/* * Copyright 2001-2003 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Copyright (c) 1988, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgment: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)radix.c 8.4 (Berkeley) 11/2/94 * * $FreeBSD: src/sbin/routed/radix.c,v 1.6 2000/08/11 08:24:38 sheldonh Exp $ */ /* * Routines to build and maintain radix trees for routing lookups. */ #include "defs.h" static const size_t max_keylen = sizeof (struct sockaddr_in); static struct radix_mask *rn_mkfreelist; static struct radix_node_head *mask_rnhead; static uint8_t *rn_zeros, *rn_ones, *addmask_key; #define rn_masktop (mask_rnhead->rnh_treetop) static boolean_t rn_satisfies_leaf(uint8_t *, struct radix_node *, int); static boolean_t rn_refines(void *, void *); static struct radix_node *rn_addmask(void *, uint_t, uint_t), *rn_addroute(void *, void *, struct radix_node_head *, struct radix_node [2]), *rn_delete(void *, void *, struct radix_node_head *), *rn_insert(void *, struct radix_node_head *, boolean_t *, struct radix_node [2]), *rn_match(void *, struct radix_node_head *), *rn_newpair(void *, uint_t, struct radix_node[2]), *rn_search(void *, struct radix_node *), *rn_search_m(void *, struct radix_node *, void *); static struct radix_node *rn_lookup(void *, void *, struct radix_node_head *); #ifdef DEBUG #define DBGMSG(x) msglog x #else #define DBGMSG(x) (void) 0 #endif /* * The data structure for the keys is a radix tree with one way * branching removed. The index rn_b at an internal node n represents a bit * position to be tested. The tree is arranged so that all descendants * of a node n have keys whose bits all agree up to position rn_b - 1. * (We say the index of n is rn_b.) * * There is at least one descendant which has a one bit at position rn_b, * and at least one with a zero there. * * A route is determined by a pair of key and mask. We require that the * bit-wise logical and of the key and mask to be the key. * We define the index of a route to associated with the mask to be * the first bit number in the mask where 0 occurs (with bit number 0 * representing the highest order bit). * * We say a mask is normal if every bit is 0, past the index of the mask. * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, * and m is a normal mask, then the route applies to every descendant of n. * If the index(m) < rn_b, this implies the trailing last few bits of k * before bit b are all 0, (and hence consequently true of every descendant * of n), so the route applies to all descendants of the node as well. * * Similar logic shows that a non-normal mask m such that * index(m) <= index(n) could potentially apply to many children of n. * Thus, for each non-host route, we attach its mask to a list at an internal * node as high in the tree as we can go. * * The present version of the code makes use of normal routes in short- * circuiting an explict mask and compare operation when testing whether * a key satisfies a normal route, and also in remembering the unique leaf * that governs a subtree. */ static struct radix_node * rn_search(void *v_arg, struct radix_node *head) { struct radix_node *x; uint8_t *v; for (x = head, v = v_arg; x->rn_b >= 0; ) { if (x->rn_bmask & v[x->rn_off]) x = x->rn_r; else x = x->rn_l; } return (x); } static struct radix_node * rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) { struct radix_node *x; uint8_t *v = v_arg, *m = m_arg; for (x = head; x->rn_b >= 0; ) { if (x->rn_bmask & m[x->rn_off] & v[x->rn_off]) x = x->rn_r; else x = x->rn_l; } return (x); } /* * Returns true if there are no bits set in n_arg that are zero in * m_arg and the masks aren't equal. In other words, it returns true * when m_arg is a finer-granularity netmask -- it represents a subset * of the destinations implied by n_arg. */ static boolean_t rn_refines(void* m_arg, void *n_arg) { uint8_t *m = m_arg, *n = n_arg; uint8_t *lim; boolean_t masks_are_equal = _B_TRUE; lim = n + sizeof (struct sockaddr); while (n < lim) { if (*n & ~(*m)) return (_B_FALSE); if (*n++ != *m++) masks_are_equal = _B_FALSE; } return (!masks_are_equal); } static struct radix_node * rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head) { struct radix_node *x; uint8_t *netmask = NULL; if (m_arg) { if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == NULL) { DBGMSG(("rn_lookup: failed to add mask")); return (NULL); } netmask = x->rn_key; } x = rn_match(v_arg, head); if (x && netmask) { while (x && x->rn_mask != netmask) x = x->rn_dupedkey; } return (x); } /* * Returns true if address 'trial' has no bits differing from the * leaf's key when compared under the leaf's mask. In other words, * returns true when 'trial' matches leaf. */ static boolean_t rn_satisfies_leaf(uint8_t *trial, struct radix_node *leaf, int skip) { uint8_t *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; uint8_t *cplim; size_t length; length = sizeof (struct sockaddr); if (cp3 == NULL) cp3 = rn_ones; cplim = cp + length; cp3 += skip; cp2 += skip; for (cp += skip; cp < cplim; cp++, cp2++, cp3++) if ((*cp ^ *cp2) & *cp3) return (_B_FALSE); return (_B_TRUE); } static struct radix_node * rn_match(void *v_arg, struct radix_node_head *head) { uint8_t *v = v_arg; struct radix_node *t = head->rnh_treetop, *x; uint8_t *cp = v, *cp2; uint8_t *cplim; struct radix_node *saved_t, *top = t; uint_t off = t->rn_off, vlen, matched_off; int test, b, rn_b; vlen = sizeof (struct sockaddr); /* * Open code rn_search(v, top) to avoid overhead of extra * subroutine call. */ for (; t->rn_b >= 0; ) { if (t->rn_bmask & cp[t->rn_off]) t = t->rn_r; else t = t->rn_l; } cp += off; cp2 = t->rn_key + off; cplim = v + vlen; for (; cp < cplim; cp++, cp2++) if (*cp != *cp2) goto found_difference_with_key; /* * This extra grot is in case we are explicitly asked * to look up the default. Ugh! * Or 255.255.255.255 * * In this case, we have a complete match of the key. Unless * the node is one of the roots, we are finished. * If it is the zeros root, then take what we have, prefering * any real data. * If it is the ones root, then pretend the target key was followed * by a byte of zeros. */ if (!(t->rn_flags & RNF_ROOT)) return (t); /* not a root */ if (t->rn_dupedkey) { t = t->rn_dupedkey; return (t); /* have some real data */ } if (*(cp-1) == 0) return (t); /* not the ones root */ b = 0; /* fake a zero after 255.255.255.255 */ goto calculated_differing_bit; found_difference_with_key: test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ for (b = 7; (test >>= 1) > 0; ) b--; calculated_differing_bit: matched_off = cp - v; b += matched_off << 3; rn_b = -1 - b; /* * If there is a host route in a duped-key chain, it will be first. */ if ((saved_t = t)->rn_mask == NULL) t = t->rn_dupedkey; for (; t; t = t->rn_dupedkey) { /* * Even if we don't match exactly as a host, * we may match if the leaf we wound up at is * a route to a net. */ if (t->rn_flags & RNF_NORMAL) { if (rn_b <= t->rn_b) return (t); } else if (rn_satisfies_leaf(v, t, matched_off)) { return (t); } } t = saved_t; /* start searching up the tree */ do { struct radix_mask *m; t = t->rn_p; if ((m = t->rn_mklist) != NULL) { /* * If non-contiguous masks ever become important * we can restore the masking and open coding of * the search and satisfaction test and put the * calculation of "off" back before the "do". */ do { if (m->rm_flags & RNF_NORMAL) { if (rn_b <= m->rm_b) return (m->rm_leaf); } else { off = MIN(t->rn_off, matched_off); x = rn_search_m(v, t, m->rm_mask); while (x != NULL && x->rn_mask != m->rm_mask) x = x->rn_dupedkey; if (x != NULL && rn_satisfies_leaf(v, x, off)) return (x); } } while ((m = m->rm_mklist) != NULL); } } while (t != top); return (NULL); } #ifdef RN_DEBUG int rn_nodenum; struct radix_node *rn_clist; int rn_saveinfo; boolean_t rn_debug = 1; #endif static struct radix_node * rn_newpair(void *v, uint_t b, struct radix_node nodes[2]) { struct radix_node *tt = nodes, *t = tt + 1; t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); t->rn_l = tt; t->rn_off = b >> 3; tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t; tt->rn_flags = t->rn_flags = RNF_ACTIVE; #ifdef RN_DEBUG tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; #endif return (t); } static struct radix_node * rn_insert(void* v_arg, struct radix_node_head *head, boolean_t *dupentry, struct radix_node nodes[2]) { uint8_t *v = v_arg; struct radix_node *top = head->rnh_treetop; uint_t head_off = top->rn_off, vlen; struct radix_node *t = rn_search(v_arg, top); uint8_t *cp = v + head_off, b; struct radix_node *tt; vlen = sizeof (struct sockaddr); /* * Find first bit at which v and t->rn_key differ */ { uint8_t *cp2 = t->rn_key + head_off; uint8_t cmp_res; uint8_t *cplim = v + vlen; while (cp < cplim) if (*cp2++ != *cp++) goto found_differing_byte; /* handle adding 255.255.255.255 */ if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) { *dupentry = _B_TRUE; return (t); } found_differing_byte: *dupentry = _B_FALSE; cmp_res = cp[-1] ^ cp2[-1]; for (b = (cp - v) << 3; cmp_res != 0; b--) cmp_res >>= 1; } { struct radix_node *p, *x = top; cp = v; do { p = x; if (cp[x->rn_off] & x->rn_bmask) x = x->rn_r; else x = x->rn_l; } while (b > (unsigned)x->rn_b); #ifdef RN_DEBUG if (rn_debug) { msglog("rn_insert: Going In:"); traverse(p); } #endif t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; if (!(cp[p->rn_off] & p->rn_bmask)) p->rn_l = t; else p->rn_r = t; x->rn_p = t; /* frees x, p as temp vars below */ t->rn_p = p; if (!(cp[t->rn_off] & t->rn_bmask)) { t->rn_r = x; } else { t->rn_r = tt; t->rn_l = x; } #ifdef RN_DEBUG if (rn_debug) { msglog("rn_insert: Coming Out:"); traverse(p); } #endif } return (tt); } static struct radix_node * rn_addmask(void *n_arg, uint_t search, uint_t skip) { uint8_t *netmask = n_arg; struct radix_node *x; uint8_t *cp, *cplim; int b = 0, mlen, j, m0; boolean_t maskduplicated; struct radix_node *saved_x; static int last_zeroed = 0; mlen = sizeof (struct sockaddr); if (skip == 0) skip = 1; if (mlen <= skip) return (mask_rnhead->rnh_nodes); if (skip > 1) (void) memmove(addmask_key + 1, rn_ones + 1, skip - 1); if ((m0 = mlen) > skip) (void) memmove(addmask_key + skip, netmask + skip, mlen - skip); /* * Trim trailing zeroes. */ for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; ) cp--; mlen = cp - addmask_key; if (mlen <= skip) { if (m0 >= last_zeroed) last_zeroed = mlen; return (mask_rnhead->rnh_nodes); } if (m0 < last_zeroed) (void) memset(addmask_key + m0, 0, last_zeroed - m0); *addmask_key = last_zeroed = mlen; x = rn_search(addmask_key, rn_masktop); if (memcmp(addmask_key, x->rn_key, mlen) != 0) x = NULL; if (x != NULL || search != 0) return (x); x = rtmalloc(max_keylen + 2*sizeof (*x), "rn_addmask"); saved_x = x; (void) memset(x, 0, max_keylen + 2 * sizeof (*x)); netmask = cp = (uint8_t *)(x + 2); (void) memmove(cp, addmask_key, mlen); x = rn_insert(cp, mask_rnhead, &maskduplicated, x); if (maskduplicated) { #ifdef DEBUG logbad(1, "rn_addmask: mask impossibly already in tree"); #else msglog("rn_addmask: mask impossibly already in tree"); #endif