/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2003 Poul-Henning Kamp * Copyright (c) 2015 Spectra Logic Corporation * Copyright (c) 2017 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NAIO 128 #define MAXTX (8*1024*1024) #define MEGATX (1024*1024) static void usage(void) { fprintf(stderr, "usage: diskinfo [-ciStvw] disk ...\n" " diskinfo [-l] -p disk ...\n" " diskinfo [-l] -s disk ...\n" ); exit (1); } static int opt_c, opt_i, opt_l, opt_p, opt_s, opt_S, opt_t, opt_v, opt_w; static bool candelete(int fd); static void speeddisk(int fd, off_t mediasize, u_int sectorsize); static void commandtime(int fd, off_t mediasize, u_int sectorsize); static void iopsbench(int fd, off_t mediasize, u_int sectorsize); static void rotationrate(int fd, char *buf, size_t buflen); static void slogbench(int fd, int isreg, off_t mediasize, u_int sectorsize); static int zonecheck(int fd, uint32_t *zone_mode, char *zone_str, size_t zone_str_len); static uint8_t *buf; int main(int argc, char **argv) { struct stat sb; int i, ch, fd, error, exitval = 0; char tstr[BUFSIZ], ident[DISK_IDENT_SIZE], physpath[MAXPATHLEN]; char zone_desc[64]; char rrate[64]; struct diocgattr_arg arg; off_t mediasize, stripesize, stripeoffset; u_int sectorsize, fwsectors, fwheads, zoned = 0, isreg; uint32_t zone_mode; while ((ch = getopt(argc, argv, "cilpsStvw")) != -1) { switch (ch) { case 'c': opt_c = 1; opt_v = 1; break; case 'i': opt_i = 1; opt_v = 1; break; case 'l': opt_l = 1; break; case 'p': opt_p = 1; break; case 's': opt_s = 1; break; case 'S': opt_S = 1; opt_v = 1; break; case 't': opt_t = 1; opt_v = 1; break; case 'v': opt_v = 1; break; case 'w': opt_w = 1; break; default: usage(); } } argc -= optind; argv += optind; if (argc < 1) usage(); if ((opt_p && opt_s) || ((opt_p || opt_s) && (opt_c || opt_i || opt_t || opt_v))) { warnx("-p or -s cannot be used with other options"); usage(); } if (opt_S && !opt_w) { warnx("-S require also -w"); usage(); } if (posix_memalign((void **)&buf, PAGE_SIZE, MAXTX)) errx(1, "Can't allocate memory buffer"); for (i = 0; i < argc; i++) { fd = open(argv[i], (opt_w ? O_RDWR : O_RDONLY) | O_DIRECT); if (fd < 0 && errno == ENOENT && *argv[i] != '/') { snprintf(tstr, sizeof(tstr), "%s%s", _PATH_DEV, argv[i]); fd = open(tstr, O_RDONLY); } if (fd < 0) { warn("%s", argv[i]); exit(1); } error = fstat(fd, &sb); if (error != 0) { warn("cannot stat %s", argv[i]); exitval = 1; goto out; } isreg = S_ISREG(sb.st_mode); if (isreg) { mediasize = sb.st_size; sectorsize = S_BLKSIZE; fwsectors = 0; fwheads = 0; stripesize = sb.st_blksize; stripeoffset = 0; if (opt_p || opt_s) { warnx("-p and -s only operate on physical devices: %s", argv[i]); goto out; } } else { if (opt_l && (opt_p || opt_s)) { printf("%s\t", argv[i]); } if (opt_p) { if (ioctl(fd, DIOCGPHYSPATH, physpath) == 0) { printf("%s\n", physpath); } else { warnx("Failed to determine physpath for: %s", argv[i]); } goto out; } if (opt_s) { if (ioctl(fd, DIOCGIDENT, ident) == 0) { printf("%s\n", ident); } else { warnx("Failed to determine serial number for: %s", argv[i]); } goto out; } error = ioctl(fd, DIOCGMEDIASIZE, &mediasize); if (error) { warnx("%s: ioctl(DIOCGMEDIASIZE) failed, probably not a disk.", argv[i]); exitval = 1; goto out; } error = ioctl(fd, DIOCGSECTORSIZE, §orsize); if (error) { warnx("%s: ioctl(DIOCGSECTORSIZE) failed, probably not a disk.", argv[i]); exitval = 1; goto out; } error = ioctl(fd, DIOCGFWSECTORS, &fwsectors); if (error) fwsectors = 0; error = ioctl(fd, DIOCGFWHEADS, &fwheads); if (error) fwheads = 0; error = ioctl(fd, DIOCGSTRIPESIZE, &stripesize); if (error) stripesize = 0; error = ioctl(fd, DIOCGSTRIPEOFFSET, &stripeoffset); if (error) stripeoffset = 0; error = zonecheck(fd, &zone_mode, zone_desc, sizeof(zone_desc)); if (error == 0) zoned = 1; } if (!opt_v) { printf("%s", argv[i]); printf("\t%u", sectorsize); printf("\t%jd", (intmax_t)mediasize); printf("\t%jd", (intmax_t)mediasize/sectorsize); printf("\t%jd", (intmax_t)stripesize); printf("\t%jd", (intmax_t)stripeoffset); if (fwsectors != 0 && fwheads != 0) { printf("\t%jd", (intmax_t)mediasize / (fwsectors * fwheads * sectorsize)); printf("\t%u", fwheads); printf("\t%u", fwsectors); } } else { humanize_number(tstr, 5, (int64_t)mediasize, "", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); printf("%s\n", argv[i]); printf("\t%-12u\t# sectorsize\n", sectorsize); printf("\t%-12jd\t# mediasize in bytes (%s)\n", (intmax_t)mediasize, tstr); printf("\t%-12jd\t# mediasize in sectors\n", (intmax_t)mediasize/sectorsize); printf("\t%-12jd\t# stripesize\n", stripesize); printf("\t%-12jd\t# stripeoffset\n", stripeoffset); if (fwsectors != 0 && fwheads != 0) { printf("\t%-12jd\t# Cylinders according to firmware.\n", (intmax_t)mediasize / (fwsectors * fwheads * sectorsize)); printf("\t%-12u\t# Heads according to firmware.\n", fwheads); printf("\t%-12u\t# Sectors according to firmware.\n", fwsectors); } strlcpy(arg.name, "GEOM::descr", sizeof(arg.name)); arg.len = sizeof(arg.value.str); if (ioctl(fd, DIOCGATTR, &arg) == 0) printf("\t%-12s\t# Disk descr.\n", arg.value.str); if (ioctl(fd, DIOCGIDENT, ident) == 0) printf("\t%-12s\t# Disk ident.\n", ident); strlcpy(arg.name, "GEOM::attachment", sizeof(arg.name)); arg.len = sizeof(arg.value.str); if (ioctl(fd, DIOCGATTR, &arg) == 0) printf("\t%-12s\t# Attachment\n", arg.value.str); if (ioctl(fd, DIOCGPHYSPATH, physpath) == 0) printf("\t%-12s\t# Physical path\n", physpath); printf("\t%-12s\t# TRIM/UNMAP support\n", candelete(fd) ? "Yes" : "No"); rotationrate(fd, rrate, sizeof(rrate)); printf("\t%-12s\t# Rotation rate in RPM\n", rrate); if (zoned != 0) printf("\t%-12s\t# Zone Mode\n", zone_desc); } printf("\n"); if (opt_c) commandtime(fd, mediasize, sectorsize); if (opt_t) speeddisk(fd, mediasize, sectorsize); if (opt_i) iopsbench(fd, mediasize, sectorsize); if (opt_S) slogbench(fd, isreg, mediasize, sectorsize); out: close(fd); } free(buf); exit (exitval); } static bool candelete(int fd) { struct diocgattr_arg arg; strlcpy(arg.name, "GEOM::candelete", sizeof(arg.name)); arg.len = sizeof(arg.value.i); if (ioctl(fd, DIOCGATTR, &arg) == 0) return (arg.value.i != 0); else return (false); } static void rotationrate(int fd, char *rate, size_t buflen) { struct diocgattr_arg arg; int ret; strlcpy(arg.name, "GEOM::rotation_rate", sizeof(arg.name)); arg.len = sizeof(arg.value.u16); ret = ioctl(fd, DIOCGATTR, &arg); if (ret < 0 || arg.value.u16 == DISK_RR_UNKNOWN) snprintf(rate, buflen, "Unknown"); else if (arg.value.u16 == DISK_RR_NON_ROTATING) snprintf(rate, buflen, "%d", 0); else if (arg.value.u16 >= DISK_RR_MIN && arg.value.u16 <= DISK_RR_MAX) snprintf(rate, buflen, "%d", arg.value.u16); else snprintf(rate, buflen, "Invalid"); } static void rdsect(int fd, off_t blockno, u_int sectorsize) { int error; if (lseek(fd, (off_t)blockno * sectorsize, SEEK_SET) == -1) err(1, "lseek"); error = read(fd, buf, sectorsize); if (error == -1) err(1, "read"); if (error != (int)sectorsize) errx(1, "disk too small for test."); } static void rdmega(int fd) { int error; error = read(fd, buf, MEGATX); if (error == -1) err(1, "read"); if (error != MEGATX) errx(1, "disk too small for test."); } static struct timeval tv1, tv2; static void T0(void) { fflush(stdout); sync(); sleep(1); sync(); sync(); gettimeofday(&tv1, NULL); } static