, just in case we didn't get them all byaddr, * let's look by name. */ phost = getipnodebyname(hostname, AF_INET6, AI_ALL, &errnum); if (phost) add_aliases(phost); finish: if (sock != -1) (void) close(sock); if (lifc) { free(lifc->lifc_buf); free(lifc); } } /* * add_aliases traverses a hostent alias list, compares * the aliases to the contents of host_name, and if an * alias is not already present, adds it to host_name[]. */ static void add_aliases(struct hostent *phost) { char **aliases; if (!in_host_array(phost->h_name)) { add_to_host_array(phost->h_name); } if (phost->h_aliases == NULL) return; /* no aliases to register */ for (aliases = phost->h_aliases; *aliases != NULL; aliases++) { if (!in_host_array(*aliases)) { add_to_host_array(*aliases); } } } /* * in_host_array checks if the given hostname exists in the host_name * array. Returns 0 if the host doesn't exist, and 1 if it does exist */ static int in_host_array(char *host) { int i; if (debug) (void) printf("%s ", host); if ((strcmp(hostname, host) == 0) || (strcmp(LOGHOST, host) == 0)) return (1); for (i = 0; i < addrix; i++) { if (strcmp(host_name[i], host) == 0) return (1); } return (0); } /* * add_to_host_array adds a hostname to the host_name array. But if * the array is already full, then it first reallocates the array with * HOST_NAME_INCR extra elements. If the realloc fails, then it does * nothing and leaves host_name the way it was previous to the call. */ static void add_to_host_array(char *host) { void *new_block = NULL; /* Make sure we don't overrun host_name. */ if (addrix >= host_name_count) { host_name_count += HOST_NAME_INCR; new_block = realloc((void *)host_name, host_name_count * sizeof (char *)); if (new_block != NULL) host_name = new_block; else { host_name_count -= HOST_NAME_INCR; return; } } if ((host_name[addrix] = strdup(host)) != NULL) addrix++; } /* * Compares the unqualified hostnames for hosts. Returns 0 if the * names match, and 1 if the names fail to match. */ int str_cmp_unqual_hostname(char *rawname1, char *rawname2) { size_t unq_len1, unq_len2; char *domain; if (debug) { (void) printf("str_cmp_unqual: rawname1= %s, rawname2= %s\n", rawname1, rawname2); } unq_len1 = strcspn(rawname1, "."); unq_len2 = strcspn(rawname2, "."); domain = strchr(rawname1, '.'); if (domain != NULL) { if ((strncmp(rawname1, SM_ADDR_IPV4, unq_len1) == 0) || (strncmp(rawname1, SM_ADDR_IPV6, unq_len1) == 0)) return (1); } if ((unq_len1 == unq_len2) && (strncmp(rawname1, rawname2, unq_len1) == 0)) { return (0); } return (1); } /* * Compares . ASCII names for hosts. Returns * 0 if the addresses match, and 1 if the addresses fail to match. * If the args are indeed specifiers, they should look like this: * * ipv4.192.9.200.1 or ipv6.::C009:C801 */ int str_cmp_address_specifier(char *specifier1, char *specifier2) { size_t unq_len1, unq_len2; char *rawaddr1, *rawaddr2; int af1, af2, len; if (debug) { (void) printf("str_cmp_addr: specifier1= %s, specifier2= %s\n", specifier1, specifier2); } /* * Verify that: * 1. The family tokens match; * 2. The IP addresses following the `.' are legal; and * 3. These addresses match. */ unq_len1 = strcspn(specifier1, "."); unq_len2 = strcspn(specifier2, "."); rawaddr1 = strchr(specifier1, '.'); rawaddr2 = strchr(specifier2, '.'); if (strncmp(specifier1, SM_ADDR_IPV4, unq_len1) == 0) { af1 = AF_INET; len = 4; } else if (strncmp(specifier1, SM_ADDR_IPV6, unq_len1) == 0) { af1 = AF_INET6; len = 16; } else return (1); if (strncmp(specifier2, SM_ADDR_IPV4, unq_len2) == 0) af2 = AF_INET; else if (strncmp(specifier2, SM_ADDR_IPV6, unq_len2) == 0) af2 = AF_INET6; else return (1); if (af1 != af2) return (1); if (rawaddr1 != NULL && rawaddr2 != NULL) { char dst1[16]; char dst2[16]; ++rawaddr1; ++rawaddr2; if (inet_pton(af1, rawaddr1, dst1) == 1 && inet_pton(af2, rawaddr1, dst2) == 1 && memcmp(dst1, dst2, len) == 0) { return (0); } } return (1); } /* * Add IP address strings to the host_name list. */ void merge_ips(void) { struct ifaddrs *ifap, *cifap; int error; error = getifaddrs(&ifap); if (error) { syslog(LOG_WARNING, "getifaddrs error: '%s'", strerror(errno)); return; } for (cifap = ifap; cifap != NULL; cifap = cifap->ifa_next) { struct sockaddr *sa = cifap->ifa_addr; char addr_str[INET6_ADDRSTRLEN]; void *addr = NULL; switch (sa->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; /* Skip loopback addresses. */ if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK)) { continue; } addr = &sin->sin_addr; break; } case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; /* Skip loopback addresses. */ if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) { continue; } addr = &sin6->sin6_addr; break; } default: syslog(LOG_WARNING, "Unknown address family %d for " "interface %s", sa->sa_family, cifap->ifa_name); continue; } if (inet_ntop(sa->sa_family, addr, addr_str, sizeof (addr_str)) == NULL) { syslog(LOG_WARNING, "Failed to convert address into " "string representation for interface '%s' " "address family %d", cifap->ifa_name, sa->sa_family); continue; } if (!in_host_array(addr_str)) { add_to_host_array(addr_str); } } freeifaddrs(ifap); }