/* $NetBSD: mkfs.c,v 1.22 2011/10/09 22:30:13 christos Exp $ */ /* * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program * * Copyright (c) 1980, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include "makefs.h" #include "ffs.h" #include #include #include "ffs/ufs_bswap.h" #include "ffs/ufs_inode.h" #include "ffs/ffs_extern.h" #include "ffs/newfs_extern.h" #ifndef BBSIZE #define BBSIZE 8192 /* size of boot area, with label */ #endif static void initcg(int, time_t, const fsinfo_t *); static int ilog2(int); static int count_digits(int); /* * make file system for cylinder-group style file systems */ #define UMASK 0755 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) union { struct fs fs; char pad[SBLOCKSIZE]; } fsun; #define sblock fsun.fs struct csum *fscs; union { struct cg cg; char pad[FFS_MAXBSIZE]; } cgun; #define acg cgun.cg char *iobuf; int iobufsize; char writebuf[FFS_MAXBSIZE]; static int Oflag; /* format as an 4.3BSD file system */ static int64_t fssize; /* file system size */ static int sectorsize; /* bytes/sector */ static int fsize; /* fragment size */ static int bsize; /* block size */ static int maxbsize; /* maximum clustering */ static int maxblkspercg; static int minfree; /* free space threshold */ static int opt; /* optimization preference (space or time) */ static int density; /* number of bytes per inode */ static int maxcontig; /* max contiguous blocks to allocate */ static int maxbpg; /* maximum blocks per file in a cyl group */ static int bbsize; /* boot block size */ static int sbsize; /* superblock size */ static int avgfilesize; /* expected average file size */ static int avgfpdir; /* expected number of files per directory */ struct fs * ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp) { int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; int32_t cylno, i, csfrags; long long sizepb; void *space; int size; int nprintcols, printcolwidth; ffs_opt_t *ffs_opts = fsopts->fs_specific; Oflag = ffs_opts->version; fssize = fsopts->size / fsopts->sectorsize; sectorsize = fsopts->sectorsize; fsize = ffs_opts->fsize; bsize = ffs_opts->bsize; maxbsize = ffs_opts->maxbsize; maxblkspercg = ffs_opts->maxblkspercg; minfree = ffs_opts->minfree; opt = ffs_opts->optimization; density = ffs_opts->density; maxcontig = ffs_opts->maxcontig; maxbpg = ffs_opts->maxbpg; avgfilesize = ffs_opts->avgfilesize; avgfpdir = ffs_opts->avgfpdir; bbsize = BBSIZE; sbsize = SBLOCKSIZE; strlcpy(sblock.fs_volname, ffs_opts->label, sizeof(sblock.fs_volname)); if (Oflag == 0) { sblock.fs_old_inodefmt = FS_42INODEFMT; sblock.fs_maxsymlinklen = 0; sblock.fs_old_flags = 0; } else { sblock.fs_old_inodefmt = FS_44INODEFMT; sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN : UFS2_MAXSYMLINKLEN); sblock.fs_old_flags = FS_FLAGS_UPDATED; sblock.fs_flags = 0; } /* * Validate the given file system size. * Verify that its last block can actually be accessed. * Convert to file system fragment sized units. */ if (fssize <= 0) { printf("preposterous size %lld\n", (long long)fssize); exit(13); } ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); /* * collect and verify the filesystem density info */ sblock.fs_avgfilesize = avgfilesize; sblock.fs_avgfpdir = avgfpdir; if (sblock.fs_avgfilesize <= 0) printf("illegal expected average file size %d\n", sblock.fs_avgfilesize), exit(14); if (sblock.fs_avgfpdir <= 0) printf("illegal expected number of files per directory %d\n", sblock.fs_avgfpdir), exit(15); /* * collect and verify the block and fragment sizes */ sblock.fs_bsize = bsize; sblock.fs_fsize = fsize; if (!POWEROF2(sblock.fs_bsize)) { printf("block size must be a power of 2, not %d\n", sblock.fs_bsize); exit(16); } if (!POWEROF2(sblock.fs_fsize)) { printf("fragment size must be a power of 2, not %d\n", sblock.fs_fsize); exit(17); } if (sblock.fs_fsize < sectorsize) { printf("fragment size %d is