/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2022 The FreeBSD Foundation * * This software was developed by Mark Johnston under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include "makefs.h" #include "zfs.h" #define VDEV_LABEL_SPACE \ ((off_t)(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) _Static_assert(VDEV_LABEL_SPACE <= MINDEVSIZE, ""); #define MINMSSIZE ((off_t)1 << 24) /* 16MB */ #define DFLTMSSIZE ((off_t)1 << 29) /* 512MB */ #define MAXMSSIZE ((off_t)1 << 34) /* 16GB */ #define INDIR_LEVELS 6 /* Indirect blocks are always 128KB. */ #define BLKPTR_PER_INDIR (MAXBLOCKSIZE / sizeof(blkptr_t)) struct dnode_cursor { char inddir[INDIR_LEVELS][MAXBLOCKSIZE]; off_t indloc; off_t indspace; dnode_phys_t *dnode; off_t dataoff; off_t datablksz; }; void zfs_prep_opts(fsinfo_t *fsopts) { zfs_opt_t *zfs = ecalloc(1, sizeof(*zfs)); const option_t zfs_options[] = { { '\0', "bootfs", &zfs->bootfs, OPT_STRPTR, 0, 0, "Bootable dataset" }, { '\0', "mssize", &zfs->mssize, OPT_INT64, MINMSSIZE, MAXMSSIZE, "Metaslab size" }, { '\0', "poolname", &zfs->poolname, OPT_STRPTR, 0, 0, "ZFS pool name" }, { '\0', "rootpath", &zfs->rootpath, OPT_STRPTR, 0, 0, "Prefix for all dataset mount points" }, { '\0', "ashift", &zfs->ashift, OPT_INT32, MINBLOCKSHIFT, MAXBLOCKSHIFT, "ZFS pool ashift" }, { '\0', "nowarn", &zfs->nowarn, OPT_BOOL, 0, 0, "Suppress warning about experimental ZFS support" }, { .name = NULL } }; STAILQ_INIT(&zfs->datasetdescs); fsopts->fs_specific = zfs; fsopts->fs_options = copy_opts(zfs_options); } int zfs_parse_opts(const char *option, fsinfo_t *fsopts) { zfs_opt_t *zfs; struct dataset_desc *dsdesc; char buf[BUFSIZ], *opt, *val; int rv; zfs = fsopts->fs_specific; opt = val = estrdup(option); opt = strsep(&val, "="); if (strcmp(opt, "fs") == 0) { if (val == NULL) errx(1, "invalid filesystem parameters `%s'", option); /* * Dataset descriptions will be parsed later, in dsl_init(). * Just stash them away for now. */ dsdesc = ecalloc(1, sizeof(*dsdesc)); dsdesc->params = estrdup(val); free(opt); STAILQ_INSERT_TAIL(&zfs->datasetdescs, dsdesc, next); return (1); } free(opt); rv = set_option(fsopts->fs_options, option, buf, sizeof(buf)); return (rv == -1 ? 0 : 1); } static void zfs_size_vdev(fsinfo_t *fsopts) { zfs_opt_t *zfs; off_t asize, mssize, vdevsize, vdevsize1; zfs = fsopts->fs_specific; assert(fsopts->maxsize != 0); assert(zfs->ashift != 0); /* * Figure out how big the vdev should be. */ vdevsize = rounddown2(fsopts->maxsize, 1 << zfs->ashift); if (vdevsize < MINDEVSIZE) errx(1, "maximum image size is too small"); if (vdevsize < fsopts->minsize || vdevsize > fsopts->maxsize) { errx(1, "image size bounds must be multiples of %d", 1 << zfs->ashift); } asize = vdevsize - VDEV_LABEL_SPACE; /* * Size metaslabs according to the following heuristic: * - provide at least 8 metaslabs, * - without using a metaslab size larger than 512MB. * This approximates what OpenZFS does without being complicated. In * practice we expect pools to be expanded upon first use, and OpenZFS * does