/* * Copyright (c) 2014 Roger Pau Monné * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This multiboot implementation only implements a subset of the full * multiboot specification in order to be able to boot Xen and a * FreeBSD Dom0. Trying to use it to boot other multiboot compliant * kernels will most surely fail. * * The full multiboot specification can be found here: * http://www.gnu.org/software/grub/manual/multiboot/multiboot.html */ #include #include #include #include #include #include #define _MACHINE_ELF_WANT_32BIT #include #include #include #include #include #include "bootstrap.h" #include #include "vbe.h" #include "libzfs.h" #include "libi386.h" #include "../btx/lib/btxv86.h" #define SUPPORT_DHCP #include #define MULTIBOOT_SUPPORTED_FLAGS \ (MULTIBOOT_AOUT_KLUDGE|MULTIBOOT_PAGE_ALIGN|MULTIBOOT_MEMORY_INFO) #define METADATA_FIXED_SIZE (PAGE_SIZE*4) #define METADATA_MODULE_SIZE PAGE_SIZE #define METADATA_RESV_SIZE(mod_num) \ roundup(METADATA_FIXED_SIZE + METADATA_MODULE_SIZE * mod_num, PAGE_SIZE) /* MB data heap pointer */ static vm_offset_t last_addr; static int multiboot_loadfile(char *, u_int64_t, struct preloaded_file **); static int multiboot_exec(struct preloaded_file *); static int multiboot_obj_loadfile(char *, u_int64_t, struct preloaded_file **); static int multiboot_obj_exec(struct preloaded_file *fp); struct file_format multiboot = { multiboot_loadfile, multiboot_exec }; struct file_format multiboot_obj = { multiboot_obj_loadfile, multiboot_obj_exec }; static int num_modules(struct preloaded_file *kfp) { struct kernel_module *kmp; int mod_num = 0; for (kmp = kfp->f_modules; kmp != NULL; kmp = kmp->m_next) mod_num++; return (mod_num); } static int multiboot_loadfile(char *filename, u_int64_t dest, struct preloaded_file **result) { uint32_t *magic; int i, error; caddr_t header_search; ssize_t search_size; int fd; struct multiboot_header *header; struct preloaded_file *fp; if (filename == NULL) return (EFTYPE); /* is kernel already loaded? */ fp = file_findfile(NULL, NULL); if (fp != NULL) { return (EFTYPE); } if ((fd = open(filename, O_RDONLY)) == -1) return (errno); /* * Read MULTIBOOT_SEARCH size in order to search for the * multiboot magic header. */ header_search = malloc(MULTIBOOT_SEARCH); if (header_search == NULL) { close(fd); return (ENOMEM); } search_size = read(fd, header_search, MULTIBOOT_SEARCH); magic = (uint32_t *)header_search; header = NULL; for (i = 0; i < (search_size / sizeof(uint32_t)); i++) { if (magic[i] == MULTIBOOT_HEADER_MAGIC) { header = (struct multiboot_header *)&magic[i]; break; } } if (header == NULL) { error = EFTYPE; goto out; } /* Valid multiboot header has been found, validate checksum */ if (header->magic + header->flags + header->checksum != 0) { printf( "Multiboot checksum failed, magic: 0x%x flags: 0x%x checksum: 0x%x\n", header->magic, header->flags, header->checksum); error = EFTYPE; goto out; } if ((header->flags & ~MULTIBOOT_SUPPORTED_FLAGS) != 0) { printf("Unsupported multiboot flags found: 0x%x\n", header->flags); error = EFTYPE; goto out; } /* AOUT KLUDGE means we just load entire flat file as blob */ if (header->flags & MULTIBOOT_AOUT_KLUDGE) { vm_offset_t laddr; int got; dest = header->load_addr; if (lseek(fd, 0, SEEK_SET) == -1) { printf("lseek failed\n"); error = EIO; goto out; } laddr = dest; for (;;) { got = archsw.arch_readin(fd, laddr, 4096); if (got == 0) break; if (got < 0) { printf("error reading: %s", strerror(errno)); error = EIO; goto out; } laddr += got; } fp = file_alloc(); if (fp == NULL) { error = ENOMEM; goto out; } fp->f_name = strdup(filename); fp->f_type = strdup("aout multiboot kernel"); fp->f_addr = header->entry_addr; fp->f_size = laddr - dest; if (fp->f_size == 0) { file_discard(fp); error = EIO; goto out; } fp->f_metadata = NULL; error = 0; } else { error = elf32_loadfile_raw(filename, dest, &fp, 1); if (error != 0) { printf("elf32_loadfile_raw failed: %d unable to " "load multiboot kernel\n", error); goto out; } } setenv("kernelname", fp->f_name, 