/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include /* * Our serd engines are named 'zfs___{checksum,io}'. This * #define reserves enough space for two 64-bit hex values plus the length of * the longest string. */ #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) typedef struct zfs_case_data { uint64_t zc_version; uint64_t zc_ena; uint64_t zc_pool_guid; uint64_t zc_vdev_guid; int zc_has_timer; int zc_pool_state; char zc_serd_checksum[MAX_SERDLEN]; char zc_serd_io[MAX_SERDLEN]; int zc_has_serd_timer; } zfs_case_data_t; typedef struct zfs_case { boolean_t zc_present; uint32_t zc_version; zfs_case_data_t zc_data; fmd_case_t *zc_case; uu_list_node_t zc_node; id_t zc_timer; id_t zc_serd_timer; } zfs_case_t; #define CASE_DATA "data" #define CASE_DATA_VERSION_INITIAL 1 #define CASE_DATA_VERSION_SERD 2 static hrtime_t zfs_case_timeout; static hrtime_t zfs_serd_timeout; uu_list_pool_t *zfs_case_pool; uu_list_t *zfs_cases; /* * Write out the persistent representation of an active case. */ static void zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp) { /* * Always update cases to the latest version, even if they were the * previous version when unserialized. */ zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data, sizeof (zcp->zc_data)); } /* * Read back the persistent representation of an active case. */ static zfs_case_t * zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) { zfs_case_t *zcp; zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); zcp->zc_case = cp; fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, sizeof (zcp->zc_data)); if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); return (NULL); } /* * fmd_buf_read() will have already zeroed out the remainder of the * buffer, so we don't have to do anything special if the version * doesn't include the SERD engine name. */ if (zcp->zc_data.zc_has_timer) zcp->zc_timer = fmd_timer_install(hdl, zcp, NULL, zfs_case_timeout); if (zcp->zc_data.zc_has_serd_timer) zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, NULL, zfs_serd_timeout); (void) uu_list_insert_before(zfs_cases, NULL, zcp); fmd_case_setspecific(hdl, cp, zcp); return (zcp); } /* * Iterate over any active cases. If any cases are associated with a pool or * vdev which is no longer present on the system, close the associated case. */ static void zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd) { uint64_t vdev_guid; uint_t c, children; nvlist_t **child; zfs_case_t *zcp; int ret; ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); assert(ret == 0); /* * Mark any cases associated with this (pool, vdev) pair. */ for (zcp = uu_list_first(zfs_cases); zcp != NULL; zcp = uu_list_next(zfs_cases, zcp)) { if (zcp->zc_data.zc_pool_guid == pool_guid && zcp->zc_data.zc_vdev_guid == vdev_guid) zcp->zc_present = B_TRUE; } /* * Iterate over all children. */ if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { for (c = 0; c < children; c++) zfs_mark_vdev(pool_guid, child[c]); } } /*ARGSUSED*/ static int zfs_mark_pool(zpool_handle_t *zhp, void *unused) { zfs_case_t *zcp; uint64_t pool_guid; nvlist_t *config, *vd; int ret; pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); /* * Mark any cases associated with just this pool. */ for (zcp = uu_list_first(zfs_cases); zcp != NULL; zcp = uu_list_next(zfs_cases, zcp)) { if (zcp->zc_data.zc_pool_guid == pool_guid && zcp->zc_data.zc_vdev_guid == 0) zcp->zc_present = B_TRUE; } if ((config = zpool_get_config(zhp, NULL)) == NULL) { zpool_close(zhp); return (-1); } ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); assert(ret == 0); zfs_mark_vdev(pool_guid, vd); zpool_close(zhp); return (0); } static void zfs_purge_cases(fmd_hdl_t *hdl) { zfs_case_t *zcp; uu_list_walk_t *walk; libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); /* * There is no way to open a pool by GUID, or lookup a vdev by GUID. No * matter what we do, we're going to have to stomach a O(vdevs * cases) * algorithm. In reality, both quantities are likely so small that * neither will matter. Given that iterating over pools is more * expensive than iterating over the in-memory case list, we opt for a * 'present' flag in each case that starts off cleared. We then iterate * over all pools, marking those that are still present, and removing * those that aren't found. * * Note that we could also construct an FMRI and rely on * fmd_nvl_fmri_present(), but this would end up doing the same search. */ /* * Mark the cases an not present. */ for (zcp = uu_list_first(zfs_cases); zcp != NULL; zcp = uu_list_next(zfs_cases, zcp)) zcp->zc_present = B_FALSE; /* * Iterate over all pools and mark the pools and vdevs found. If this * fails (most probably because we're out of memory), then don't close * any of the cases and we cannot be sure they are accurate. */ if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) return; /* * Remove those cases which were not found. */ walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); while ((zcp = uu_list_walk_next(walk)) != NULL) { if (!zcp->zc_present) fmd_case_close(hdl, zcp->zc_case); } uu_list_walk_end(walk); } /* * Construct the name of a serd engine given the pool/vdev GUID and type (io or * checksum). */ static void zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, const char *type) { (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid, vdev_guid, type); } /* * Solve a given ZFS case. This first checks to make sure the diagnosis is * still valid, as well as cleaning up any pending timer associated with the * case. */ static void zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname, boolean_t checkunusable) { nvlist_t *detector, *fault; boolean_t serialize; /* * Construct the detector from the case data. The detector is in the * ZFS scheme, and is either the pool or the vdev, depending on whether * this is a vdev or pool fault. */ if (nvlist_alloc(&detector, NV_UNIQUE_NAME, 0) != 0) return; if (nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0) != 0 || nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0 || nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, zcp->zc_data.zc_pool_guid) != 0 || (zcp->zc_data.zc_vdev_guid != 0 && nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, zcp->zc_data.zc_vdev_guid) != 0)) { nvlist_free(detector); return; } /* * We also want to make sure that the detector (pool or vdev) properly * reflects the diagnosed state, when the fault corresponds to internal * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a * device which was unavailable early in boot (because the driver/file * wasn't available) and is now healthy will be mis-diagnosed. */ if (!fmd_nvl_fmri_present(hdl, detector) || (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) { fmd_case_close(hdl, zcp->zc_case); nvlist_free(detector); return; } fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, NULL, detector); fmd_case_add_suspect(hdl, zcp->zc_case, fault); fmd_case_solve(hdl, zcp->zc_case); serialize = B_FALSE; if (zcp->zc_data.zc_has_timer) { fmd_timer_remove(hdl, zcp->zc_timer); zcp->zc_data.zc_has_timer = 0; serialize = B_TRUE; } if (zcp->zc_data.zc_has_serd_timer) { fmd_timer_remove(hdl, zcp->zc_serd_timer); zcp->zc_data.zc_has_serd_timer = 0; serialize = B_TRUE; } if (serialize) zfs_case_serialize(hdl, zcp); nvlist_free(detector); } /* * Main fmd entry point. */ /*ARGSUSED*/ static void zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) { zfs_case_t *zcp, *dcp; int32_t pool_state; uint64_t ena, pool_guid, vdev_guid; nvlist_t *detector; boolean_t isresource; const char *serd; isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); if (isresource) { /* * For resources, we don't have a normal payload. */ if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) pool_state = SPA_LOAD_OPEN; else pool_state = SPA_LOAD_NONE; detector = NULL; } else { (void) nvlist_lookup_nvlist(nvl, FM_EREPORT_DETECTOR, &detector); (void) nvlist_lookup_int32(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); } /* * We also ignore all ereports generated during an import of a pool, * since the only possible fault (.pool) would result in import failure, * and hence no persistent fault. Some day we may want to do something * with these ereports, so we continue generating them internally. */ if (pool_state == SPA_LOAD_IMPORT) return; /* * Device I/O errors are ignored during pool open. */ if (pool_state == SPA_LOAD_OPEN && (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.checksum") || fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io"))) return; /* * Determine if this ereport corresponds to an open case. Cases are * indexed by ENA, since ZFS does all the work of chaining together * related ereports. * * We also detect if an ereport corresponds to an open case by context, * such as: * * - An error occurred during an open of a pool with an existing * case. * * - An error occurred for a device which already has an open * case. */ (void) nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) vdev_guid = 0; if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) ena = 0; for (zcp = uu_list_first(zfs_cases); zcp != NULL; zcp = uu_list_next(zfs_cases, zcp)) { /* * Matches a known ENA. */ if (zcp->zc_data.zc_ena == ena) break; /* * Matches a case involving load errors for this same pool. */ if (zcp->zc_data.zc_pool_guid == pool_guid && zcp->zc_data.zc_pool_state == SPA_LOAD_OPEN && pool_state == SPA_LOAD_OPEN) break; /* * Device errors for the same device. */ if (vdev_guid != 0 && zcp->zc_data.zc_vdev_guid == vdev_guid) break; } if (zcp == NULL) { fmd_case_t *cs; zfs_case_data_t data = { 0 }; /* * If this is one of our 'fake' resource ereports, and there is * no case open, simply discard it. */ if (isresource) return; /* * Open a new case. */ cs = fmd_case_open(hdl, NULL); /* * Initialize the case buffer. To commonize code, we actually * create the buffer with existing data, and then call * zfs_case_unserialize() to instantiate the in-core structure. */ fmd_buf_create(hdl, cs, CASE_DATA, sizeof (zfs_case_data_t)); data.zc_version = CASE_DATA_VERSION_SERD; data.zc_ena = ena; data.zc_pool_guid = pool_guid; data.zc_vdev_guid = vdev_guid; data.zc_pool_state = (int)pool_state; fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); zcp = zfs_case_unserialize(hdl, cs); assert(zcp != NULL); } if (isresource) { if (fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.autoreplace")) { /* * The 'resource.fs.zfs.autoreplace' event indicates * that the pool was loaded with the 'autoreplace' * property set. In this case, any pending device * failures should be ignored, as the asynchronous * autoreplace handling will take care of them. */ fmd_case_close(hdl, zcp->zc_case); } else if (fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.removed")) { /* * The 'resource.fs.zfs.removed' event indicates that * device removal was detected, and the device was * closed asynchronously. If this is the case, we * assume that any recent I/O errors were due to the * device removal, not any fault of the device itself. * We reset the SERD engine, and cancel any pending * timers. */ if (zcp->zc_data.zc_has_serd_timer) { fmd_timer_remove(hdl, zcp->zc_serd_timer); zcp->zc_data.zc_has_serd_timer = 0; zfs_case_serialize(hdl, zcp); } if (zcp->zc_data.zc_serd_io[0] != '\0') fmd_serd_reset(hdl, zcp->zc_data.zc_serd_io); if (zcp->zc_data.zc_serd_checksum[0] != '\0') fmd_serd_reset(hdl, zcp->zc_data.zc_serd_checksum); } return; } /* * Associate the ereport with this case. */ fmd_case_add_ereport(hdl, zcp->zc_case, ep); /* * Don't do anything else if this case is already solved. */ if (fmd_case_solved(hdl, zcp->zc_case)) return; /* * Determine if we should solve the case and generate a fault. We solve * a case if: * * a. A pool failed to open (ereport.fs.zfs.pool) * b. A device failed to open (ereport.fs.zfs.pool) while a pool * was up and running. * * We may see a series of ereports associated with a pool open, all * chained together by the same ENA. If the pool open succeeds, then * we'll see no further ereports. To detect when a pool open has * succeeded, we associate a timer with the event. When it expires, we * close the case. */ if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.zpool")) { /* * Pool level fault. Before solving the case, go through and * close any open device cases that may be pending. */ for (dcp = uu_list_first(zfs_cases); dcp != NULL; dcp = uu_list_next(zfs_cases, dcp)) { if (dcp->zc_data.zc_pool_guid == zcp->zc_data.zc_pool_guid && dcp->zc_data.zc_vdev_guid != 0) fmd_case_close(hdl, dcp->zc_case); } zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE); } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) { /* * Device fault. If this occurred during pool open, then defer * reporting the fault. If the pool itself could not be opeend, * we only report the pool fault, not every device fault that * may have caused the problem. If we do not see a pool fault * within the timeout period, then we'll solve the device case. */ zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io") || fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.checksum") || fmd_nvl_class_match(hdl, nvl, "ererpot.fs.zfs.io_failure")) { char *failmode = NULL; /* * If this is a checksum or I/O error, then toss it into the * appropriate SERD engine and check to see if it has fired. * Ideally, we want to do something more sophisticated, * (persistent errors for a single data block, etc). For now, * a single SERD engine is sufficient. */ serd = NULL; if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io")) { if (zcp->zc_data.zc_serd_io[0] == '\0') { zfs_serd_name(zcp->zc_data.zc_serd_io, pool_guid, vdev_guid, "io"); fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, fmd_prop_get_int32(hdl, "io_N"), fmd_prop_get_int64(hdl, "io_T")); zfs_case_serialize(hdl, zcp); } serd = zcp->zc_data.zc_serd_io; } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.checksum")) { if (zcp->zc_data.zc_serd_checksum[0] == '\0') { zfs_serd_name(zcp->zc_data.zc_serd_checksum, pool_guid, vdev_guid, "checksum"); fmd_serd_create(hdl, zcp->zc_data.zc_serd_checksum, fmd_prop_get_int32(hdl, "checksum_N"), fmd_prop_get_int64(hdl, "checksum_T")); zfs_case_serialize(hdl, zcp); } serd = zcp->zc_data.zc_serd_checksum; } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io_failure") && (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) && failmode != NULL) { if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE, strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) { zfs_case_solve(hdl, zcp, "fault.fs.zfs.io_failure_continue", B_FALSE); } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT, strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) { zfs_case_solve(hdl, zcp, "fault.fs.zfs.io_failure_wait", B_FALSE); } } /* * Because I/O errors may be due to device removal, we postpone * any diagnosis until we're sure that we aren't about to * receive a 'resource.fs.zfs.removed' event. */ if (serd && fmd_serd_record(hdl, serd, ep)) { if (zcp->zc_data.zc_has_serd_timer) fmd_timer_remove(hdl, zcp->zc_serd_timer); zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, NULL, zfs_serd_timeout); if (!zcp->zc_data.zc_has_serd_timer) { zcp->zc_data.zc_has_serd_timer = 1; zfs_case_serialize(hdl, zcp); } } } } /* * Timeout indicates one of two scenarios: * * - A device could not be opened while opening a pool, but the pool * itself was opened successfully. * * - We diagnosed an I/O error, and it was not due to device removal (which * would cause the timeout to be cancelled). */ /* ARGSUSED */ static void zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) { zfs_case_t *zcp = data; const char *faultname; if (id == zcp->zc_timer) { zcp->zc_data.zc_has_timer = 0; zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); } if (id == zcp->zc_serd_timer) { if (zcp->zc_data.zc_serd_io[0] != '\0' && fmd_serd_fired(hdl, zcp->zc_data.zc_serd_io)) { faultname = "fault.fs.zfs.vdev.io"; } else { assert(fmd_serd_fired(hdl, zcp->zc_data.zc_serd_checksum)); faultname = "fault.fs.zfs.vdev.checksum"; } zfs_case_solve(hdl, zcp, faultname, B_FALSE); } } static void zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) { zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); if (zcp->zc_data.zc_serd_checksum[0] != '\0') fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); if (zcp->zc_data.zc_serd_io[0] != '\0') fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); if (zcp->zc_data.zc_has_timer) fmd_timer_remove(hdl, zcp->zc_timer); if (zcp->zc_data.zc_has_serd_timer) fmd_timer_remove(hdl, zcp->zc_serd_timer); uu_list_remove(zfs_cases, zcp); fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); } /* * We use the fmd gc entry point to look for old cases that no longer apply. * This allows us to keep our set of case data small in a long running system. */ static void zfs_fm_gc(fmd_hdl_t *hdl) { zfs_purge_cases(hdl); } static const fmd_hdl_ops_t fmd_ops = { zfs_fm_recv, /* fmdo_recv */ zfs_fm_timeout, /* fmdo_timeout */ zfs_fm_close, /* fmdo_close */ NULL, /* fmdo_stats */ zfs_fm_gc, /* fmdo_gc */ }; static const fmd_prop_t fmd_props[] = { { "case_timeout", FMD_TYPE_TIME, "5sec" }, { "checksum_N", FMD_TYPE_UINT32, "10" }, { "checksum_T", FMD_TYPE_TIME, "10min" }, { "io_N", FMD_TYPE_UINT32, "10" }, { "io_T", FMD_TYPE_TIME, "10min" }, { "serd_timeout", FMD_TYPE_TIME, "5sec" }, { NULL, 0, NULL } }; static const fmd_hdl_info_t fmd_info = { "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props }; void _fmd_init(fmd_hdl_t *hdl) { fmd_case_t *cp; libzfs_handle_t *zhdl; if ((zhdl = libzfs_init()) == NULL) return; if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), NULL, 0)) == NULL) { libzfs_fini(zhdl); return; } if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) { uu_list_pool_destroy(zfs_case_pool); libzfs_fini(zhdl); return; } if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { uu_list_destroy(zfs_cases); uu_list_pool_destroy(zfs_case_pool); libzfs_fini(zhdl); return; } fmd_hdl_setspecific(hdl, zhdl); /* * Iterate over all active cases and unserialize the associated buffers, * adding them to our list of open cases. */ for (cp = fmd_case_next(hdl, NULL); cp != NULL; cp = fmd_case_next(hdl, cp)) (void) zfs_case_unserialize(hdl, cp); /* * Clear out any old cases that are no longer valid. */ zfs_purge_cases(hdl); zfs_case_timeout = fmd_prop_get_int64(hdl, "case_timeout"); zfs_serd_timeout = fmd_prop_get_int64(hdl, "serd_timeout"); } void _fmd_fini(fmd_hdl_t *hdl) { zfs_case_t *zcp; uu_list_walk_t *walk; libzfs_handle_t *zhdl; /* * Remove all active cases. */ walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); while ((zcp = uu_list_walk_next(walk)) != NULL) { uu_list_remove(zfs_cases, zcp); fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); } uu_list_walk_end(walk); uu_list_destroy(zfs_cases); uu_list_pool_destroy(zfs_case_pool); zhdl = fmd_hdl_getspecific(hdl); libzfs_fini(zhdl); }