not resize metaslabs in that case, so there is no right answer * here. In general we want to provide large metaslabs even if the * image size is small, and 512MB is a reasonable size for pools up to * several hundred gigabytes. * * The user may override this heuristic using the "-o mssize" option. */ mssize = zfs->mssize; if (mssize == 0) { mssize = MAX(MIN(asize / 8, DFLTMSSIZE), MINMSSIZE); if (!powerof2(mssize)) mssize = 1l << (flsll(mssize) - 1); } if (!powerof2(mssize)) errx(1, "metaslab size must be a power of 2"); /* * If we have some slop left over, try to cover it by resizing the vdev, * subject to the maxsize and minsize parameters. */ if (asize % mssize != 0) { vdevsize1 = rounddown2(asize, mssize) + VDEV_LABEL_SPACE; if (vdevsize1 < fsopts->minsize) vdevsize1 = roundup2(asize, mssize) + VDEV_LABEL_SPACE; if (vdevsize1 <= fsopts->maxsize) vdevsize = vdevsize1; } asize = vdevsize - VDEV_LABEL_SPACE; zfs->asize = asize; zfs->vdevsize = vdevsize; zfs->mssize = mssize; zfs->msshift = flsll(mssize) - 1; zfs->mscount = asize / mssize; } /* * Validate options and set some default values. */ static void zfs_check_opts(fsinfo_t *fsopts) { zfs_opt_t *zfs; zfs = fsopts->fs_specific; if (fsopts->offset != 0) errx(1, "unhandled offset option"); if (fsopts->maxsize == 0) errx(1, "an image size must be specified"); if (zfs->poolname == NULL) errx(1, "a pool name must be specified"); if (zfs->rootpath == NULL) easprintf(&zfs->rootpath, "/%s", zfs->poolname); if (zfs->rootpath[0] != '/') errx(1, "mountpoint `%s' must be absolute", zfs->rootpath); if (zfs->ashift == 0) zfs->ashift = 12; zfs_size_vdev(fsopts); } void zfs_cleanup_opts(fsinfo_t *fsopts) { struct dataset_desc *d, *tmp; zfs_opt_t *zfs; zfs = fsopts->fs_specific; free(zfs->rootpath); free(zfs->bootfs); free(__DECONST(void *, zfs->poolname)); STAILQ_FOREACH_SAFE(d, &zfs->datasetdescs, next, tmp) { free(d->params); free(d); } free(zfs); free(fsopts->fs_options); } static size_t nvlist_size(const nvlist_t *nvl) { return (sizeof(nvl->nv_header) + nvl->nv_size); } static void nvlist_copy(const nvlist_t *nvl, char *buf, size_t sz) { assert(sz >= nvlist_size(nvl)); memcpy(buf, &nvl->nv_header, sizeof(nvl->nv_header)); memcpy(buf + sizeof(nvl->nv_header), nvl->nv_data, nvl->nv_size); } static nvlist_t * pool_config_nvcreate(zfs_opt_t *zfs) { nvlist_t *featuresnv, *poolnv; poolnv = nvlist_create(NV_UNIQUE_NAME); nvlist_add_uint64(poolnv, ZPOOL_CONFIG_POOL_TXG, TXG); nvlist_add_uint64(poolnv, ZPOOL_CONFIG_VERSION, SPA_VERSION); nvlist_add_uint64(poolnv, ZPOOL_CONFIG_POOL_STATE, POOL_STATE_EXPORTED); nvlist_add_string(poolnv, ZPOOL_CONFIG_POOL_NAME, zfs->poolname); nvlist_add_uint64(poolnv, ZPOOL_CONFIG_POOL_GUID, zfs->poolguid); nvlist_add_uint64(poolnv, ZPOOL_CONFIG_TOP_GUID, zfs->vdevguid); nvlist_add_uint64(poolnv, ZPOOL_CONFIG_GUID, zfs->vdevguid); nvlist_add_uint64(poolnv, ZPOOL_CONFIG_VDEV_CHILDREN, 1); featuresnv = nvlist_create(NV_UNIQUE_NAME); nvlist_add_nvlist(poolnv, ZPOOL_CONFIG_FEATURES_FOR_READ, featuresnv); nvlist_destroy(featuresnv); return (poolnv); } static nvlist_t * pool_disk_vdev_config_nvcreate(zfs_opt_t *zfs) { nvlist_t *diskvdevnv; assert(zfs->objarrid != 0); diskvdevnv = nvlist_create(NV_UNIQUE_NAME); nvlist_add_string(diskvdevnv, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_ASHIFT, zfs->ashift); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_ASIZE, zfs->asize); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_GUID, zfs->vdevguid); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_ID, 0); nvlist_add_string(diskvdevnv, ZPOOL_CONFIG_PATH, "/dev/null"); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_WHOLE_DISK, 1); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_CREATE_TXG, TXG); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_METASLAB_ARRAY, zfs->objarrid); nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_METASLAB_SHIFT, zfs->msshift); return (diskvdevnv); } static nvlist_t * pool_root_vdev_config_nvcreate(zfs_opt_t *zfs) { nvlist_t *diskvdevnv, *rootvdevnv; diskvdevnv = pool_disk_vdev_config_nvcreate(zfs); rootvdevnv = nvlist_create(NV_UNIQUE_NAME); nvlist_add_uint64(rootvdevnv, ZPOOL_CONFIG_ID, 0); nvlist_add_uint64(rootvdevnv, ZPOOL_CONFIG_GUID, zfs->poolguid); nvlist_add_string(rootvdevnv, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); nvlist_add_uint64(rootvdevnv, ZPOOL_CONFIG_CREATE_TXG, TXG); nvlist_add_nvlist_array(rootvdevnv, ZPOOL_CONFIG_CHILDREN, &diskvdevnv, 1); nvlist_destroy(diskvdevnv); return (rootvdevnv); } /* * Create the pool's "config" object, which contains an nvlist describing pool * parameters and the vdev topology. It is similar but not identical to the * nvlist stored in vdev labels. The main difference is that vdev labels do not * describe the full vdev tree and in particular do not contain the "root" * meta-vdev. */ static void pool_init_objdir_config(zfs_opt_t *zfs, zfs_zap_t *objdir) { dnode_phys_t *dnode; nvlist_t *poolconfig, *vdevconfig; void *configbuf; uint64_t dnid; off_t configloc, configblksz; int error; dnode = objset_dnode_bonus_alloc(zfs->mos, DMU_OT_PACKED_NVLIST, DMU_OT_PACKED_NVLIST_SIZE, sizeof(uint64_t), &dnid); poolconfig = pool_config_nvcreate(zfs); vdevconfig = pool_root_vdev_config_nvcreate(zfs); nvlist_add_nvlist(poolconfig, ZPOOL_CONFIG_VDEV_TREE, vdevconfig); nvlist_destroy(vdevconfig); error = nvlist_export(poolconfig); if (error != 0) errc(1, error, "nvlist_export"); configblksz = nvlist_size(poolconfig); configloc = objset_space_alloc(zfs, zfs->mos, &configblksz); configbuf = ecalloc(1, configblksz); nvlist_copy(poolconfig, configbuf, configblksz); vdev_pwrite_dnode_data(zfs, dnode, configbuf, configblksz, configloc); dnode->dn_datablkszsec = configblksz >> MINBLOCKSHIFT; dnode->dn_flags = DNODE_FLAG_USED_BYTES; *(uint64_t *)DN_BONUS(dnode) = nvlist_size(poolconfig); zap_add_uint64(objdir, DMU_POOL_CONFIG, dnid); nvlist_destroy(poolconfig); free(configbuf); } /* * Add objects block pointer list objects, used for deferred frees. We don't do * anything with them, but they need to be present or OpenZFS will