/* * Copyright (c) 2008-2010 Rui Paulo * Copyright (c) 2006 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "loader_efi.h" struct arch_switch archsw; /* MI/MD interface boundary */ EFI_GUID gEfiLoadedImageProtocolGuid = EFI_LOADED_IMAGE_PROTOCOL_GUID; EFI_GUID gEfiSmbiosTableGuid = SMBIOS_TABLE_GUID; EFI_GUID gEfiSmbios3TableGuid = SMBIOS3_TABLE_GUID; extern void acpi_detect(void); extern void efi_getsmap(void); static EFI_LOADED_IMAGE_PROTOCOL *img; /* * Number of seconds to wait for a keystroke before exiting with failure * in the event no currdev is found. -2 means always break, -1 means * never break, 0 means poll once and then reboot, > 0 means wait for * that many seconds. "fail_timeout" can be set in the environment as * well. */ static int fail_timeout = 5; bool efi_zfs_is_preferred(EFI_HANDLE *h) { EFI_DEVICE_PATH *devpath, *dp, *node; HARDDRIVE_DEVICE_PATH *hd; bool ret; extern UINT64 start_sector; /* from mb_header.S */ /* This check is true for chainloader case. */ if (h == img->DeviceHandle) return (true); /* * Make sure the image was loaded from the hard disk. */ devpath = efi_lookup_devpath(img->DeviceHandle); if (devpath == NULL) return (false); node = efi_devpath_last_node(devpath); if (node == NULL) return (false); if (DevicePathType(node) != MEDIA_DEVICE_PATH || (DevicePathSubType(node) != MEDIA_FILEPATH_DP && DevicePathSubType(node) != MEDIA_HARDDRIVE_DP)) { return (false); } /* * XXX We ignore the MEDIA_FILEPATH_DP here for now as it is * used on arm and we do not support arm. */ ret = false; dp = efi_devpath_trim(devpath); devpath = NULL; if (dp == NULL) goto done; devpath = efi_lookup_devpath(h); if (devpath == NULL) goto done; hd = (HARDDRIVE_DEVICE_PATH *)efi_devpath_last_node(devpath); if (hd == NULL) { devpath = NULL; goto done; } devpath = efi_devpath_trim(devpath); if (devpath == NULL) goto done; if (!efi_devpath_match(dp, devpath)) goto done; /* It is the same disk, do we have partition start? */ if (start_sector == 0) ret = true; else if (start_sector == hd->PartitionStart) ret = true; done: free(dp); free(devpath); return (ret); } static bool has_keyboard(void) { EFI_STATUS status; EFI_DEVICE_PATH *path; EFI_HANDLE *hin; uint_t i, nhandles; bool retval = false; /* * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and * do the typical dance to get the right sized buffer. */ status = efi_get_protocol_handles(&gEfiSimpleTextInProtocolGuid, &nhandles, &hin); if (EFI_ERROR(status)) return (retval); /* * Look at each of the handles. If it supports the device path protocol, * use it to get the device path for this handle. Then see if that * device path matches either the USB device path for keyboards or the * legacy device path for keyboards. */ for (i = 0; i < nhandles; i++) { status = OpenProtocolByHandle(hin[i], &gEfiDevicePathProtocolGuid, (void **)&path); if (EFI_ERROR(status)) continue; while (!IsDevicePathEnd(path)) { /* * Check for the ACPI keyboard node. All PNP3xx nodes * are keyboards of different flavors. Note: It is * unclear of there's always a keyboard node when * there's a keyboard controller, or if there's only one * when a keyboard is detected at boot. */ if (DevicePathType(path) == ACPI_DEVICE_PATH && (DevicePathSubType(path) == ACPI_DP || DevicePathSubType(path) == ACPI_EXTENDED_DP)) { ACPI_HID_DEVICE_PATH *acpi; acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { retval = true; goto out; } /* * Check for USB keyboard node, if present. Unlike a * PS/2 keyboard, these definitely only appear when * connected to the system. */ } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && DevicePathSubType(path) == MSG_USB_CLASS_DP) { USB_CLASS_DEVICE_PATH *usb; /* * Check for: * DeviceClass: HID * DeviceSubClass: Boot devices * DeviceProtocol: Boot keyboards */ usb = (USB_CLASS_DEVICE_PATH *)(void *)path; if (usb->DeviceClass == 