free(saved_x); return (x); } /* * Calculate index of mask, and check for normalcy. */ cplim = netmask + mlen; x->rn_flags |= RNF_NORMAL; for (cp = netmask + skip; (cp < cplim) && *cp == 0xff; ) cp++; if (cp != cplim) { for (j = 0x80; (j & *cp) != 0; j >>= 1) b++; if (*cp != (0xFF & ~(0xFF >> b)) || cp != (cplim - 1)) x->rn_flags &= ~RNF_NORMAL; } b += (cp - netmask) << 3; x->rn_b = -1 - b; return (x); } static boolean_t /* Note: arbitrary ordering for non-contiguous masks */ rn_lexobetter(void *m_arg, void *n_arg) { uint8_t *mp = m_arg, *np = n_arg, *lim; lim = mp + sizeof (struct sockaddr); while (mp < lim) if (*mp++ > *np++) return (_B_TRUE); return (_B_FALSE); } static struct radix_mask * rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) { struct radix_mask *m; MKGet(m); if (m == NULL) { #ifdef DEBUG logbad(1, "Mask for route not entered"); #else msglog("Mask for route not entered"); #endif return (NULL); } (void) memset(m, 0, sizeof (*m)); m->rm_b = tt->rn_b; m->rm_flags = tt->rn_flags; if (tt->rn_flags & RNF_NORMAL) m->rm_leaf = tt; else m->rm_mask = tt->rn_mask; m->rm_mklist = next; tt->rn_mklist = m; return (m); } static struct radix_node * rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head, struct radix_node treenodes[2]) { uint8_t *v = v_arg, *netmask = n_arg; struct radix_node *t, *x = 0, *tt; struct radix_node *saved_tt, *top = head->rnh_treetop; short b = 0, b_leaf = 0; boolean_t keyduplicated; uint8_t *mmask; struct radix_mask *m, **mp; /* * In dealing with non-contiguous masks, there may be * many different routes which have the same mask. * We will find it useful to have a unique pointer to * the mask to speed avoiding duplicate references at * nodes and possibly save time in calculating indices. */ if (netmask) { if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL) { DBGMSG(("rn_addroute: addmask failed")); return (NULL); } b_leaf = x->rn_b; b = -1 - x->rn_b; netmask = x->rn_key; } /* * Deal with duplicated keys: attach node to previous instance */ saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); if (keyduplicated) { for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { if (tt->rn_mask == netmask) { DBGMSG(("rn_addroute: duplicated route and " "mask")); return (NULL); } if (netmask == NULL || (tt->rn_mask && ((b_leaf < tt->rn_b) || rn_refines(netmask, tt->rn_mask) || rn_lexobetter(netmask, tt->rn_mask)))) break; } /* * If the mask is not duplicated, we wouldn't * find it among possible duplicate key entries * anyway, so the above test doesn't hurt. * * We sort the masks for a duplicated key the same way as * in a masklist -- most specific to least specific. * This may require the unfortunate nuisance of relocating * the head of the list. */ if (tt == saved_tt) { struct radix_node *xx = x; /* link in at head of list */ (tt = treenodes)->rn_dupedkey = t; tt->rn_flags = t->rn_flags; tt->rn_p = x = t->rn_p; if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt; saved_tt = tt; x = xx; } else { (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; t->rn_dupedkey = tt; } #ifdef RN_DEBUG t = tt + 1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; #endif tt->rn_key = v; tt->rn_b = -1; tt->rn_flags = RNF_ACTIVE; } /* * Put mask in tree. */ if (netmask) { tt->rn_mask = netmask; tt->rn_b = x->rn_b; tt->rn_flags |= x->rn_flags & RNF_NORMAL; } t = saved_tt->rn_p; if (keyduplicated) goto key_already_in_tree; b_leaf = -1 - t->rn_b; if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r; /* Promote general routes from below */ if (x->rn_b < 0) { for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) if (x->rn_mask != NULL && (x->rn_b >= b_leaf) && x->rn_mklist == NULL) { if ((*mp = m = rn_new_radix_mask(x, 0)) != NULL) mp = &m->rm_mklist; } } else if (x->rn_mklist) { /* * Skip over masks whose index is > that of new node */ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) if (m->rm_b >= b_leaf) break; t->rn_mklist = m; *mp = 0; } key_already_in_tree: /* Add new route to highest possible ancestor's list */ if ((netmask == NULL) || (b > t->rn_b)) { return (tt); /* can't lift at all */ } b_leaf = tt->rn_b; do { x = t; t = t->rn_p; } while (b <= t->rn_b && x != top); /* * Search through routes associated with node to * insert new route according to index. * Need same criteria as when sorting dupedkeys to avoid * double loop on deletion. */ for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { if (m->rm_b < b_leaf) continue; if (m->rm_b > b_leaf) break; if (m->rm_flags & RNF_NORMAL) { mmask = m->rm_leaf->rn_mask; if (tt->rn_flags & RNF_NORMAL) { #ifdef DEBUG logbad(1, "Non-unique normal route, mask " "not entered"); #else msglog("Non-unique normal route, mask " "not entered"); #endif return (tt); } } else mmask = m->rm_mask; if (mmask == netmask) { m->rm_refs++; tt->rn_mklist = m; return (tt); } if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) break; } *mp = rn_new_radix_mask(tt, *mp); return (tt); } static struct radix_node * rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head) { struct radix_node *t, *p, *x, *tt; struct radix_mask *m, *saved_m, **mp; struct radix_node *dupedkey, *saved_tt, *top; uint8_t *v, *netmask; int b; uint_t head_off, vlen; v = v_arg; netmask = netmask_arg; x = head->rnh_treetop; tt = rn_search(v, x); head_off = x->rn_off; vlen = sizeof (struct sockaddr); saved_tt = tt; top = x; if (tt == NULL || memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0) { DBGMSG(("rn_delete: unable to locate route to delete")); return (NULL); } /* * Delete our route from mask lists. */ if (netmask) { if ((x = rn_addmask(netmask, 1, head_off)) == NULL) { DBGMSG(("rn_delete: cannot add mask")); return (NULL); } netmask = x->rn_key; while (tt->rn_mask != netmask) if ((tt = tt->rn_dupedkey) == NULL) { DBGMSG(("rn_delete: cannot locate mask")); return (NULL); } } if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL) goto annotation_removed; if (tt->rn_flags & RNF_NORMAL) { if (m->rm_leaf != tt || m->rm_refs > 0) { #ifdef DEBUG logbad(1, "rn_delete: inconsistent annotation"); #else msglog("rn_delete: inconsistent annotation"); #endif return (NULL); /* dangling ref could cause disaster */ } } else { if (m->rm_mask != tt->rn_mask) { #ifdef DEBUG logbad(1, "rn_delete: inconsistent annotation"); #else msglog("rn_delete: inconsistent annotation"); #endif goto annotation_removed; } if (--m->rm_refs >= 0) goto annotation_removed; } b = -1 - tt->rn_b; t = saved_tt->rn_p; if (b > t->rn_b) goto annotation_removed; /* Wasn't lifted at all */ do { x = t; t = t->rn_p; } while (b <= t->rn_b && x != top); for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) if (m == saved_m) { *mp = m->rm_mklist; MKFree(m); break; } if (m == NULL) { #ifdef DEBUG logbad(1, "rn_delete: couldn't find our annotation"); #else msglog("rn_delete: couldn't find our annotation"); #endif if (tt->rn_flags & RNF_NORMAL) return (NULL); /* Dangling ref to us */ } annotation_removed: /* * Eliminate us from tree */ if (tt->rn_flags & RNF_ROOT) { DBGMSG(("rn_delete: cannot delete root")); return (NULL); } #ifdef RN_DEBUG /* Get us out of the creation list */ for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} if (t != NULL) t->rn_ybro = tt->rn_ybro; #endif t = tt->rn_p; if ((dupedkey = saved_tt->rn_dupedkey) != NULL) { if (tt == saved_tt) { x = dupedkey; x->rn_p = t; if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x; } else { for (x = p = saved_tt; p && p->rn_dupedkey != tt; ) p = p->rn_dupedkey; if (p != NULL) { p->rn_dupedkey = tt->rn_dupedkey; } else { #ifdef DEBUG logbad(1, "rn_delete: couldn't find us"); #else msglog("rn_delete: couldn't find us"); #endif } } t = tt + 1; if (t->rn_flags & RNF_ACTIVE) { #ifndef RN_DEBUG *++x = *t; p = t->rn_p; #else b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p; #endif if (p->rn_l == t) p->rn_l = x; else p->rn_r = x; x->rn_l->rn_p = x; x->rn_r->rn_p = x; } goto out; } if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l; p = t->rn_p; if (p->rn_r == t) p->rn_r = x; else p->rn_l = x; x->rn_p = p; /* * Demote routes attached to us. */ if (t->rn_mklist) { if (x->rn_b >= 0) { for (mp = &x->rn_mklist; (m = *mp) != NULL; ) mp = &m->rm_mklist; *mp = t->rn_mklist; } else { /* * If there are any key,mask pairs in a sibling * duped-key chain, some subset will appear sorted * in the same order attached to our mklist */ for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) if (m == x->rn_mklist) { struct radix_mask *mm = m->rm_mklist; x->rn_mklist = 0; if (--(m->rm_refs) < 0) MKFree(m); m = mm; } if (m != NULL) { #ifdef DEBUG logbad(1, "rn_delete: Orphaned Mask %p at %p\n", m, x); #else msglog("rn_delete: Orphaned Mask %p at %p\n", m, x); #endif } } } /* * We may be holding an active internal node in the tree. */ x = tt + 1; if (t != x) { #ifndef RN_DEBUG *t = *x; #else b = t->rn_info; *t = *x; t->rn_info = b; #endif t->rn_l->rn_p = t; t->rn_r->rn_p = t; p = x->rn_p; if (p->rn_l == x) p->rn_l = t; else p->rn_r = t; } out: tt->rn_flags &= ~RNF_ACTIVE; tt[1].rn_flags &= ~RNF_ACTIVE; return (tt); } int rn_walktree(struct radix_node_head *h, int (*f)(struct radix_node *, void *), void *w) { int error; struct radix_node *base, *next; struct radix_node *rn = h->rnh_treetop; /* * This gets complicated because we may delete the node * while applying the function f to it, so we need to calculate * the successor node in advance. */ /* First time through node, go left */ while (rn->rn_b >= 0) rn = rn->rn_l; do { base = rn; /* If at right child go back up, otherwise, go right */ while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) rn = rn->rn_p; /* Find the next *leaf* since next node might vanish, too */ for (rn = rn->rn_p->rn_r; rn->rn_b >= 0; ) rn = rn->rn_l; next = rn; /* Process leaves */ while ((rn = base) != NULL) { base = rn->rn_dupedkey; if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) return (error); } rn = next; } while (!(rn->rn_flags & RNF_ROOT)); return (0); } int rn_inithead(void **head, uint_t off) { struct radix_node_head *rnh; struct radix_node *t, *tt, *ttt; if (*head) return (1); rnh = rtmalloc(sizeof (*rnh), "rn_inithead"); (void) memset(rnh, 0, sizeof (*rnh)); *head = rnh; t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); ttt = rnh->rnh_nodes + 2; t->rn_r = ttt; t->rn_p = t; tt = t->rn_l; tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; tt->rn_b = -1 - off; *ttt = *tt; ttt->rn_key = rn_ones; rnh->rnh_addaddr = rn_addroute; rnh->rnh_deladdr = rn_delete; rnh->rnh_matchaddr = rn_match; rnh->rnh_lookup = rn_lookup; rnh->rnh_walktree = rn_walktree; rnh->rnh_treetop = t; return (1); } void rn_init(void) { uint8_t *cp, *cplim; if (max_keylen == 0) { logbad(1, "radix functions require max_keylen be set"); return; } rn_zeros = rtmalloc(3 * max_keylen, "rn_init"); (void) memset(rn_zeros, 0, 3 * max_keylen); rn_ones = cp = rn_zeros + max_keylen; addmask_key = cplim = rn_ones + max_keylen; while (cp < cplim) *cp++ = 0xFF; if (rn_inithead((void **)&mask_rnhead, 0) == 0) { logbad(0, "rn_init: could not initialize radix tree"); } }