/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * tree.c -- routines for manipulating the prop tree * * the actions in escparse.y call these routines to construct * the parse tree. these routines, in turn, call the check_X() * routines for semantic checking. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include "alloc.h" #include "out.h" #include "stats.h" #include "stable.h" #include "literals.h" #include "lut.h" #include "esclex.h" #include "tree.h" #include "check.h" #include "ptree.h" static struct node *Root; static char *Newname; static struct stats *Faultcount; static struct stats *Upsetcount; static struct stats *Defectcount; static struct stats *Errorcount; static struct stats *Ereportcount; static struct stats *SERDcount; static struct stats *ASRUcount; static struct stats *FRUcount; static struct stats *Configcount; static struct stats *Propcount; static struct stats *Maskcount; static struct stats *Nodecount; static struct stats *Namecount; static struct stats *Nodesize; void tree_init(void) { Faultcount = stats_new_counter("parser.fault", "fault decls", 1); Upsetcount = stats_new_counter("parser.upset", "upset decls", 1); Defectcount = stats_new_counter("parser.defect", "defect decls", 1); Errorcount = stats_new_counter("parser.error", "error decls", 1); Ereportcount = stats_new_counter("parser.ereport", "ereport decls", 1); SERDcount = stats_new_counter("parser.SERD", "SERD engine decls", 1); ASRUcount = stats_new_counter("parser.ASRU", "ASRU decls", 1); FRUcount = stats_new_counter("parser.FRU", "FRU decls", 1); Configcount = stats_new_counter("parser.config", "config stmts", 1); Propcount = stats_new_counter("parser.prop", "prop stmts", 1); Maskcount = stats_new_counter("parser.mask", "mask stmts", 1); Nodecount = stats_new_counter("parser.node", "nodes created", 1); Namecount = stats_new_counter("parser.name", "names created", 1); Nodesize = stats_new_counter("parser.nodesize", "sizeof(struct node)", 1); stats_counter_add(Nodesize, sizeof (struct node)); } void tree_fini(void) { stats_delete(Faultcount); stats_delete(Upsetcount); stats_delete(Defectcount); stats_delete(Errorcount); stats_delete(Ereportcount); stats_delete(SERDcount); stats_delete(ASRUcount); stats_delete(FRUcount); stats_delete(Configcount); stats_delete(Propcount); stats_delete(Maskcount); stats_delete(Nodecount); stats_delete(Namecount); stats_delete(Nodesize); /* free entire parse tree */ tree_free(Root); /* free up the luts we keep for decls */ lut_free(Faults, NULL, NULL); Faults = NULL; lut_free(Upsets, NULL, NULL); Upsets = NULL; lut_free(Defects, NULL, NULL); Defects = NULL; lut_free(Errors, NULL, NULL); Errors = NULL; lut_free(Ereports, NULL, NULL); Ereports = NULL; lut_free(Ereportenames, NULL, NULL); Ereportenames = NULL; lut_free(SERDs, NULL, NULL); SERDs = NULL; lut_free(ASRUs, NULL, NULL); ASRUs = NULL; lut_free(FRUs, NULL, NULL); FRUs = NULL; lut_free(Configs, NULL, NULL); Configs = NULL; Props = Lastprops = NULL; Masks = Lastmasks = NULL; Problems = Lastproblems = NULL; if (Newname != NULL) { FREE(Newname); Newname = NULL; } } struct node * newnode(enum nodetype t, const char *file, int line) { struct node *ret = MALLOC(sizeof (*ret)); stats_counter_bump(Nodecount); bzero(ret, sizeof (*ret)); ret->t = t; ret->file = (file == NULL) ? "" : file; ret->line = line; return (ret); } /*ARGSUSED*/ void tree_free(struct node *root) { if (root == NULL) return; switch (root->t) { case T_NAME: tree_free(root->u.name.child); tree_free(root->u.name.next); break; case T_FUNC: tree_free(root->u.func.arglist); if (root->u.func.cachedval != NULL) FREE(root->u.func.cachedval); break; case T_AND: case T_OR: case T_EQ: case T_NE: case T_ADD: case T_DIV: case T_MOD: case T_MUL: case