refuse to * import the pool. */ static void pool_init_objdir_bplists(zfs_opt_t *zfs __unused, zfs_zap_t *objdir) { uint64_t dnid; (void)objset_dnode_bonus_alloc(zfs->mos, DMU_OT_BPOBJ, DMU_OT_BPOBJ_HDR, BPOBJ_SIZE_V2, &dnid); zap_add_uint64(objdir, DMU_POOL_FREE_BPOBJ, dnid); (void)objset_dnode_bonus_alloc(zfs->mos, DMU_OT_BPOBJ, DMU_OT_BPOBJ_HDR, BPOBJ_SIZE_V2, &dnid); zap_add_uint64(objdir, DMU_POOL_SYNC_BPLIST, dnid); } /* * Add required feature metadata objects. We don't know anything about ZFS * features, so the objects are just empty ZAPs. */ static void pool_init_objdir_feature_maps(zfs_opt_t *zfs, zfs_zap_t *objdir) { dnode_phys_t *dnode; uint64_t dnid; dnode = objset_dnode_alloc(zfs->mos, DMU_OTN_ZAP_METADATA, &dnid); zap_add_uint64(objdir, DMU_POOL_FEATURES_FOR_READ, dnid); zap_write(zfs, zap_alloc(zfs->mos, dnode)); dnode = objset_dnode_alloc(zfs->mos, DMU_OTN_ZAP_METADATA, &dnid); zap_add_uint64(objdir, DMU_POOL_FEATURES_FOR_WRITE, dnid); zap_write(zfs, zap_alloc(zfs->mos, dnode)); dnode = objset_dnode_alloc(zfs->mos, DMU_OTN_ZAP_METADATA, &dnid); zap_add_uint64(objdir, DMU_POOL_FEATURE_DESCRIPTIONS, dnid); zap_write(zfs, zap_alloc(zfs->mos, dnode)); } static void pool_init_objdir_dsl(zfs_opt_t *zfs, zfs_zap_t *objdir) { zap_add_uint64(objdir, DMU_POOL_ROOT_DATASET, dsl_dir_id(zfs->rootdsldir)); } static void pool_init_objdir_poolprops(zfs_opt_t *zfs, zfs_zap_t *objdir) { dnode_phys_t *dnode; uint64_t id; dnode = objset_dnode_alloc(zfs->mos, DMU_OT_POOL_PROPS, &id); zap_add_uint64(objdir, DMU_POOL_PROPS, id); zfs->poolprops = zap_alloc(zfs->mos, dnode); } /* * Initialize the MOS object directory, the root of virtually all of the pool's * data and metadata. */ static void pool_init_objdir(zfs_opt_t *zfs) { zfs_zap_t *zap; dnode_phys_t *objdir; objdir = objset_dnode_lookup(zfs->mos, DMU_POOL_DIRECTORY_OBJECT); zap = zap_alloc(zfs->mos, objdir); pool_init_objdir_config(zfs, zap); pool_init_objdir_bplists(zfs, zap); pool_init_objdir_feature_maps(zfs, zap); pool_init_objdir_dsl(zfs, zap); pool_init_objdir_poolprops(zfs, zap); zap_write(zfs, zap); } /* * Initialize the meta-object set (MOS) and immediately write out several * special objects whose contents are already finalized, including the object * directory. * * Once the MOS is finalized, it'll look roughly like this: * * object directory (ZAP) * |-> vdev config object (nvlist) * |-> features for read * |-> features for write * |-> feature descriptions * |-> sync bplist * |-> free bplist * |-> pool properties * L-> root DSL directory * |-> DSL child directory (ZAP) * | |-> $MOS (DSL dir) * | | |-> child map * | | L-> props (ZAP) * | |-> $FREE (DSL dir) * | | |-> child map * | | L-> props (ZAP) * | |-> $ORIGIN (DSL dir) * | | |-> child map * | | |-> dataset * | | | L-> deadlist * | | |-> snapshot * | | | |-> deadlist * | | | L-> snapshot names * | | |-> props (ZAP) * | | L-> clones (ZAP) * | |-> dataset 1 (DSL dir) * | | |-> DSL dataset * | | | |-> snapshot names * | | | L-> deadlist * | | |-> child map * | | | L-> ... * | | L-> props * | |-> dataset 2 * | | L-> ... * | |-> ... * | L-> dataset n * |-> DSL root dataset * | |-> snapshot names * | L-> deadlist * L-> props (ZAP) * space map object array * |-> space map 1 * |-> space map 2 * |-> ... * L-> space map n (zfs->mscount) * * The space map object array is pointed to by the "msarray" property in the * pool configuration. */ static void pool_init(zfs_opt_t *zfs) { uint64_t dnid; zfs->poolguid = ((uint64_t)random() << 32) | random(); zfs->vdevguid = ((uint64_t)random() << 32) | random(); zfs->mos = objset_alloc(zfs, DMU_OST_META); (void)objset_dnode_alloc(zfs->mos, DMU_OT_OBJECT_DIRECTORY, &dnid); assert(dnid == DMU_POOL_DIRECTORY_OBJECT); (void)objset_dnode_alloc(zfs->mos, DMU_OT_OBJECT_ARRAY, &zfs->objarrid); dsl_init(zfs); pool_init_objdir(zfs); } static void pool_labels_write(zfs_opt_t *zfs) { uberblock_t *ub; vdev_label_t *label; nvlist_t *poolconfig, *vdevconfig; int error; label = ecalloc(1, sizeof(*label)); /* * Assemble the vdev configuration and store it in the label. */ poolconfig = pool_config_nvcreate(zfs); vdevconfig = pool_disk_vdev_config_nvcreate(zfs); nvlist_add_nvlist(poolconfig, ZPOOL_CONFIG_VDEV_TREE, vdevconfig); nvlist_destroy(vdevconfig); error = nvlist_export(poolconfig); if (error != 0) errc(1, error, "nvlist_export"); nvlist_copy(poolconfig, label->vl_vdev_phys.vp_nvlist, sizeof(label->vl_vdev_phys.vp_nvlist)); nvlist_destroy(poolconfig); /* * Fill out the uberblock. Just make each one the same. The embedded * checksum is calculated in vdev_label_write(). */ for (size_t uoff = 0; uoff < sizeof(label->vl_uberblock); uoff += (1 << zfs->ashift)) { ub = (uberblock_t *)(&label->vl_uberblock[0] + uoff); ub->ub_magic = UBERBLOCK_MAGIC; ub->ub_version = SPA_VERSION; ub->ub_txg = TXG; ub->ub_guid_sum = zfs->poolguid + zfs->vdevguid; ub->ub_timestamp = 0; ub->ub_software_version = SPA_VERSION; ub->ub_mmp_magic = MMP_MAGIC; ub->ub_mmp_delay = 0; ub->ub_mmp_config = 0; ub->ub_checkpoint_txg = 0; objset_root_blkptr_copy(zfs->mos, &ub->ub_rootbp); } /* * Write out four copies of the label: two at the beginning of the vdev * and two at the end. */ for (int i = 0; i < VDEV_LABELS; i++) vdev_label_write(zfs, i, label); free(label); } static void pool_fini(zfs_opt_t *zfs) { zap_write(zfs, zfs->poolprops); dsl_write(zfs); objset_write(zfs, zfs->mos); pool_labels_write(zfs); } struct dnode_cursor * dnode_cursor_init(zfs_opt_t *zfs, zfs_objset_t *os, dnode_phys_t *dnode, off_t size, off_t blksz) { struct dnode_cursor *c; uint64_t nbppindir, indlevel, ndatablks, nindblks; assert(dnode->dn_nblkptr == 1); assert(blksz <= MAXBLOCKSIZE); if (blksz == 0) { /* Must be between 1<ashift, powerof2(size) ? size : (1ul << flsll(size)))); } assert(powerof2(blksz)); /* * Do we need indirect blocks? Figure out how many levels are needed * (indlevel == 1 means no indirect blocks) and how much space is needed * (it has to be allocated up-front to break the dependency cycle * described in objset_write()). */ ndatablks = size == 0 ? 