too small, minimum is %d\n", sblock.fs_fsize, sectorsize); exit(18); } if (sblock.fs_bsize < MINBSIZE) { printf("block size %d is too small, minimum is %d\n", sblock.fs_bsize, MINBSIZE); exit(19); } if (sblock.fs_bsize > FFS_MAXBSIZE) { printf("block size %d is too large, maximum is %d\n", sblock.fs_bsize, FFS_MAXBSIZE); exit(19); } if (sblock.fs_bsize < sblock.fs_fsize) { printf("block size (%d) cannot be smaller than fragment size (%d)\n", sblock.fs_bsize, sblock.fs_fsize); exit(20); } if (maxbsize < bsize || !POWEROF2(maxbsize)) { sblock.fs_maxbsize = sblock.fs_bsize; printf("Extent size set to %d\n", sblock.fs_maxbsize); } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; printf("Extent size reduced to %d\n", sblock.fs_maxbsize); } else { sblock.fs_maxbsize = maxbsize; } sblock.fs_maxcontig = maxcontig; if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); } if (sblock.fs_maxcontig > 1) sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); sblock.fs_bmask = ~(sblock.fs_bsize - 1); sblock.fs_fmask = ~(sblock.fs_fsize - 1); sblock.fs_qbmask = ~sblock.fs_bmask; sblock.fs_qfmask = ~sblock.fs_fmask; for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) sblock.fs_bshift++; for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) sblock.fs_fshift++; sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) sblock.fs_fragshift++; if (sblock.fs_frag > MAXFRAG) { printf("fragment size %d is too small, " "minimum with block size %d is %d\n", sblock.fs_fsize, sblock.fs_bsize, sblock.fs_bsize / MAXFRAG); exit(21); } sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); sblock.fs_size = sblock.fs_providersize = fssize = dbtofsb(&sblock, fssize); if (Oflag <= 1) { sblock.fs_magic = FS_UFS1_MAGIC; sblock.fs_sblockloc = SBLOCK_UFS1; sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * sizeof (ufs1_daddr_t)); sblock.fs_old_inodefmt = FS_44INODEFMT; sblock.fs_old_cgoffset = 0; sblock.fs_old_cgmask = 0xffffffff; sblock.fs_old_size = sblock.fs_size; sblock.fs_old_rotdelay = 0; sblock.fs_old_rps = 60; sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; sblock.fs_old_cpg = 1; sblock.fs_old_interleave = 1; sblock.fs_old_trackskew = 0; sblock.fs_old_cpc = 0; sblock.fs_old_postblformat = 1; sblock.fs_old_nrpos = 1; } else { sblock.fs_magic = FS_UFS2_MAGIC; sblock.fs_sblockloc = SBLOCK_UFS2; sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * sizeof (ufs2_daddr_t)); } sblock.fs_sblkno = roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag)); sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { sizepb *= NINDIR(&sblock); sblock.fs_maxfilesize += sizepb; } /* * Calculate the number of blocks to put into each cylinder group. * * This algorithm selects the number of blocks per cylinder * group. The first goal is to have at least enough data blocks * in each cylinder group to meet the density requirement. Once * this goal is achieved we try to expand to have at least * 1 cylinder group. Once this goal is achieved, we pack as * many blocks into each cylinder group map as will fit. * * We start by calculating the smallest number of blocks that we * can put into each cylinder group. If this is too big, we reduce * the density until it fits. */ origdensity = density; for (;;) { fragsperinode = MAX(numfrags(&sblock, density), 1); minfpg = fragsperinode * INOPB(&sblock); if (minfpg > sblock.fs_size) minfpg = sblock.fs_size; sblock.fs_ipg = INOPB(&sblock); sblock.fs_fpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_fpg < minfpg) sblock.fs_fpg = minfpg; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); sblock.fs_fpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_fpg < minfpg) sblock.fs_fpg = minfpg; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) break; density -= sblock.fs_fsize; } if (density != origdensity) printf("density reduced from %d to %d\n", origdensity, density); if (maxblkspercg <= 0 || maxblkspercg >= fssize) maxblkspercg = fssize - 1; /* * Start packing more blocks into the cylinder group until * it cannot grow any larger, the number of cylinder groups * drops below 1, or we reach the size requested. */ for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); if (sblock.fs_size / sblock.fs_fpg < 1) break; if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) continue; if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) break; sblock.fs_fpg -= sblock.fs_frag; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); break; } /* * Check to be sure that the last cylinder group has enough blocks * to be viable. If it is too small, reduce the number of blocks * per cylinder group which will have the effect of moving more * blocks into the last cylinder group. */ optimalfpg = sblock.fs_fpg; for (;;) { sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); lastminfpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_size < lastminfpg) { printf("Filesystem size %lld < minimum size of %d\n", (long long)sblock.fs_size, lastminfpg); exit(28); } if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || sblock.fs_size % sblock.fs_fpg == 0) break; sblock.fs_fpg -= sblock.fs_frag; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); } if (optimalfpg != sblock.fs_fpg) printf("Reduced frags per cylinder group from %d to %d %s\n", optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); if (Oflag <= 1) { sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; sblock.fs_old_nsect = sblock.fs_old_spc; sblock.fs_old_npsect = sblock.fs_old_spc; sblock.fs_old_ncyl = sblock.fs_ncg; } /* * fill in remaining fields of the super block */ sblock.fs_csaddr = cgdmin(&sblock, 0); sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); /* * Setup memory for temporary in-core cylgroup summaries. * Cribbed from ffs_mountfs(). */ size = sblock.fs_cssize; if (sblock.fs_contigsumsize > 0) size += sblock.fs_ncg * sizeof(int32_t); space = ecalloc(1, size); sblock.fs_csp = space; space = (char *)space + sblock.fs_cssize; if (sblock.fs_contigsumsize > 0) { int32_t *lp; sblock.fs_maxcluster = lp = space; for (i = 0; i < sblock.fs_ncg; i++) *lp++ = sblock.fs_contigsumsize; } sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); if (sblock.fs_sbsize > SBLOCKSIZE) sblock.fs_sbsize = SBLOCKSIZE; sblock.fs_minfree = minfree; sblock.fs_maxcontig = maxcontig; sblock.fs_maxbpg = maxbpg; sblock.fs_optim = opt; sblock.fs_cgrotor = 0; sblock.fs_pendingblocks = 0; sblock.fs_pendinginodes = 0; sblock.fs_cstotal.cs_ndir = 0; sblock.fs_cstotal.cs_nbfree = 0; sblock.fs_cstotal.cs_nifree = 0; sblock.fs_cstotal.cs_nffree = 0; sblock.fs_fmod = 0; sblock.fs_ronly = 0; sblock.fs_state = 0; sblock.fs_clean = FS_ISCLEAN; sblock.fs_ronly = 0; sblock.fs_id[0] = tstamp; sblock.fs_id[1] = random(); sblock.fs_fsmnt[0] = '\0'; csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); sblock.fs_cstotal.cs_nbfree = fragstoblks(&sblock, sblock.fs_dsize) - howmany(csfrags, sblock.fs_frag); sblock.fs_cstotal.cs_nffree = fragnum(&sblock, sblock.fs_size) + (fragnum(&sblock, csfrags) > 0 ? sblock.fs_frag - fragnum(&sblock, csfrags) : 0); sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; sblock.fs_cstotal.cs_ndir = 0; sblock.fs_dsize -= csfrags; sblock.fs_time = tstamp; if (Oflag <= 1) { sblock.fs_old_time = tstamp; sblock.fs_old_dsize = sblock.fs_dsize; sblock.fs_old_csaddr = sblock.fs_csaddr; sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; } /* * Dump out summary information about file system. */ #define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("%s: %.1fMB (%lld sectors) block size %d, " "fragment size %d\n", fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, (long long)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize); printf("\tusing %d cylinder groups of %.2fMB, %d blks, " "%d inodes.