T_SUB: case T_LT: case T_LE: case T_GT: case T_GE: case T_BITAND: case T_BITOR: case T_BITXOR: case T_BITNOT: case T_LSHIFT: case T_RSHIFT: case T_NVPAIR: case T_ASSIGN: case T_CONDIF: case T_CONDELSE: case T_LIST: tree_free(root->u.expr.left); tree_free(root->u.expr.right); break; case T_EVENT: tree_free(root->u.event.ename); tree_free(root->u.event.epname); tree_free(root->u.event.eexprlist); break; case T_NOT: tree_free(root->u.expr.left); break; case T_ARROW: tree_free(root->u.arrow.lhs); tree_free(root->u.arrow.nnp); tree_free(root->u.arrow.knp); tree_free(root->u.arrow.rhs); break; case T_PROP: case T_MASK: tree_free(root->u.stmt.np); break; case T_FAULT: case T_UPSET: case T_DEFECT: case T_ERROR: case T_EREPORT: case T_ASRU: case T_FRU: case T_SERD: case T_CONFIG: tree_free(root->u.stmt.np); if (root->u.stmt.nvpairs) tree_free(root->u.stmt.nvpairs); if (root->u.stmt.lutp) lut_free(root->u.stmt.lutp, NULL, NULL); break; case T_TIMEVAL: case T_NUM: case T_QUOTE: case T_GLOBID: case T_NOTHING: break; default: out(O_DIE, "internal error: tree_free unexpected nodetype: %d", root->t); /*NOTREACHED*/ } bzero(root, sizeof (*root)); FREE(root); } static int tree_treecmp(struct node *np1, struct node *np2, enum nodetype t, lut_cmp cmp_func) { if (np1 == NULL || np2 == NULL) return (0); if (np1->t != np2->t) return (1); ASSERT(cmp_func != NULL); if (np1->t == t) return ((*cmp_func)(np1, np2)); switch (np1->t) { case T_NAME: if (tree_treecmp(np1->u.name.child, np2->u.name.child, t, cmp_func)) return (1); return (tree_treecmp(np1->u.name.next, np2->u.name.next, t, cmp_func)); /*NOTREACHED*/ break; case T_FUNC: return (tree_treecmp(np1->u.func.arglist, np2->u.func.arglist, t, cmp_func)); /*NOTREACHED*/ break; case T_AND: case T_OR: case T_EQ: case T_NE: case T_ADD: case T_DIV: case T_MOD: case T_MUL: case T_SUB: case T_LT: case T_LE: case T_GT: case T_GE: case T_BITAND: case T_BITOR: case T_BITXOR: case T_BITNOT: case T_LSHIFT: case T_RSHIFT: case T_NVPAIR: case T_ASSIGN: case T_CONDIF: case T_CONDELSE: case T_LIST: if (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t, cmp_func)) return (1); return (tree_treecmp(np1->u.expr.right, np2->u.expr.right, t, cmp_func)); /*NOTREACHED*/ break; case T_EVENT: if (tree_treecmp(np1->u.event.ename, np2->u.event.ename, t, cmp_func)) return (1); if (tree_treecmp(np1->u.event.epname, np2->u.event.epname, t, cmp_func)) return (1); return (tree_treecmp(np1->u.event.eexprlist, np2->u.event.eexprlist, t, cmp_func)); /*NOTREACHED*/ break; case T_NOT: return (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t, cmp_func)); /*NOTREACHED*/ break; case T_ARROW: if (tree_treecmp(np1->u.arrow.lhs, np2->u.arrow.lhs, t, cmp_func)) return (1); if (tree_treecmp(np1->u.arrow.nnp, np2->u.arrow.nnp, t, cmp_func)) return (1); if (tree_treecmp(np1->u.arrow.knp, np2->u.arrow.knp, t, cmp_func)) return (1); return (tree_treecmp(np1->u.arrow.rhs, np2->u.arrow.rhs, t, cmp_func)); /*NOTREACHED*/ break; case T_PROP: case T_MASK: return (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t, cmp_func)); /*NOTREACHED*/ break; case T_FAULT: case T_UPSET: case T_DEFECT: case T_ERROR: case T_EREPORT: case T_ASRU: case T_FRU: case T_SERD: if (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t, cmp_func)) return (1); return (tree_treecmp(np1->u.stmt.nvpairs, np2->u.stmt.nvpairs, t, cmp_func)); /*NOTREACHED*/ break; case T_TIMEVAL: case T_NUM: case T_QUOTE: case T_GLOBID: case T_NOTHING: break; default: out(O_DIE, "internal error: tree_treecmp unexpected nodetype: %d", np1->t); /*NOTREACHED*/ break; } return (0); } struct node * tree_root(struct node *np) { if (np) Root = np; return (Root); } struct node * tree_nothing(void) { return (newnode(T_NOTHING, L_nofile, 