3 && usb->DeviceSubClass == 1 && usb->DeviceProtocol == 1) { retval = true; goto out; } } path = NextDevicePathNode(path); } } out: free(hin); return (retval); } static void set_currdev(const char *devname) { /* * Don't execute hooks here; we may need to try setting these more than * once here if we're probing for the ZFS pool we're supposed to boot. * The currdev hook is intended to just validate user input anyways, * while the loaddev hook makes it immutable once we've determined what * the proper currdev is. */ env_setenv("currdev", EV_VOLATILE | EV_NOHOOK, devname, efi_setcurrdev, env_nounset); env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset, env_nounset); } static void set_currdev_devdesc(struct devdesc *currdev) { char *devname; devname = efi_fmtdev(currdev); printf("Setting currdev to %s\n", devname); set_currdev(devname); } static void set_currdev_devsw(struct devsw *dev, int unit) { struct devdesc currdev; currdev.d_dev = dev; currdev.d_unit = unit; set_currdev_devdesc(&currdev); } static void set_currdev_pdinfo(pdinfo_t *dp) { /* * Disks are special: they have partitions. if the parent * pointer is non-null, we're a partition not a full disk * and we need to adjust currdev appropriately. */ if (dp->pd_devsw->dv_type == DEVT_DISK) { struct disk_devdesc currdev; currdev.dd.d_dev = dp->pd_devsw; if (dp->pd_parent == NULL) { currdev.dd.d_unit = dp->pd_unit; currdev.d_slice = D_SLICENONE; currdev.d_partition = D_PARTNONE; } else { currdev.dd.d_unit = dp->pd_parent->pd_unit; currdev.d_slice = dp->pd_unit; currdev.d_partition = D_PARTISGPT; /* Assumes GPT */ } set_currdev_devdesc((struct devdesc *)&currdev); } else { set_currdev_devsw(dp->pd_devsw, dp->pd_unit); } } static bool sanity_check_currdev(void) { struct stat st; return (stat("/boot/defaults/loader.conf", &st) == 0); } static bool probe_zfs_currdev(uint64_t guid) { struct zfs_devdesc currdev; char *bootonce; bool rv; currdev.dd.d_dev = &zfs_dev; currdev.dd.d_unit = 0; currdev.pool_guid = guid; currdev.root_guid = 0; set_currdev_devdesc((struct devdesc *)&currdev); rv = sanity_check_currdev(); if (rv) { bootonce = malloc(VDEV_PAD_SIZE); if (bootonce != NULL) { if (zfs_get_bootonce(&currdev, OS_BOOTONCE, bootonce, VDEV_PAD_SIZE) == 0) { printf("zfs bootonce: %s\n", bootonce); set_currdev(bootonce); setenv("zfs-bootonce", bootonce, 1); } free(bootonce); (void) zfs_attach_nvstore(&currdev); } else { printf("Failed to process bootonce data: %s\n", strerror(errno)); } } return (rv); } static bool try_as_currdev(pdinfo_t *pp) { uint64_t guid; /* * If there's a zpool on this device, try it as a ZFS * filesystem, which has somewhat different setup than all * other types of fs due to imperfect loader integration. * This all stems from ZFS being both a device (zpool) and * a filesystem, plus the boot env feature. */ if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) return (probe_zfs_currdev(guid)); /* * All other filesystems just need the pdinfo * initialized in the standard way. */ set_currdev_pdinfo(pp); return (sanity_check_currdev()); } static bool find_currdev(EFI_LOADED_IMAGE_PROTOCOL *img) { pdinfo_t *dp, *pp; EFI_DEVICE_PATH *devpath, *copy; EFI_HANDLE h; CHAR16 *text; struct devsw *dev; int unit; uint64_t extra; /* * Did efi_zfs_probe() detect the boot pool? If so, use the zpool * it found, if it's sane. ZFS is the only thing that looks for * disks and pools to boot. */ if (pool_guid != 0) { printf("Trying ZFS pool\n"); if (probe_zfs_currdev(pool_guid)) return (true); } /* * Try to find the block device by its handle based on the * image we're booting. If we can't find a sane partition, * search all the other partitions of the disk. We do not * search other disks because it's a violation of the UEFI * boot protocol to do so. We fail and let UEFI go on to * the next candidate. */ dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle); if (dp != NULL) { text = efi_devpath_name(dp->pd_devpath); if (text != NULL) { printf("Trying ESP: %S\n", text); efi_free_devpath_name(text); } set_currdev_pdinfo(dp); if (sanity_check_currdev()) return (true); if (dp->pd_parent != NULL) { dp = dp->pd_parent; STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { text = efi_devpath_name(pp->pd_devpath); if (text != NULL) { printf("And now the part: %S\n", text); efi_free_devpath_name(text); } /* * Roll up the ZFS special case * for those partitions that have * zpools on them */ if (try_as_currdev(pp)) return (true); } } } else { printf("Can't find device by handle\n"); } /* * Try the device handle from our loaded image first. If that * fails, use the device path from the loaded image and see if * any of the nodes in that path match one of the enumerated * handles. Currently, this handle list is only for netboot. */ if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) { set_currdev_devsw(dev, unit); if (sanity_check_currdev()) return (true); } copy = NULL; devpath = efi_lookup_image_devpath(IH); while (devpath != NULL) { h = efi_devpath_handle(devpath); if (h == NULL) break; free(copy); copy = NULL; if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { set_currdev_devsw(dev, unit); if (sanity_check_currdev()) return (true); } devpath = efi_lookup_devpath(h); if (devpath != NULL) { copy = efi_devpath_trim(devpath); devpath = copy; } } free(copy); return (false); } static bool interactive_interrupt(const char *msg) { time_t now, then, last; last = 0; now = then = getsecs(); printf("%s\n", msg); if (fail_timeout == -2) /* Always break to OK */ return (true); if (fail_timeout == -1) /* Never break to OK */ return (false); do { if (last != now) { printf("press any key to interrupt reboot " "in %d seconds\r", fail_timeout - (int)(now - then)); last = now; } /* XXX no pause or timeout wait for char */ if (ischar()) return (true); now = getsecs(); } while (now - then < fail_timeout); return (false); } static void setenv_int(const char *key, int val) { char buf[20]; (void) snprintf(buf, sizeof (buf), "%d", val); (void) setenv(key, buf, 1); } /* * Parse ConOut (the list of consoles active) and see if we can find a * serial port and/or a video port. It would be nice to also walk the * ACPI name space to map the UID for the serial port to a port. The * latter is especially hard. */ static int parse_uefi_con_out(void) { int how, rv; int vid_seen = 0, com_seen = 0, seen = 0; size_t sz; char buf[4096], *ep; EFI_DEVICE_PATH *node; ACPI_HID_DEVICE_PATH *acpi; UART_DEVICE_PATH *uart; bool pci_pending = false; how = 0; sz = sizeof (buf); rv = efi_global_getenv("ConOut", buf, &sz); if (rv != EFI_SUCCESS) rv = efi_global_getenv("ConOutDev", buf, &sz); if (rv != EFI_SUCCESS) { /* * If we don't have any ConOut default to video. * non-server systems may not have serial. */ goto out; } ep = buf + sz; node = (EFI_DEVICE_PATH *)buf; while ((char *)node < ep) { if (IsDevicePathEndType(node)) { if (pci_pending && vid_seen == 0) vid_seen = ++seen; } pci_pending = false; if (DevicePathType(node) == ACPI_DEVICE_PATH && (DevicePathSubType(node) == ACPI_DP || DevicePathSubType(node) == ACPI_EXTENDED_DP)) { /* Check for Serial node */ acpi = (void *)node; if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { setenv_int("efi_8250_uid", acpi->UID); com_seen = ++seen; } } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && DevicePathSubType(node) == MSG_UART_DP) { com_seen = ++seen; uart = (void *)node; setenv_int("efi_com_speed", uart->BaudRate); } else if (DevicePathType(node) == ACPI_DEVICE_PATH && DevicePathSubType(node) == ACPI_ADR_DP) { /* Check for AcpiAdr() Node for video */ vid_seen = ++seen; } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && DevicePathSubType(node) == HW_PCI_DP) { /* * Note, vmware