\n", sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); #undef B2MBFACTOR /* * Now determine how wide each column will be, and calculate how * many columns will fit in a 76 char line. 76 is the width of the * subwindows in sysinst. */ printcolwidth = count_digits( fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); nprintcols = 76 / (printcolwidth + 2); /* * allocate space for superblock, cylinder group map, and * two sets of inode blocks. */ if (sblock.fs_bsize < SBLOCKSIZE) iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; else iobufsize = 4 * sblock.fs_bsize; iobuf = ecalloc(1, iobufsize); /* * Make a copy of the superblock into the buffer that we will be * writing out in each cylinder group. */ memcpy(writebuf, &sblock, sbsize); if (fsopts->needswap) ffs_sb_swap(&sblock, (struct fs*)writebuf); memcpy(iobuf, writebuf, SBLOCKSIZE); printf("super-block backups (for fsck -b #) at:"); for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { initcg(cylno, tstamp, fsopts); if (cylno % nprintcols == 0) printf("\n"); printf(" %*lld,", printcolwidth, (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno))); fflush(stdout); } printf("\n"); /* * Now construct the initial file system, * then write out the super-block. */ sblock.fs_time = tstamp; if (Oflag <= 1) { sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; } if (fsopts->needswap) sblock.fs_flags |= FS_SWAPPED; ffs_write_superblock(&sblock, fsopts); return (&sblock); } /* * Write out the superblock and its duplicates, * and the cylinder group summaries */ void ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) { int cylno, size, blks, i, saveflag; void *space; char *wrbuf; saveflag = fs->fs_flags & FS_INTERNAL; fs->fs_flags &= ~FS_INTERNAL; memcpy(writebuf, &sblock, sbsize); if (fsopts->needswap) ffs_sb_swap(fs, (struct fs*)writebuf); ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts); /* Write out the duplicate super blocks */ for (cylno = 0; cylno < fs->fs_ncg; cylno++) ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), sbsize, writebuf, fsopts); /* Write out the cylinder group summaries */ size = fs->fs_cssize; blks = howmany(size, fs->fs_fsize); space = (void *)fs->fs_csp; wrbuf = emalloc(size); for (i = 0; i < blks; i+= fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; if (fsopts->needswap) ffs_csum_swap((struct csum *)space, (struct csum *)wrbuf, size); else memcpy(wrbuf, space, (u_int)size); ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); space = (char *)space + size; } free(wrbuf); fs->fs_flags |= saveflag; } /* * Initialize a cylinder group. */ static void initcg(int cylno, time_t utime, const fsinfo_t *fsopts) { daddr_t cbase, dmax; int32_t i, j, d, dlower, dupper, blkno; struct ufs1_dinode *dp1; struct ufs2_dinode *dp2; int start; /* * Determine block bounds for cylinder group. * Allow space for super block summary information in first * cylinder group. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); memset(&acg, 0, sblock.fs_cgsize); acg.cg_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; acg.cg_niblk = sblock.fs_ipg; acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); if (Oflag == 2) { acg.cg_iusedoff = start; } else { if (cylno == sblock.fs_ncg - 1) acg.cg_old_ncyl = howmany(acg.cg_ndblk, sblock.fs_fpg / sblock.fs_old_cpg); else acg.cg_old_ncyl = sblock.fs_old_cpg; acg.cg_old_time = acg.cg_time; acg.cg_time = 0; acg.cg_old_niblk = acg.cg_niblk; acg.cg_niblk = 0; acg.cg_initediblk = 0; acg.cg_old_btotoff = start; acg.cg_old_boff = acg.cg_old_btotoff + sblock.fs_old_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_old_boff + sblock.fs_old_cpg * sizeof(u_int16_t); } acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); if (sblock.fs_contigsumsize <= 0) { acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); } else { acg.cg_clustersumoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t); acg.cg_clustersumoff = roundup(acg.cg_clustersumoff, sizeof(int32_t)); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); } if (acg.cg_nextfreeoff > sblock.fs_cgsize) { printf("Panic: cylinder group too big\n"); exit(37); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) for (i = 0; i < UFS_ROOTINO; i++) { setbit(cg_inosused_swap(&acg, 0), i); acg.cg_cs.cs_nifree--; } if (cylno > 0) { /* * In cylno 0, beginning space is reserved * for boot and super blocks. */ for (d = 0, blkno = 0; d < dlower;) { ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree_swap(&acg, 0), blkno); acg.cg_cs.cs_nbfree++; d += sblock.fs_frag; blkno++; } } if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree_swap(&acg, 0), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper, blkno = dupper >> sblock.fs_fragshift; d + sblock.fs_frag <= acg.cg_ndblk; ) { ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree_swap(&acg, 0), blkno); acg.cg_cs.cs_nbfree++; d += sblock.fs_frag; blkno++; } if (d < acg.cg_ndblk) { acg.cg_frsum[acg.cg_ndblk - d]++; for (; d < acg.cg_ndblk; d++) { setbit(cg_blksfree_swap(&acg, 0), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum_swap(&acg, 0); u_char *mapp = cg_clustersfree_swap(&acg, 0); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) { run++; } else if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; run = 0; } if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; } } sblock.fs_cs(&sblock, cylno) = acg.cg_cs; /* * Write out the duplicate super block, the cylinder group map * and two blocks worth of inodes in a single write. */ start = MAX(sblock.fs_bsize, SBLOCKSIZE); memcpy(&iobuf[start], &acg, sblock.fs_cgsize); if (fsopts->needswap) ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock); start += sblock.fs_bsize; dp1 = (struct ufs1_dinode *)(&iobuf[start]); dp2 = (struct ufs2_dinode *)(&iobuf[start]); for (i = 0; i < acg.cg_initediblk; i++) { if (sblock.fs_magic == FS_UFS1_MAGIC) { /* No need to swap, it'll stay random */ dp1->di_gen = random(); dp1++; } else { dp2->di_gen = random(); dp2++; } } ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf, fsopts); /* * For the old file system, we have to initialize all the inodes. */ if (Oflag <= 1) { for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { dp1 = (struct ufs1_dinode *)(&iobuf[start]); for (j = 0; j < INOPB(&sblock); j++) { dp1->di_gen = random(); dp1++; } ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), sblock.fs_bsize, &iobuf[start], fsopts); } } } /* * read a block from the file system */ void ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) { int n; off_t offset; offset = bno; offset *= fsopts->sectorsize; if (lseek(fsopts->fd, offset, SEEK_SET) < 0) err(1, "%s: seek error for sector %lld", __func__, (long long)bno); n = read(fsopts->fd, bf, size); if (n == -1) { abort(); err(1, "%s: read error bno %lld size %d", __func__, (long long)bno, size); } else if (n != size) errx(1, "%s: read error for sector %lld", __func__, (long long)bno); } /* * write a block to the file system */ void ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) { int n; off_t offset; offset = bno; offset *= fsopts->sectorsize; if (lseek(fsopts->fd, offset, SEEK_SET) < 0) err(1, "%s: seek error for sector %lld", __func__, (long long)bno ); n = write(fsopts->fd, bf, size); if (n == -1) err(1, "%s: write error for sector %lld", __func__, (long long)bno); else if (n != size) errx(1, "%s: write error for sector %lld", __func__, (long long)bno); } /* Determine how many digits are needed to print a given integer */ static int count_digits(int num) { int ndig; for(ndig = 1; num > 9; num /=10, ndig++); return (ndig); } static int ilog2(int val) { u_int n; for (n = 0; n < sizeof(n) * CHAR_BIT; n++) if (1 << n == val) return (n); errx(1, "%s: %d is not a power of 2", __func__, val); }