0)); } struct node * tree_expr(enum nodetype t, struct node *left, struct node *right) { struct node *ret; ASSERTinfo(left != NULL || right != NULL, ptree_nodetype2str(t)); ret = newnode(t, (left) ? left->file : right->file, (left) ? left->line : right->line); ret->u.expr.left = left; ret->u.expr.right = right; check_expr(ret); return (ret); } /* * ename_compress -- convert event class name in to more space-efficient form * * this routine is called after the parser has completed an "ename", which * is that part of an event that contains the class name (like ereport.x.y.z). * after this routine gets done with the ename, two things are true: * 1. the ename uses only a single struct node * 2. ename->u.name.s contains the *complete* class name, dots and all, * entered into the string table. * * so in addition to saving space by using fewer struct nodes, this routine * allows consumers of the fault tree to assume the ename is a single * string, rather than a linked list of strings. */ static struct node * ename_compress(struct node *ename) { char *buf; char *cp; int len = 0; struct node *np; if (ename == NULL) return (ename); ASSERT(ename->t == T_NAME); if (ename->u.name.next == NULL) return (ename); /* no compression to be applied here */ for (np = ename; np != NULL; np = np->u.name.next) { ASSERT(np->t == T_NAME); len++; /* room for '.' and final '\0' */ len += strlen(np->u.name.s); } cp = buf = alloca(len); for (np = ename; np != NULL; np = np->u.name.next) { ASSERT(np->t == T_NAME); if (np != ename) *cp++ = '.'; (void) strcpy(cp, np->u.name.s); cp += strlen(cp); } ename->u.name.s = stable(buf); tree_free(ename->u.name.next); ename->u.name.next = NULL; ename->u.name.last = ename; return (ename); } struct node * tree_event(struct node *ename, struct node *epname, struct node *eexprlist) { struct node *ret; ASSERT(ename != NULL); ret = newnode(T_EVENT, ename->file, ename->line); ret->u.event.ename = ename_compress(ename); ret->u.event.epname = epname; ret->u.event.eexprlist = eexprlist; check_event(ret); return (ret); } struct node * tree_name(const char *s, enum itertype it, const char *file, int line) { struct node *ret = newnode(T_NAME, file, line); ASSERT(s != NULL); stats_counter_bump(Namecount); ret->u.name.t = N_UNSPEC; ret->u.name.s = stable(s); ret->u.name.it = it; ret->u.name.last = ret; if (it == IT_ENAME) { /* PHASE2, possible optimization: convert to table driven */ if (s == L_fault) ret->u.name.t = N_FAULT; else if (s == L_upset) ret->u.name.t = N_UPSET; else if (s == L_defect) ret->u.name.t = N_DEFECT; else if (s == L_error) ret->u.name.t = N_ERROR; else if (s == L_ereport) ret->u.name.t = N_EREPORT; else if (s == L_serd) ret->u.name.t = N_SERD; else outfl(O_ERR, file, line, "unknown class: %s", s); } return (ret); } struct node * tree_iname(const char *s, const char *file, int line) { struct node *ret; char *ss; char *ptr; ASSERT(s != NULL && *s != '\0'); ss = STRDUP(s); ptr = &ss[strlen(ss) - 1]; if (!isdigit(*ptr)) { outfl(O_ERR, file, line, "instanced name expected (i.e. \"x0/y1\")"); FREE(ss); return (tree_name(s, IT_NONE, file, line)); } while (ptr > ss && isdigit(*(ptr - 1))) ptr--; ret = newnode(T_NAME, file, line); stats_counter_bump(Namecount); ret->u.name.child = tree_num(ptr, file, line); *ptr = '\0'; ret->u.name.t = N_UNSPEC; ret->u.name.s = stable(ss); ret->u.name.it = IT_NONE; ret->u.name.last = ret; FREE(ss); return (ret); } struct node * tree_globid(const char *s, const char *file, int line) { struct node *ret = newnode(T_GLOBID, file, line); ASSERT(s != NULL); ret->u.globid.s = stable(s); return (ret); } struct node * tree_name_append(struct node *np1, struct node *np2) { ASSERT(np1 != NULL && np2 != NULL); if (np1->t != T_NAME) outfl(O_DIE, np1->file, np1->line, "tree_name_append: internal error (np1 type %d)", np1->t); if (np2->t != T_NAME) outfl(O_DIE, np2->file, np2->line, "tree_name_append: internal error (np2 type %d)", np2->t); ASSERT(np1->u.name.last != NULL); np1->u.name.last->u.name.next = np2; np1->u.name.last = np2; return (np1); } /* * tree_name_repairdash -- repair a class name that contained a dash * * this routine is called by the parser when a dash is encountered * in a class name. the event protocol allows the dashes but our * lexer considers them a separate token (arithmetic minus). an extra * rule in the parser catches this case and calls this routine to fixup * the last component of the class name (so far) by constructing the * new stable entry for a name including the dash. */ struct node * tree_name_repairdash(struct node *np, const char *s) { int len; char *buf; ASSERT(np != NULL && s != NULL); if (np->t != T_NAME) outfl(O_DIE, np->file, np->line, "tree_name_repairdash: internal error (np type %d)", np->t); ASSERT(np->u.name.last != NULL); len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1; buf = MALLOC(len); (void) snprintf(buf, len, "%s-%s", np->u.name.last->u.name.s, s); np->u.name.last->u.name.s = stable(buf); FREE(buf); return (np); } struct node * tree_name_iterator(struct node *np1, struct node *np2) { ASSERT(np1 != NULL); ASSERT(np2 != NULL); ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t)); np1->u.name.child = np2; check_name_iterator(np1); return (np1); } struct node * tree_timeval(const char *s, const char *suffix, const char *file, int line) { struct node *ret = newnode(T_TIMEVAL, file, line); const unsigned long long *ullp; ASSERT(s != NULL); ASSERT(suffix != NULL); if ((ullp = lex_s2ullp_lut_lookup(Timesuffixlut, suffix)) == NULL) { outfl(O_ERR, file, line, "unrecognized number suffix: %s", suffix); /* still construct a valid timeval node so parsing continues */ ret->u.ull = 1; } else { ret->u.ull = (unsigned long long)strtoul(s, NULL, 0) * *ullp; } return (ret); } struct node * tree_num(const char *s, const char *file, int line) { struct node *ret = newnode(T_NUM, file, line); ret->u.ull = (unsigned long long)strtoul(s, NULL, 0); return (ret); } struct node * tree_quote(const char *s, const char *file, int line) { struct node *ret = newnode(T_QUOTE, file, line); ret->u.quote.s = stable(s); return (ret); } struct node * tree_func(const char *s, struct node *np, const char *file, int line) { struct node *ret = newnode(T_FUNC, file, line); ret->u.func.s = s; ret->u.func.arglist = np; check_func(ret); return (ret); } /* * given a list from a prop or mask statement or a function argument, * convert all iterators to explicit iterators by inventing appropriate * iterator names. */ static void make_explicit(struct node *np) { struct node *pnp; /* component of pathname */ struct node *pnp2; int count; static size_t namesz; if (Newname == NULL) { namesz = 200; Newname = MALLOC(namesz); } if (np == NULL) return; /* all done */ switch (np->t) { case T_ARROW: /* cascaded arrow, already done */ break; case T_LIST: make_explicit(np->u.expr.left); make_explicit(np->u.expr.right); break; case T_EVENT: make_explicit(np->u.event.epname); break; case T_NAME: for (pnp = np; pnp != NULL; pnp = pnp->u.name.next) if (pnp->u.name.child == NULL) { /* * found implicit iterator. convert * it to an explicit iterator by * using the name of the component * appended with '#' and the number * of times we've seen this same * component name in this path so far. */ count = 0; for (pnp2 = np; pnp2 != NULL; pnp2 = pnp2->u.name.next) if (pnp2 == pnp) break; else if (pnp2->u.name.s == pnp->u.name.s) count++; if (namesz < strlen(pnp->u.name.s) + 100) { namesz = strlen(pnp->u.name.s) + 