fusion has a funky console device * PciRoot(0x0)/Pci(0xf,0x0) * which we can only detect at the end since we also * have to cope with: * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) * so only match it if it's last. */ pci_pending = true; } node = NextDevicePathNode(node); /* Skip the end node */ } /* * Truth table for RB_MULTIPLE | RB_SERIAL * Value Result * 0 Use only video console * RB_SERIAL Use only serial console * RB_MULTIPLE Use both video and serial console * (but video is primary so gets rc messages) * both Use both video and serial console * (but serial is primary so gets rc messages) * * Try to honor this as best we can. If only one of serial / video * found, then use that. Otherwise, use the first one we found. * This also implies if we found nothing, default to video. */ how = 0; if (vid_seen && com_seen) { how |= RB_MULTIPLE; if (com_seen < vid_seen) how |= RB_SERIAL; } else if (com_seen) how |= RB_SERIAL; out: return (how); } caddr_t ptov(uintptr_t x) { return ((caddr_t)x); } static int efi_serial_get_uid(EFI_DEVICE_PATH *devpath) { ACPI_HID_DEVICE_PATH *acpi; while (!IsDevicePathEnd(devpath)) { if (DevicePathType(devpath) == ACPI_DEVICE_PATH && (DevicePathSubType(devpath) == ACPI_DP || DevicePathSubType(devpath) == ACPI_EXTENDED_DP)) { acpi = (ACPI_HID_DEVICE_PATH *)devpath; if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { return (acpi->UID); } } devpath = NextDevicePathNode(devpath); } return (-1); } /* * Walk serialio protocol handle array and find index for serial console * device. The problem is, we check for acpi UID value, but we can not be sure, * if it will start from 0 or 1. */ static const char * uefi_serial_console(void) { EFI_STATUS status; EFI_HANDLE *handles; uint_t i, nhandles; unsigned long uid, lowest; char *env, *ep; env = getenv("efi_8250_uid"); if (env == NULL) return (NULL); (void) unsetenv("efi_8250_uid"); errno = 0; uid = strtoul(env, &ep, 10); if (errno != 0 || *ep != '\0') return (NULL); /* if uid is 0, this is first serial port */ if (uid == 0) return ("ttya"); status = efi_get_protocol_handles(&gEfiSerialIoProtocolGuid, &nhandles, &handles); if (EFI_ERROR(status)) { return (NULL); } lowest = 255; /* high enough value */ for (i = 0; i < nhandles; i++) { EFI_DEVICE_PATH *devpath; unsigned long _uid; devpath = efi_lookup_devpath(handles[i]); _uid = efi_serial_get_uid(devpath); if (_uid < lowest) lowest = _uid; } free(handles); switch (uid - lowest) { case 0: return ("ttya"); case 1: return ("ttyb"); case 2: return ("ttyc"); case 3: return ("ttyd"); } return (NULL); } EFI_STATUS main(int argc, CHAR16 *argv[]) { char var[128]; int i, j, howto; bool vargood; void *ptr; bool has_kbd; char *s; const char *serial; EFI_DEVICE_PATH *imgpath; CHAR16 *text; EFI_STATUS status; UINT16 boot_current; size_t sz; UINT16 boot_order[100]; archsw.arch_autoload = efi_autoload; archsw.arch_getdev = efi_getdev; archsw.arch_copyin = efi_copyin; archsw.arch_copyout = efi_copyout; archsw.arch_readin = efi_readin; archsw.arch_loadaddr = efi_loadaddr; archsw.arch_free_loadaddr = efi_free_loadaddr; #if defined(__amd64) || defined(__i386) archsw.arch_hypervisor = x86_hypervisor; #endif /* Note this needs to be set before ZFS init. */ archsw.arch_zfs_probe = efi_zfs_probe; /* Get our loaded image protocol interface structure. */ (void) OpenProtocolByHandle(IH, &gEfiLoadedImageProtocolGuid, (void **)&img); /* * XXX Chicken-and-egg problem; we want to have console output * early, but some console attributes may depend on reading from * eg. the boot device, which we can't do yet. We can use * printf() etc. once this is done. */ setenv("console", "text", 1); howto = parse_uefi_con_out(); serial = uefi_serial_console(); cons_probe(); efi_getsmap(); if ((s = getenv("efi_com_speed")) != NULL) { char *name; (void) snprintf(var, sizeof (var), "%s,8,n,1,-", s); if (asprintf(&name, "%s-mode", serial) > 0) { (void) setenv(name, var, 1); free(name); } if (asprintf(&name, "%s-spcr-mode", serial) > 0) { (void) setenv(name, var, 1); free(name); } (void) unsetenv("efi_com_speed"); } /* Init the time source */ efi_time_init(); /* * Initialise the block cache. Set the upper limit. */ bcache_init(32768, 512); has_kbd = has_keyboard(); /* * Parse the args to set the console settings, etc * iPXE may be setup to pass these in. Or the optional argument in the * boot environment was used to pass these arguments in (in which case * neither /boot.config nor /boot/config are consulted). * * Loop through the args, and for each one that contains an '=' that is * not the first character, add it to the environment. This allows * loader and kernel env vars to be passed on the command line. Convert * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though * this method is flawed for non-ASCII characters). */ for (i = 1; i < argc; i++) { if (argv[i][0] == '-') { for (j = 1; argv[i][j] != 0; j++) { int ch; ch = argv[i][j]; switch (ch) { case 'a': howto |= RB_ASKNAME; break; case 'd': howto |= RB_KDB; break; case 'D': howto |= RB_MULTIPLE; break; case 'h': howto |= RB_SERIAL; break; case 'm': howto |= RB_MUTE; break; case 'p': howto |= RB_PAUSE; break; case 'P': if (!has_kbd) { howto |= RB_SERIAL; howto |= RB_MULTIPLE; } break; case 'r': howto |= RB_DFLTROOT; break; case 's': howto |= RB_SINGLE; break; case 'S': if (argv[i][j + 1] == 0) { if (i + 1 == argc) { strncpy(var, "115200", sizeof (var)); } else { CHAR16 *ptr; ptr = &argv[i + 1][0]; cpy16to8(ptr, var, sizeof (var)); } i++; } else { cpy16to8(&argv[i][j + 1], var, sizeof (var)); } strncat(var, ",8,n,1,-", sizeof (var)); setenv("ttya-mode", var, 1); break; case 'v': howto |= RB_VERBOSE; break; } } } else { vargood = false; for (j = 0; argv[i][j] != 0; j++) { if (j == sizeof (var)) { vargood = false; break; } if (j > 0 && argv[i][j] == '=') vargood = true; var[j] = (char)argv[i][j]; } if (vargood) { var[j] = 0; putenv(var); } } } for (i = 0; howto_names[i].ev != NULL; i++) if (howto & howto_names[i].mask) setenv(howto_names[i].ev, "YES", 1); /* * XXX we need fallback to this stuff after looking at the ConIn, * ConOut and ConErr variables. */ if (howto & RB_MULTIPLE) { if (howto & RB_SERIAL) (void) snprintf(var, sizeof (var), "%s text", serial); else (void) snprintf(var, sizeof (var), "text %s", serial); } else if (howto & RB_SERIAL) { (void) snprintf(var, sizeof (var), "%s", serial); } else { (void) snprintf(var, sizeof (var), "text"); } (void) setenv("console", var, 1); if ((s = getenv("fail_timeout")) != NULL) fail_timeout = strtol(s, NULL, 10); /* * Scan the BLOCK IO MEDIA handles then * march through the device switch probing for things. */ if ((i = efipart_inithandles()) == 0) { for (i = 0; devsw[i] != NULL; i++) if (devsw[i]->dv_init != NULL) (devsw[i]->dv_init)(); } else printf("efipart_inithandles failed %d, expect failures", i); printf("Command line arguments:"); for (i = 0; i < argc; i++) { printf(" %S", argv[i]); } printf("\n"); printf("Image base: 0x%lx\n", (unsigned long)img->ImageBase); printf("EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, ST->Hdr.Revision & 0xffff); printf("EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); printf("\n%s", bootprog_info); /* Determine the devpath of our image so we can prefer it. */ text = efi_devpath_name(img->FilePath); if (text != NULL) { printf(" Load Path: %S\n", text); efi_setenv_illumos_wcs("LoaderPath", text); efi_free_devpath_name(text); } status = OpenProtocolByHandle(img->DeviceHandle, &gEfiDevicePathProtocolGuid, (void **)&imgpath); if (status == EFI_SUCCESS) { text = efi_devpath_name(imgpath); if (text != NULL) { printf(" Load Device: %S\n", text); efi_setenv_illumos_wcs("LoaderDev", text); efi_free_devpath_name(text); } } boot_current = 0; sz = sizeof (boot_current); efi_global_getenv("BootCurrent", &boot_current, &sz); printf(" BootCurrent: %04x\n", boot_current); sz = sizeof (boot_order); efi_global_getenv("BootOrder", &boot_order, &sz); printf(" BootOrder:"); for (i = 0; i < sz / sizeof (boot_order[0]); i++) printf(" %04x%s", boot_order[i], boot_order[i] == boot_current ? "[*]" : ""); printf("\n"); /* * Disable the watchdog timer. By default the boot manager sets * the timer to 5 minutes before invoking a boot option. If we * want to return to the boot manager, we have to disable the * watchdog timer and since we're an interactive program, we don't * want to wait until the user types "quit". The timer may have * fired by then. We don't care if this fails. It does not prevent * normal functioning in any way... */ BS->SetWatchdogTimer(0, 0, 0, NULL); /* * Try and find a good currdev based on the image that was booted. * It might be desirable here to have a short pause to allow falling * through to the boot loader instead of returning instantly to follow * the boot protocol and also allow an escape hatch for users wishing * to try something different. */ if (!find_currdev(img)) if (!interactive_interrupt("Failed to find bootable partition")) return (EFI_NOT_FOUND); autoload_font(false); /* Set up the font list for console. */ efi_init_environment(); bi_isadir(); /* set ISADIR */ acpi_detect(); if ((ptr = efi_get_table(&gEfiSmbios3TableGuid)) == NULL) ptr = efi_get_table(&gEfiSmbiosTableGuid); smbios_detect(ptr); interact(NULL); /* doesn't return */ return (EFI_SUCCESS); /* keep compiler happy */ } COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); static void fw_setup(void) { uint64_t os_indications; size_t size; EFI_STATUS status; size = sizeof (os_indications); status = efi_global_getenv("OsIndicationsSupported", &os_indications, &size); if (EFI_ERROR(status) || size != sizeof (os_indications) || (os_indications & EFI_OS_INDICATIONS_BOOT_TO_FW_UI) == 0) { printf("Booting to Firmware UI is not supported in " "this system."); for (int i = 0; i < 3; i++) { delay(1000 * 1000); /* 1 second */ if (ischar()) break; } return; } os_indications = EFI_OS_INDICATIONS_BOOT_TO_FW_UI; status = efi_global_setenv("OsIndications", &os_indications, sizeof (os_indications)); } static int command_reboot(int argc, char *argv[]) { int i, ch; bool fw = false; optind = 1; optreset = 1; while ((ch = getopt(argc, argv, "fh")) != -1) { switch (ch) { case 'f': fw = true; break; case 'h': printf("Usage: reboot [-f]\n"); return (CMD_OK); case '?': default: return (CMD_OK); } } if (fw || getenv("BOOT_TO_FW_UI") != NULL) fw_setup(); for (i = 0; devsw[i] != NULL; ++i) if (devsw[i]->dv_cleanup != NULL) (devsw[i]->dv_cleanup)(); RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); /* NOTREACHED */ return (CMD_ERROR); } COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); static int command_poweroff(int argc __unused, char *argv[] __unused) { int i; for (i = 0; devsw[i] != NULL; ++i) if (devsw[i]->dv_cleanup != NULL) (devsw[i]->dv_cleanup)(); RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); /* NOTREACHED */ return (CMD_ERROR); } COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); static int command_memmap(int argc __unused, char *argv[] __unused) { UINTN sz; EFI_MEMORY_DESCRIPTOR *map, *p; UINTN key, dsz; UINT32 dver; EFI_STATUS status; int i, ndesc; int rv = 0; char line[80]; sz = 0; status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); if (status != EFI_BUFFER_TOO_SMALL) { printf("Can't determine memory map size\n"); return (CMD_ERROR); } map = malloc(sz); status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); if (EFI_ERROR(status)) { printf("Can't read memory map\n"); return (CMD_ERROR); } ndesc = sz / dsz; snprintf(line, 80, "%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); pager_open(); rv = pager_output(line); if (rv) { pager_close(); return (CMD_OK); } for (i = 0, p = map; i < ndesc; i++, p = NextMemoryDescriptor(p, dsz)) { snprintf(line, 80, "%23s %012jx %012jx %08jx ", efi_memory_type(p->Type), p->PhysicalStart, p->VirtualStart, p->NumberOfPages); rv = pager_output(line); if (rv) break; if (p->Attribute & EFI_MEMORY_UC) printf("UC "); if (p->Attribute & EFI_MEMORY_WC) printf("WC "); if (p->Attribute & EFI_MEMORY_WT) printf("WT "); if (p->Attribute & EFI_MEMORY_WB) printf("WB "); if (p->Attribute & EFI_MEMORY_UCE) printf("UCE "); if (p->Attribute & EFI_MEMORY_WP) printf("WP "); if (p->Attribute & EFI_MEMORY_RP) printf("RP "); if (p->Attribute & EFI_MEMORY_XP) printf("XP "); if (p->Attribute & EFI_MEMORY_NV) printf("NV "); if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) printf("MR "); if (p->Attribute & EFI_MEMORY_RO) printf("RO "); rv = pager_output("\n"); if (rv) break; } pager_close(); return (CMD_OK); } COMMAND_SET(configuration, "configuration", "print configuration tables", command_configuration); static int command_configuration(int argc __unused, char *argv[] __unused) { UINTN i; char *name; printf("NumberOfTableEntries=%lu\n", (unsigned long)ST->NumberOfTableEntries); for (i = 0; i < ST->NumberOfTableEntries; i++) { EFI_GUID *guid; printf(" "); guid = &ST->ConfigurationTable[i].VendorGuid; if (efi_guid_to_name(guid, &name) == true) { printf(name); free(name); } else { printf("Error while translating UUID to name"); } printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); } return (CMD_OK); } COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); static int command_mode(int argc, char *argv[]) { UINTN cols, rows; unsigned int mode; int i; char *cp; EFI_STATUS status; SIMPLE_TEXT_OUTPUT_INTERFACE *conout; EFI_CONSOLE_CONTROL_SCREEN_MODE sm; if (plat_stdout_is_framebuffer()) sm = EfiConsoleControlScreenGraphics; else sm = EfiConsoleControlScreenText; conout = ST->ConOut; if (argc > 1) { mode = strtol(argv[1], &cp, 0); if (cp[0] != '\0') { printf("Invalid mode\n"); return (CMD_ERROR); } status = conout->QueryMode(conout, mode, &cols, &rows); if (EFI_ERROR(status)) { printf("invalid mode %d\n", mode); return (CMD_ERROR); } status = conout->SetMode(conout, mode); if (EFI_ERROR(status)) { printf("couldn't set mode %d\n", mode); return (CMD_ERROR); } plat_cons_update_mode(sm); return (CMD_OK); } printf("Current mode: %d\n", conout->Mode->Mode); for (i = 0; i <= conout->Mode->MaxMode; i++) { status = conout->QueryMode(conout, i, &cols, &rows); if (EFI_ERROR(status)) continue; printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, (unsigned)rows); } if (i != 0) printf("Select a mode with the command \"mode \"\n"); return (CMD_OK); } COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); static int command_lsefi(int argc __unused, char *argv[] __unused) { char *name; EFI_HANDLE *buffer = NULL; EFI_HANDLE handle; UINTN bufsz = 0, i, j; EFI_STATUS status; int ret = 0; status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); if (status != EFI_BUFFER_TOO_SMALL) { snprintf(command_errbuf, sizeof (command_errbuf), "unexpected error: %lld", (long long)status); return (CMD_ERROR); } if ((buffer = malloc(bufsz)) == NULL) { sprintf(command_errbuf, "out of memory"); return (CMD_ERROR); } status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); if (EFI_ERROR(status)) { free(buffer); snprintf(command_errbuf, sizeof (command_errbuf), "LocateHandle() error: %lld", (long long)status); return (CMD_ERROR); } pager_open(); for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { UINTN nproto = 0; EFI_GUID **protocols = NULL; EFI_DEVICE_PATH *dp; CHAR16 *text; handle = buffer[i]; printf("Handle %p", handle); if (pager_output("\n")) break; ret = 0; dp = efi_lookup_devpath(handle); if (dp != NULL) { text = efi_devpath_name(dp); if (text != NULL) { printf(" %S", text); efi_free_devpath_name(text); ret = pager_output("\n"); } efi_close_devpath(handle); } if (ret != 0) break; status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); if (EFI_ERROR(status)) { snprintf(command_errbuf, sizeof (command_errbuf), "ProtocolsPerHandle() error: %lld", (long long)status); continue; } for (j = 0; j < nproto; j++) { if (efi_guid_to_name(protocols[j], &name) == true) { printf(" %s", name); free(name); } else { printf("Error while translating UUID to name"); } if ((ret = pager_output("\n")) != 0) break; } BS->FreePool(protocols); if (ret != 0) break; } pager_close(); free(buffer); return (CMD_OK); } #ifdef LOADER_FDT_SUPPORT extern int command_fdt_internal(int argc, char *argv[]); /* * Since proper fdt command handling function is defined in fdt_loader_cmd.c, * and declaring it as extern is in contradiction with COMMAND_SET() macro * (which uses static pointer), we're defining wrapper function, which * calls the proper fdt handling routine. */ static int command_fdt(int argc, char *argv[]) { return (command_fdt_internal(argc, argv)); } COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); #endif /* * Chain load another efi loader. */ static int command_chain(int argc, char *argv[]) { EFI_HANDLE loaderhandle; EFI_LOADED_IMAGE_PROTOCOL *loaded_image; EFI_STATUS status; struct stat st; struct devdesc *dev; char *name, *path; void *buf; int fd; if (argc < 2) { command_errmsg = "wrong number of arguments"; return (CMD_ERROR); } name = argv[1]; if ((fd = open(name, O_RDONLY)) < 0) { command_errmsg = "no such file"; return (CMD_ERROR); } if (fstat(fd, &st) < -1) { command_errmsg = "stat failed"; close(fd); return (CMD_ERROR); } status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); if (status != EFI_SUCCESS) { command_errmsg = "failed to allocate buffer"; close(fd); return (CMD_ERROR); } if (read(fd, buf, st.st_size) != st.st_size) { command_errmsg = "error while reading the file"; (void) BS->FreePool(buf); close(fd); return (CMD_ERROR); } close(fd); status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); (void) BS->FreePool(buf); if (status != EFI_SUCCESS) { command_errmsg = "LoadImage failed"; return (CMD_ERROR); } status = OpenProtocolByHandle(loaderhandle, &gEfiLoadedImageProtocolGuid, (void **)&loaded_image); if (argc > 2) { int i, len = 0; CHAR16 *argp; for (i = 2; i < argc; i++) len += strlen(argv[i]) + 1; len *= sizeof (*argp); loaded_image->LoadOptions = argp = malloc(len); if (loaded_image->LoadOptions == NULL) { (void) BS->UnloadImage(loaded_image); return (CMD_ERROR); } loaded_image->LoadOptionsSize = len; for (i = 2; i < argc; i++) { char *ptr = argv[i]; while (*ptr) *(argp++) = *(ptr++); *(argp++) = ' '; } *(--argv) = 0; } if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { struct zfs_devdesc *z_dev; struct disk_devdesc *d_dev; pdinfo_t *hd, *pd; switch (dev->d_dev->dv_type) { case DEVT_ZFS: z_dev = (struct zfs_devdesc *)dev; loaded_image->DeviceHandle = efizfs_get_handle_by_guid(z_dev->pool_guid); break; case DEVT_NET: loaded_image->DeviceHandle = efi_find_handle(dev->d_dev, dev->d_unit); break; default: hd = efiblk_get_pdinfo(dev); if (STAILQ_EMPTY(&hd->pd_part)) { loaded_image->DeviceHandle = hd->pd_handle; break; } d_dev = (struct disk_devdesc *)dev; STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { /* * d_partition should be 255 */ if (pd->pd_unit == d_dev->d_slice) { loaded_image->DeviceHandle = pd->pd_handle; break; } } break; } } dev_cleanup(); status = BS->StartImage(loaderhandle, NULL, NULL); if (status != EFI_SUCCESS) { command_errmsg = "StartImage failed"; free(loaded_image->LoadOptions); loaded_image->LoadOptions = NULL; status = BS->UnloadImage(loaded_image); return (CMD_ERROR); } return (CMD_ERROR); /* not reached */ } COMMAND_SET(chain, "chain", "chain load file", command_chain);