double delta_t(void) { double dt; gettimeofday(&tv2, NULL); dt = (tv2.tv_usec - tv1.tv_usec) / 1e6; dt += (tv2.tv_sec - tv1.tv_sec); return (dt); } static void TN(int count) { double dt; dt = delta_t(); printf("%5d iter in %10.6f sec = %8.3f msec\n", count, dt, dt * 1000.0 / count); } static void TR(double count) { double dt; dt = delta_t(); printf("%8.0f kbytes in %10.6f sec = %8.0f kbytes/sec\n", count, dt, count / dt); } static void TI(double count) { double dt; dt = delta_t(); printf("%8.0f ops in %10.6f sec = %8.0f IOPS\n", count, dt, count / dt); } static void TS(u_int size, int count) { double dt; dt = delta_t(); printf("%8.1f usec/IO = %8.1f Mbytes/s\n", dt * 1000000.0 / count, (double)size * count / dt / (1024 * 1024)); } static void speeddisk(int fd, off_t mediasize, u_int sectorsize) { int bulk, i; off_t b0, b1, sectorcount, step; /* * Drives smaller than 1MB produce negative sector numbers, * as do 2048 or fewer sectors. */ sectorcount = mediasize / sectorsize; if (mediasize < 1024 * 1024 || sectorcount < 2048) return; step = 1ULL << (flsll(sectorcount / (4 * 200)) - 1); if (step > 16384) step = 16384; bulk = mediasize / (1024 * 1024); if (bulk > 100) bulk = 100; printf("Seek times:\n"); printf("\tFull stroke:\t"); b0 = 0; b1 = sectorcount - step; T0(); for (i = 0; i < 125; i++) { rdsect(fd, b0, sectorsize); b0 += step; rdsect(fd, b1, sectorsize); b1 -= step; } TN(250); printf("\tHalf stroke:\t"); b0 = sectorcount / 4; b1 = b0 + sectorcount / 2; T0(); for (i = 0; i < 125; i++) { rdsect(fd, b0, sectorsize); b0 += step; rdsect(fd, b1, sectorsize); b1 += step; } TN(250); printf("\tQuarter stroke:\t"); b0 = sectorcount / 4; b1 = b0 + sectorcount / 4; T0(); for (i = 0; i < 250; i++) { rdsect(fd, b0, sectorsize); b0 += step; rdsect(fd, b1, sectorsize); b1 += step; } TN(500); printf("\tShort forward:\t"); b0 = sectorcount / 2; T0(); for (i = 0; i < 400; i++) { rdsect(fd, b0, sectorsize); b0 += step; } TN(400); printf("\tShort backward:\t"); b0 = sectorcount / 2; T0(); for (i = 0; i < 400; i++) { rdsect(fd, b0, sectorsize); b0 -= step; } TN(400); printf("\tSeq outer:\t"); b0 = 0; T0(); for (i = 0; i < 2048; i++) { rdsect(fd, b0, sectorsize); b0++; } TN(2048); printf("\tSeq inner:\t"); b0 = sectorcount - 2048; T0(); for (i = 0; i < 2048; i++) { rdsect(fd, b0, sectorsize); b0++; } TN(2048); printf("\nTransfer rates:\n"); printf("\toutside: "); rdsect(fd, 0, sectorsize); T0(); for (i = 0; i < bulk; i++) { rdmega(fd); } TR(bulk * 1024); printf("\tmiddle: "); b0 = sectorcount / 2 - bulk * (1024*1024 / sectorsize) / 2 - 1; rdsect(fd, b0, sectorsize); T0(); for (i = 0; i < bulk; i++) { rdmega(fd); } TR(bulk * 1024); printf("\tinside: "); b0 = sectorcount - bulk * (1024*1024 / sectorsize) - 1; rdsect(fd, b0, sectorsize); T0(); for (i = 0; i < bulk; i++) { rdmega(fd); } TR(bulk * 1024); printf("\n"); } static void commandtime(int fd, off_t mediasize, u_int sectorsize) { double dtmega, dtsector; int i; printf("I/O command overhead:\n"); i = mediasize; rdsect(fd, 0, sectorsize); T0(); for (i = 0; i < 10; i++) rdmega(fd); dtmega = delta_t(); printf("\ttime to read 10MB block %10.6f sec\t= %8.3f msec/sector\n", dtmega, dtmega*100/2048); rdsect(fd, 0, sectorsize); T0(); for (i = 0; i < 20480; i++) rdsect(fd, 0, sectorsize); dtsector = delta_t(); printf("\ttime to read 20480 sectors %10.6f sec\t= %8.3f msec/sector\n", dtsector, dtsector*100/2048); printf("\tcalculated command overhead\t\t\t= %8.3f msec/sector\n", (dtsector - dtmega)*100/2048); printf("\n"); } static void iops(int fd, off_t mediasize, u_int sectorsize) { struct aiocb aios[NAIO], *aiop; ssize_t