100; FREE(Newname); Newname = MALLOC(namesz); } /* * made up interator name is: * name#ordinal * or * name##ordinal * the first one is used for vertical * expansion, the second for horizontal. * either way, the '#' embedded in * the name makes it impossible to * collide with an actual iterator * given to us in the eversholt file. */ (void) snprintf(Newname, namesz, "%s#%s%d", pnp->u.name.s, (pnp->u.name.it == IT_HORIZONTAL) ? "#" : "", count); pnp->u.name.child = tree_name(Newname, IT_NONE, pnp->file, pnp->line); pnp->u.name.childgen = 1; } break; default: outfl(O_DIE, np->file, np->line, "internal error: make_explicit: " "unexpected type: %s", ptree_nodetype2str(np->t)); } } struct node * tree_pname(struct node *np) { make_explicit(np); return (np); } struct node * tree_arrow(struct node *lhs, struct node *nnp, struct node *knp, struct node *rhs) { struct node *ret; ASSERT(lhs != NULL || rhs != NULL); ret = newnode(T_ARROW, (lhs) ? lhs->file : rhs->file, (lhs) ? lhs->line : rhs->line); ret->u.arrow.lhs = lhs; ret->u.arrow.nnp = nnp; ret->u.arrow.knp = knp; ret->u.arrow.rhs = rhs; make_explicit(lhs); make_explicit(rhs); check_arrow(ret); return (ret); } static struct lut * nvpair2lut(struct node *np, struct lut *lutp, enum nodetype t) { if (np) { if (np->t == T_NVPAIR) { ASSERTeq(np->u.expr.left->t, T_NAME, ptree_nodetype2str); check_stmt_allowed_properties(t, np, lutp); lutp = tree_s2np_lut_add(lutp, np->u.expr.left->u.name.s, np->u.expr.right); } else if (np->t == T_LIST) { lutp = nvpair2lut(np->u.expr.left, lutp, t); lutp = nvpair2lut(np->u.expr.right, lutp, t); } else outfl(O_DIE, np->file, np->line, "internal error: nvpair2lut type %s", ptree_nodetype2str(np->t)); } return (lutp); } struct lut * tree_s2np_lut_add(struct lut *root, const char *s, struct node *np) { return (lut_add(root, (void *)s, (void *)np, NULL)); } struct node * tree_s2np_lut_lookup(struct lut *root, const char *s) { return (struct node *)lut_lookup(root, (void *)s, NULL); } struct lut * tree_name2np_lut_add(struct lut *root, struct node *namep, struct node *np) { return (lut_add(root, (void *)namep, (void *)np, (lut_cmp)tree_namecmp)); } struct node * tree_name2np_lut_lookup(struct lut *root, struct node *namep) { return (struct node *) lut_lookup(root, (void *)namep, (lut_cmp)tree_namecmp); } struct node * tree_name2np_lut_lookup_name(struct lut *root, struct node *namep) { return (struct node *) lut_lookup_lhs(root, (void *)namep, (lut_cmp)tree_namecmp); } struct lut * tree_event2np_lut_add(struct lut *root, struct node *enp, struct node *np) { return (lut_add(root, (void *)enp, (void *)np, (lut_cmp)tree_eventcmp)); } struct node * tree_event2np_lut_lookup(struct lut *root, struct node *enp) { return ((struct node *) lut_lookup(root, (void *)enp, (lut_cmp)tree_eventcmp)); } struct node * tree_event2np_lut_lookup_event(struct lut *root, struct node *enp) { return ((struct node *) lut_lookup_lhs(root, (void *)enp, (lut_cmp)tree_eventcmp)); } static struct node * dodecl(enum nodetype t, const char *file, int line, struct node *np, struct node *nvpairs, struct lut **lutpp, struct stats *countp, int justpath) { struct node *ret; struct node *decl; /* allocate parse tree node */ ret = newnode(t, file, line); ret->u.stmt.np = np; ret->u.stmt.nvpairs = nvpairs; /* * the global lut pointed to by lutpp (Faults, Defects, Upsets, * Errors, Ereports, Serds, FRUs, or ASRUs) keeps the first decl. * if this isn't the first declr, we merge the * nvpairs into the first decl so we have a * merged table to look up properties from. * if this is the first time we've seen this fault, * we add it to the global lut and start lutp * off with any nvpairs from this declaration statement. */ if (justpath && (decl = tree_name2np_lut_lookup(*lutpp, np)) == NULL) { /* this is the first time name is declared */ stats_counter_bump(countp); *lutpp = tree_name2np_lut_add(*lutpp, np, ret); ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t); } else if (!justpath && (decl = tree_event2np_lut_lookup(*lutpp, np)) == NULL) { /* this is the first time event is declared */ stats_counter_bump(countp); *lutpp = tree_event2np_lut_add(*lutpp, np, ret); ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t); } else { /* was declared before, just add new nvpairs to its lutp */ decl->u.stmt.lutp = nvpair2lut(nvpairs, decl->u.stmt.lutp, t); } return (ret); } /*ARGSUSED*/ static void update_serd_refstmt(void *lhs, void *rhs, void *arg) { struct node *serd; ASSERT(rhs != NULL); serd = tree_s2np_lut_lookup(((struct node *)rhs)->u.stmt.lutp, L_engine); if (serd == NULL) return; ASSERT(serd->t == T_EVENT); if (arg != NULL && tree_eventcmp(serd, (struct node *)arg) != 0) return; serd = tree_event2np_lut_lookup(SERDs, serd); if (serd != NULL) serd->u.stmt.flags |= STMT_REF; } struct node * tree_decl(enum nodetype t, struct node *np, struct node *nvpairs, const char *file, int line) { struct node *decl; struct node *ret; ASSERT(np != NULL); check_type_iterator(np); switch (t) { case T_EVENT: /* determine the type of event being declared */ ASSERT(np->u.event.ename->t == T_NAME); switch (np->u.event.ename->u.name.t) { case N_FAULT: ret = dodecl(T_FAULT, file, line, np, nvpairs, &Faults, Faultcount, 0); break; case N_UPSET: ret = dodecl(T_UPSET, file, line, np, nvpairs, &Upsets, Upsetcount, 0); /* increment serd statement reference */ decl = tree_event2np_lut_lookup(Upsets, np); update_serd_refstmt(NULL, decl, NULL); break; case N_DEFECT: ret = dodecl(T_DEFECT, file, line, np, nvpairs, &Defects, Defectcount, 0); break; case N_ERROR: ret = dodecl(T_ERROR, file, line, np, nvpairs, &Errors, Errorcount, 0); break; case N_EREPORT: ret = dodecl(T_EREPORT, file, line, np, nvpairs, &Ereports, Ereportcount, 0); /* * keep a lut of just the enames, so that the DE * can subscribe to a uniqified list of event * classes. */ Ereportenames = tree_name2np_lut_add(Ereportenames, np->u.event.ename, np); break; default: outfl(O_ERR, file, line, "tree_decl: internal error, event name type %s", ptree_nametype2str(np->u.event.ename->u.name.t)); } break; case T_ENGINE: /* determine the type of engine being declared */ ASSERT(np->u.event.ename->t == T_NAME); switch (np->u.event.ename->u.name.t) { case N_SERD: ret = dodecl(T_SERD, file, line, np, nvpairs, &SERDs, SERDcount, 0); lut_walk(Upsets, update_serd_refstmt, np); break; default: outfl(O_ERR, file, line, "tree_decl: internal error, engine name type %s", ptree_nametype2str(np->u.event.ename->u.name.t)); } break; case T_ASRU: ret = dodecl(T_ASRU, file, line, np, nvpairs, &ASRUs, ASRUcount, 1); break; case T_FRU: ret = dodecl(T_FRU, file, line, np, nvpairs, &FRUs, FRUcount, 1); break; case T_CONFIG: /* * config statements are different from above: they * are not merged at all (until the configuration cache * code does its own style of merging. and the properties * are a free-for-all -- we don't check for allowed or * required config properties. */ ret = newnode(T_CONFIG, file, line); ret->u.stmt.np = np; ret->u.stmt.nvpairs = nvpairs; ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, T_CONFIG); if (lut_lookup(Configs, np, (lut_cmp)tree_namecmp) == NULL) stats_counter_bump(Configcount); Configs = lut_add(Configs, (void *)np, (void *)ret, NULL); break; default: out(O_DIE, "tree_decl: internal error, type %s", ptree_nodetype2str(t)); } return (ret); } /* keep backpointers in arrows to the prop they belong to (used for scoping) */ static void set_arrow_prop(struct node *prop, struct node *np) { if (np == NULL) return; if (np->t == T_ARROW) { np->u.arrow.prop = prop; set_arrow_prop(prop, np->u.arrow.lhs); /* * no need to recurse right or handle T_LIST since * T_ARROWs always cascade left and are at the top * of the parse tree. (you can see this in the rule * for "propbody" in escparse.y.) */ } } struct node * tree_stmt(enum nodetype t, struct node *np, const char *file, int line) { struct node *ret = newnode(t, file, line); struct node *pp; int inlist = 0; ret->u.stmt.np = np; switch (t) { case T_PROP: check_proplists(t, np); check_propnames(t, np, 0, 0); check_propscope(np); set_arrow_prop(ret, np); for (pp = Props; pp; pp = pp->u.stmt.next) { if (tree_treecmp(pp, ret, T_NAME, (lut_cmp)tree_namecmp) == 0) { inlist = 1; break; } } if (inlist == 0) stats_counter_bump(Propcount); /* "Props" is a linked list of all prop statements */ if (Lastprops) Lastprops->u.stmt.next = ret; else Props = ret; Lastprops = ret; break; case T_MASK: check_proplists(t, np); check_propnames(t, np, 0, 0); check_propscope(np); set_arrow_prop(ret, np); for (pp = Masks; pp; pp = pp->u.stmt.next) { if (tree_treecmp(pp, ret, T_NAME, (lut_cmp)tree_namecmp) == 0) { inlist = 1; break; } } if (inlist == 0) stats_counter_bump(Maskcount); /* "Masks" is a linked list of all mask statements */ if (Lastmasks) Lastmasks->u.stmt.next = ret; else Masks = ret; Lastmasks = ret; stats_counter_bump(Maskcount); break; default: outfl(O_DIE, np->file, np->line, "tree_stmt: internal error (t %d)", t); } return (ret); } void tree_report() { /* * The only declarations with required properties * currently are faults and serds. Make sure the * the declarations have the required properties. */ lut_walk(Faults, (lut_cb)check_required_props, (void *)T_FAULT); lut_walk(Upsets, (lut_cb)check_required_props, (void *)T_UPSET); lut_walk(Errors, (lut_cb)check_required_props, (void *)T_ERROR); lut_walk(Ereports, (lut_cb)check_required_props, (void *)T_EREPORT); lut_walk(SERDs, (lut_cb)check_required_props, (void *)T_SERD); /* * we do this now rather than while building the parse * tree because it is inconvenient for the user if we * require SERD engines to be declared before used in * an upset "engine" property. */ lut_walk(Faults, (lut_cb)check_refcount, (void *)T_FAULT); lut_walk(Upsets, (lut_cb)check_upset_engine, (void *)T_UPSET); lut_walk(Upsets, (lut_cb)check_refcount, (void *)T_UPSET); lut_walk(Errors, (lut_cb)check_refcount, (void *)T_ERROR); lut_walk(Ereports, (lut_cb)check_refcount, (void *)T_EREPORT); lut_walk(SERDs, (lut_cb)check_refcount, (void *)T_SERD); /* check for cycles */ lut_walk(Errors, (lut_cb)check_cycle, (void *)0); } /* compare two T_NAMES by only looking at components, not iterators */ int tree_namecmp(struct node *np1, struct node *np2) { ASSERT(np1 != NULL); ASSERT(np2 != NULL); ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t)); ASSERTinfo(np2->t == T_NAME, ptree_nodetype2str(np1->t)); while (np1 && np2 && np1->u.name.s == np2->u.name.s) { np1 = np1->u.name.next; np2 = np2->u.name.next; } if (np1 == NULL) if (np2 == NULL) return (0); else return (-1); else if (np2 == NULL) return (1); else return (np2->u.name.s - np1->u.name.s); } int tree_eventcmp(struct node *np1, struct node *np2) { int ret; ASSERT(np1 != NULL); ASSERT(np2 != NULL); ASSERTinfo(np1->t == T_EVENT, ptree_nodetype2str(np1->t)); ASSERTinfo(np2->t == T_EVENT, ptree_nodetype2str(np2->t)); if ((ret = tree_namecmp(np1->u.event.ename, np2->u.event.ename)) == 0) { if (np1->u.event.epname == NULL && np2->u.event.epname == NULL) return (0); else if (np1->u.event.epname == NULL) return (-1); else if (np2->u.event.epname == NULL) return (1); else return tree_namecmp(np1->u.event.epname, np2->u.event.epname); } else return (ret); }