1); bios_addsmapdata(fp); *result = fp; out: free(header_search); close(fd); return (error); } /* * returns allocated virtual address from MB info area */ static vm_offset_t mb_malloc(size_t n) { vm_offset_t ptr = last_addr; if (ptr + n >= high_heap_base) return (0); last_addr = roundup(last_addr + n, MULTIBOOT_INFO_ALIGN); return (ptr); } static int multiboot_exec(struct preloaded_file *fp) { struct preloaded_file *mfp; vm_offset_t entry; struct file_metadata *md; struct multiboot_info *mb_info = NULL; struct multiboot_mod_list *mb_mod = NULL; multiboot_memory_map_t *mmap; struct bios_smap *smap; struct devdesc *rootdev; char *cmdline = NULL; size_t len; int error, num, i; int rootfs = 0; /* flag for rootfs */ int xen = 0; /* flag for xen */ int kernel = 0; /* flag for kernel */ /* Set up base for mb_malloc. */ for (mfp = fp; mfp->f_next != NULL; mfp = mfp->f_next); /* Start info block from new page. */ last_addr = roundup(mfp->f_addr + mfp->f_size, MULTIBOOT_MOD_ALIGN); /* Allocate the multiboot struct and fill the basic details. */ mb_info = (struct multiboot_info *)PTOV(mb_malloc(sizeof (*mb_info))); bzero(mb_info, sizeof(struct multiboot_info)); mb_info->flags = MULTIBOOT_INFO_MEMORY|MULTIBOOT_INFO_BOOT_LOADER_NAME; mb_info->mem_lower = bios_basemem / 1024; mb_info->mem_upper = bios_extmem / 1024; mb_info->boot_loader_name = mb_malloc(strlen(bootprog_info) + 1); i386_copyin(bootprog_info, mb_info->boot_loader_name, strlen(bootprog_info) + 1); i386_getdev((void **)(&rootdev), NULL, NULL); if (rootdev == NULL) { printf("can't determine root device\n"); error = EINVAL; goto error; } /* * Boot image command line. If args were not provided, we need to set * args here, and that depends on image type... * Fortunately we only have following options: * 64 or 32 bit unix or xen. So we just check if f_name has unix. */ /* Do we boot xen? */ if (strstr(fp->f_name, "unix") == NULL) xen = 1; entry = fp->f_addr; num = 0; for (mfp = fp->f_next; mfp != NULL; mfp = mfp->f_next) { num++; if (mfp->f_type != NULL && strcmp(mfp->f_type, "rootfs") == 0) rootfs++; if (mfp->f_type != NULL && strcmp(mfp->f_type, "kernel") == 0) kernel++; } if (num == 0 || rootfs == 0) { /* We need at least one module - rootfs. */ printf("No rootfs module provided, aborting\n"); error = EINVAL; goto error; } if (xen == 1 && kernel == 0) { printf("No kernel module provided for xen, aborting\n"); error = EINVAL; goto error; } mb_mod = (struct multiboot_mod_list *) PTOV(last_addr); last_addr += roundup(sizeof(*mb_mod) * num, MULTIBOOT_INFO_ALIGN); bzero(mb_mod, sizeof(*mb_mod) * num); num = 0; for (mfp = fp->f_next; mfp != NULL; mfp = mfp->f_next) { mb_mod[num].mod_start = mfp->f_addr; mb_mod[num].mod_end = mfp->f_addr + mfp->f_size; if (strcmp(mfp->f_type, "kernel") == 0) { cmdline = NULL; error = mb_kernel_cmdline(mfp, rootdev, &cmdline); if (error != 0) goto error; } else { len = strlen(mfp->f_name) + 1; len += strlen(mfp->f_type) + 5 + 1; if (mfp->f_args != NULL) { len += strlen(mfp->f_args) + 1; } cmdline = malloc(len); if (cmdline == NULL) { error = ENOMEM; goto error; } if (mfp->f_args != NULL) snprintf(cmdline, len, "%s type=%s %s", mfp->f_name, mfp->f_type, mfp->f_args); else snprintf(cmdline, len, "%s type=%s", mfp->f_name, mfp->f_type); } mb_mod[num].cmdline = mb_malloc(strlen(cmdline)+1); i386_copyin(cmdline, mb_mod[num].cmdline, strlen(cmdline)+1); free(cmdline); num++; } mb_info->mods_count = num; mb_info->mods_addr = VTOP(mb_mod); mb_info->flags |= MULTIBOOT_INFO_MODS; md = file_findmetadata(fp, MODINFOMD_SMAP); if (md == NULL) { printf("no memory smap\n"); error = EINVAL; goto error; } num = md->md_size / sizeof(struct bios_smap); /* number of entries */ mmap = (multiboot_memory_map_t *)PTOV(mb_malloc(sizeof(*mmap) * num)); mb_info->mmap_length = num * sizeof(*mmap); smap = (struct bios_smap *)md->md_data; for (i = 0; i < num; i++) { mmap[i].size = sizeof(*smap); mmap[i].addr = smap[i].base; mmap[i].len = smap[i].length; mmap[i].type = smap[i].type; } mb_info->mmap_addr = VTOP(mmap); mb_info->flags |= MULTIBOOT_INFO_MEM_MAP; if (strstr(getenv("loaddev"), "net") != NULL && bootp_response != NULL) { mb_info->drives_length = bootp_response_size; mb_info->drives_addr = mb_malloc(bootp_response_size); i386_copyin(bootp_response, mb_info->drives_addr, bootp_response_size); mb_info->flags &= ~MULTIBOOT_INFO_DRIVE_INFO; } /* * Set the image command line. Need to do this as last thing, * as illumos kernel dboot_startkern will check cmdline * address as last check to find first free address. */ if (fp->f_args == NULL) { if (xen) cmdline = getenv("xen_cmdline"); else cmdline = getenv("boot-args"); if (cmdline != NULL) { fp->f_args = strdup(cmdline); if (fp->f_args == NULL) { error = ENOMEM; goto error; } } } /* * If the image is xen, we just use f_name + f_args for commandline * for unix, we need to add zfs-bootfs. */ if (xen) { len = strlen(fp->f_name) + 1; if (fp->f_args != NULL) len += strlen(fp->f_args) + 1; if (fp->f_args != NULL) { if((cmdline = malloc(len)) == NULL) { error = ENOMEM; goto error; } snprintf(cmdline, len, "%s %s", fp->f_name, fp->f_args); } else { cmdline = strdup(fp->f_name); if (cmdline == NULL) { error = ENOMEM; goto error; } } } else { cmdline = NULL; if ((error = mb_kernel_cmdline(fp, rootdev, &cmdline)) != 0) goto error; } mb_info->cmdline = mb_malloc(strlen(cmdline)+1); i386_copyin(cmdline, mb_info->cmdline, strlen(cmdline)+1); mb_info->flags |= MULTIBOOT_INFO_CMDLINE; free(cmdline); cmdline = NULL; /* make sure we have text mode */ bios_set_text_mode(VGA_TEXT_MODE); dev_cleanup(); __exec((void *)VTOP(multiboot_tramp), MULTIBOOT_BOOTLOADER_MAGIC, (void *)entry, (void *)VTOP(mb_info)); panic("exec returned"); error: free(cmdline); return (error); } static int multiboot_obj_loadfile(char *filename, u_int64_t dest, struct preloaded_file **result) { struct preloaded_file *mfp, *kfp, *rfp; int error, mod_num; /* See if there's a aout multiboot kernel loaded */ mfp = file_findfile(NULL, "aout multiboot kernel"); if (mfp != NULL) { /* we have normal kernel loaded, add module */ rfp = file_loadraw(filename, "module", 0, NULL, 0); if (rfp == NULL) { printf( "Unable to load %s as a multiboot payload module\n", filename); return (EINVAL); } rfp->f_size = roundup(rfp->f_size, PAGE_SIZE); *result = rfp; return (0); } /* See if there's a multiboot kernel loaded */ mfp = file_findfile(NULL, "elf multiboot kernel"); if (mfp == NULL) { return (EFTYPE); /* this allows to check other methods */ } /* * We have a multiboot kernel loaded, see if there's a * kernel loaded also. */ kfp = file_findfile(NULL, "elf kernel"); if (kfp == NULL) { /* * No kernel loaded, this must be it. The kernel has to * be loaded as a raw file, it will be processed by * Xen and correctly loaded as an ELF file. */ rfp = file_loadraw(filename, "elf kernel", 0, NULL, 0); if (rfp == NULL) { printf( "Unable to load %s as a multiboot payload kernel\n", filename); return (EINVAL); } /* Load kernel metadata... */ setenv("kernelname", filename, 1); error = elf64_load_modmetadata(rfp, rfp->f_addr + rfp->f_size); if (error) { printf("Unable to load kernel %s metadata error: %d\n", rfp->f_name, error); return (EINVAL); } /* * Save space at the end of the kernel in order to place * the metadata information. We do an approximation of the * max metadata size, this is not optimal but it's probably * the best we can do at this point. Once all modules are * loaded and the size of the metadata is known this * space will be recovered if not used. */ mod_num = num_modules(rfp); rfp->f_size = roundup(rfp->f_size, PAGE_SIZE); rfp->f_size += METADATA_RESV_SIZE(mod_num); *result = rfp; } else { /* The rest should be loaded as regular modules */ error = elf64_obj_loadfile(filename, dest, result); if (error != 0) { printf("Unable to load %s as an object file, error: %d", filename, error); return (error); } } return (0); } static int multiboot_obj_exec(struct preloaded_file *fp __unused) { return (EFTYPE); }