0 : howmany(size, blksz); nindblks = 0; for (indlevel = 1, nbppindir = 1; ndatablks > nbppindir; indlevel++) { nbppindir *= BLKPTR_PER_INDIR; nindblks += howmany(ndatablks, indlevel * nbppindir); } assert(indlevel < INDIR_LEVELS); dnode->dn_nlevels = (uint8_t)indlevel; dnode->dn_maxblkid = ndatablks > 0 ? ndatablks - 1 : 0; dnode->dn_datablkszsec = blksz >> MINBLOCKSHIFT; c = ecalloc(1, sizeof(*c)); if (nindblks > 0) { c->indspace = nindblks * MAXBLOCKSIZE; c->indloc = objset_space_alloc(zfs, os, &c->indspace); } c->dnode = dnode; c->dataoff = 0; c->datablksz = blksz; return (c); } static void _dnode_cursor_flush(zfs_opt_t *zfs, struct dnode_cursor *c, int levels) { blkptr_t *bp, *pbp; void *buf; uint64_t fill; off_t blkid, blksz, loc; assert(levels > 0); assert(levels <= c->dnode->dn_nlevels - 1); blksz = MAXBLOCKSIZE; blkid = (c->dataoff / c->datablksz) / BLKPTR_PER_INDIR; for (int level = 1; level <= levels; level++) { buf = c->inddir[level - 1]; if (level == c->dnode->dn_nlevels - 1) { pbp = &c->dnode->dn_blkptr[0]; } else { uint64_t iblkid; iblkid = blkid & (BLKPTR_PER_INDIR - 1); pbp = (blkptr_t *) &c->inddir[level][iblkid * sizeof(blkptr_t)]; } /* * Space for indirect blocks is allocated up-front; see the * comment in objset_write(). */ loc = c->indloc; c->indloc += blksz; assert(c->indspace >= blksz); c->indspace -= blksz; bp = buf; fill = 0; for (size_t i = 0; i < BLKPTR_PER_INDIR; i++) fill += BP_GET_FILL(&bp[i]); vdev_pwrite_dnode_indir(zfs, c->dnode, level, fill, buf, blksz, loc, pbp); memset(buf, 0, MAXBLOCKSIZE); blkid /= BLKPTR_PER_INDIR; } } blkptr_t * dnode_cursor_next(zfs_opt_t *zfs, struct dnode_cursor *c, off_t off) { off_t blkid, l1id; int levels; if (c->dnode->dn_nlevels == 1) { assert(off < MAXBLOCKSIZE); return (&c->dnode->dn_blkptr[0]); } assert(off % c->datablksz == 0); /* Do we need to flush any full indirect blocks? */ if (off > 0) { blkid = off / c->datablksz; for (levels = 0; levels < c->dnode->dn_nlevels - 1; levels++) { if (blkid % BLKPTR_PER_INDIR != 0) break; blkid /= BLKPTR_PER_INDIR; } if (levels > 0) _dnode_cursor_flush(zfs, c, levels); } c->dataoff = off; l1id = (off / c->datablksz) & (BLKPTR_PER_INDIR - 1); return ((blkptr_t *)&c->inddir[0][l1id * sizeof(blkptr_t)]); } void dnode_cursor_finish(zfs_opt_t *zfs, struct dnode_cursor *c) { int levels; levels = c->dnode->dn_nlevels - 1; if (levels > 0) _dnode_cursor_flush(zfs, c, levels); assert(c->indspace == 0); free(c); } void zfs_makefs(const char *image, const char *dir, fsnode *root, fsinfo_t *fsopts) { zfs_opt_t *zfs; int dirfd; zfs = fsopts->fs_specific; /* * Use a fixed seed to provide reproducible pseudo-random numbers for * on-disk structures when needed (e.g., GUIDs, ZAP hash salts). */ srandom(1729); zfs_check_opts(fsopts); if (!zfs->nowarn) { fprintf(stderr, "ZFS support is currently considered experimental. " "Do not use it for anything critical.\n"); } dirfd = open(dir, O_DIRECTORY | O_RDONLY); if (dirfd < 0) err(1, "open(%s)", dir); vdev_init(zfs, image); pool_init(zfs); fs_build(zfs, dirfd, root); pool_fini(zfs); vdev_fini(zfs); }