ret; off_t sectorcount; int error, i, queued, completed; sectorcount = mediasize / sectorsize; for (i = 0; i < NAIO; i++) { aiop = &(aios[i]); bzero(aiop, sizeof(*aiop)); aiop->aio_buf = malloc(sectorsize); if (aiop->aio_buf == NULL) err(1, "malloc"); } T0(); for (i = 0; i < NAIO; i++) { aiop = &(aios[i]); aiop->aio_fildes = fd; aiop->aio_offset = (random() % (sectorcount)) * sectorsize; aiop->aio_nbytes = sectorsize; error = aio_read(aiop); if (error != 0) err(1, "aio_read"); } queued = i; completed = 0; for (;;) { ret = aio_waitcomplete(&aiop, NULL); if (ret < 0) err(1, "aio_waitcomplete"); if (ret != (ssize_t)sectorsize) errx(1, "short read"); completed++; if (delta_t() < 3.0) { aiop->aio_fildes = fd; aiop->aio_offset = (random() % (sectorcount)) * sectorsize; aiop->aio_nbytes = sectorsize; error = aio_read(aiop); if (error != 0) err(1, "aio_read"); queued++; } else if (completed == queued) { break; } } TI(completed); } static void iopsbench(int fd, off_t mediasize, u_int sectorsize) { printf("Asynchronous random reads:\n"); printf("\tsectorsize: "); iops(fd, mediasize, sectorsize); if (sectorsize != 4096) { printf("\t4 kbytes: "); iops(fd, mediasize, 4096); } printf("\t32 kbytes: "); iops(fd, mediasize, 32 * 1024); printf("\t128 kbytes: "); iops(fd, mediasize, 128 * 1024); printf("\t1024 kbytes: "); iops(fd, mediasize, 1024 * 1024); printf("\n"); } #define MAXIO (128*1024) #define MAXIOS (MAXTX / MAXIO) static void parwrite(int fd, size_t size, off_t off) { struct aiocb aios[MAXIOS]; off_t o; int n, error; struct aiocb *aiop; // if size > MAXIO, use AIO to write n - 1 pieces in parallel for (n = 0, o = 0; size > MAXIO; n++, size -= MAXIO, o += MAXIO) { aiop = &aios[n]; bzero(aiop, sizeof(*aiop)); aiop->aio_buf = &buf[o]; aiop->aio_fildes = fd; aiop->aio_offset = off + o; aiop->aio_nbytes = MAXIO; error = aio_write(aiop); if (error != 0) err(EX_IOERR, "AIO write submit error"); } // Use synchronous writes for the runt of size <= MAXIO error = pwrite(fd, &buf[o], size, off + o); if (error < 0) err(EX_IOERR, "Sync write error"); for (; n > 0; n--) { error = aio_waitcomplete(&aiop, NULL); if (error < 0) err(EX_IOERR, "AIO write wait error"); } } static void slogbench(int fd, int isreg, off_t mediasize, u_int sectorsize) { off_t off; u_int size; int error, n, N, nowritecache = 0; printf("Synchronous random writes:\n"); for (size = sectorsize; size <= MAXTX; size *= 2) { printf("\t%4.4g kbytes: ", (double)size / 1024); N = 0; T0(); do { for (n = 0; n < 250; n++) { off = random() % (mediasize / size); parwrite(fd, size, off * size); if (nowritecache) continue; if (isreg) error = fsync(fd); else error = ioctl(fd, DIOCGFLUSH); if (error < 0) { if (errno == ENOTSUP) nowritecache = 1; else err(EX_IOERR, "Flush error"); } } N += 250; } while (delta_t() < 1.0); TS(size, N); } } static int zonecheck(int fd, uint32_t *zone_mode, char *zone_str, size_t zone_str_len) { struct disk_zone_args zone_args; int error; bzero(&zone_args, sizeof(zone_args)); zone_args.zone_cmd = DISK_ZONE_GET_PARAMS; error = ioctl(fd, DIOCZONECMD, &zone_args); if (error == 0) { *zone_mode = zone_args.zone_params.disk_params.zone_mode; switch (*zone_mode) { case DISK_ZONE_MODE_NONE: snprintf(zone_str, zone_str_len, "Not_Zoned"); break; case DISK_ZONE_MODE_HOST_AWARE: snprintf(zone_str, zone_str_len, "Host_Aware"); break; case DISK_ZONE_MODE_DRIVE_MANAGED: snprintf(zone_str, zone_str_len, "Drive_Managed"); break; case DISK_ZONE_MODE_HOST_MANAGED: snprintf(zone_str, zone_str_len, "Host_Managed"); break; default: snprintf(zone_str, zone_str_len, "Unknown_zone_mode_%u", *zone_mode); break; } } return (error); }