/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpi.h" #include "bhyverun.h" #include "bootrom.h" #include "config.h" #include "debug.h" #ifdef __amd64__ #include "amd64/inout.h" #endif #include "mem.h" #include "pci_emul.h" #ifdef __amd64__ #include "amd64/pci_lpc.h" #include "pci_passthru.h" #endif #include "qemu_fwcfg.h" #define CONF1_ADDR_PORT 0x0cf8 #define CONF1_DATA_PORT 0x0cfc #define CONF1_ENABLE 0x80000000ul #define MAXBUSES (PCI_BUSMAX + 1) #define MAXSLOTS (PCI_SLOTMAX + 1) #define MAXFUNCS (PCI_FUNCMAX + 1) #define GB (1024 * 1024 * 1024UL) struct funcinfo { nvlist_t *fi_config; struct pci_devemu *fi_pde; struct pci_devinst *fi_devi; }; struct intxinfo { int ii_count; struct pci_irq ii_irq; }; struct slotinfo { struct intxinfo si_intpins[4]; struct funcinfo si_funcs[MAXFUNCS]; }; struct businfo { uint16_t iobase, iolimit; /* I/O window */ uint32_t membase32, memlimit32; /* mmio window below 4GB */ uint64_t membase64, memlimit64; /* mmio window above 4GB */ struct slotinfo slotinfo[MAXSLOTS]; }; static struct businfo *pci_businfo[MAXBUSES]; SET_DECLARE(pci_devemu_set, struct pci_devemu); static uint64_t pci_emul_iobase; static uint8_t *pci_emul_rombase; static uint64_t pci_emul_romoffset; static uint8_t *pci_emul_romlim; static uint64_t pci_emul_membase32; static uint64_t pci_emul_membase64; static uint64_t pci_emul_memlim64; struct pci_bar_allocation { TAILQ_ENTRY(pci_bar_allocation) chain; struct pci_devinst *pdi; int idx; enum pcibar_type type; uint64_t size; }; static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars = TAILQ_HEAD_INITIALIZER(pci_bars); struct boot_device { TAILQ_ENTRY(boot_device) boot_device_chain; struct pci_devinst *pdi; int bootindex; }; static TAILQ_HEAD(boot_list, boot_device) boot_devices = TAILQ_HEAD_INITIALIZER( boot_devices); #if defined(__amd64__) #define PCI_EMUL_IOBASE 0x2000 #define PCI_EMUL_IOLIMIT 0x10000 #define PCI_EMUL_IOMASK 0xffff /* * OVMF always uses 0xc0000000 as base address for 32 bit PCI MMIO. Don't * change this address without changing it in OVMF. */ #define PCI_EMUL_MEMBASE32 0xc0000000 #elif defined(__aarch64__) #define PCI_EMUL_IOBASE 0xdf000000UL #define PCI_EMUL_IOLIMIT 0xe0000000UL #define PCI_EMUL_MEMBASE32 0xa0000000UL #else #error Unsupported platform #endif #define PCI_EMUL_ROMSIZE 0x10000000 #define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */ #define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */ #ifdef __amd64__ SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE); #endif #define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE #define PCI_EMUL_MEMSIZE64 (32*GB) static void pci_lintr_route(struct pci_devinst *pi); static void pci_lintr_update(struct pci_devinst *pi); static struct pci_devemu *pci_emul_finddev(const char *name); static void pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes, uint32_t *val); static __inline void CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes) { if (bytes == 1) pci_set_cfgdata8(pi, coff, val); else if (bytes == 2) pci_set_cfgdata16(pi, coff, val); else pci_set_cfgdata32(pi, coff, val); } static __inline uint32_t CFGREAD(struct pci_devinst *pi, int coff, int bytes) { if (bytes == 1) return (pci_get_cfgdata8(pi, coff)); else if (bytes == 2) return (pci_get_cfgdata16(pi, coff)); else return (pci_get_cfgdata32(pi, coff)); } static int is_pcir_bar(int coff) { return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)); } static int is_pcir_bios(int coff) { return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4); } /* * I/O access */ /* * Slot options are in the form: * * ::,[,] * [:],[,] * * slot is 0..31 * func is 0..7 * emul is a string describing the type of PCI device e.g. virtio-net * config is an optional string, depending on the device, that can be * used for configuration. * Examples are: * 1,virtio-net,tap0 * 3:0,dummy */ static void pci_parse_slot_usage(char *aopt) { EPRINTLN("Invalid PCI slot info field \"%s\"", aopt); } /* * Helper function to parse a list of comma-separated options where * each option is formatted as "name[=value]". If no value is * provided, the option is treated as a boolean and is given a value * of true. */ int pci_parse_legacy_config(nvlist_t *nvl, const char *opt) { char *config, *name, *tofree, *value; if (opt == NULL) return (0); config = tofree = strdup(opt); while ((name = strsep(&config, ",")) != NULL) { value = strchr(name, '='); if (value != NULL) { *value = '\0'; value++; set_config_value_node(nvl, name, value); } else set_config_bool_node(nvl, name, true); } free(tofree); return (0); } /* * PCI device configuration is stored in MIBs that encode the device's * location: * * pci... * * Where "bus", "slot", and "func" are all decimal values without * leading zeroes. Each valid device must have a "device" node which * identifies the driver model of the device. * * Device backends can provide a parser for the "config" string. If * a custom parser is not provided, pci_parse_legacy_config() is used * to parse the string. */ int pci_parse_slot(char *opt) { char node_name[sizeof("pci.XXX.XX.X")]; struct pci_devemu *pde; char *emul, *config, *str, *cp; int error, bnum, snum, fnum; nvlist_t *nvl; error = -1; str = strdup(opt); emul = config = NULL; if ((cp = strchr(str, ',')) != NULL) { *cp = '\0'; emul = cp + 1; if ((cp = strchr(emul, ',')) != NULL) { *cp = '\0'; config = cp + 1; } } else { pci_parse_slot_usage(opt); goto done; } /* :: */ if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) { bnum = 0; /* : */ if (sscanf(str, "%d:%d", &snum, &fnum) != 2) { fnum = 0; /* */ if (sscanf(str, "%d", &snum) != 1) { snum = -1; } } } if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS || fnum < 0 || fnum >= MAXFUNCS) { pci_parse_slot_usage(opt); goto done; } pde = pci_emul_finddev(emul); if (pde == NULL) { EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum, fnum, emul); goto done; } snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum, fnum); nvl = find_config_node(node_name); if (nvl != NULL) { EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum, fnum); goto done; } nvl = create_config_node(node_name); if (pde->pe_alias != NULL) set_config_value_node(nvl, "device", pde->pe_alias); else set_config_value_node(nvl, "device", pde->pe_emu); if (pde->pe_legacy_config != NULL) error = pde->pe_legacy_config(nvl, config); else error = pci_parse_legacy_config(nvl, config); done: free(str); return (error); } void pci_print_supported_devices(void) { struct pci_devemu **pdpp, *pdp; SET_FOREACH(pdpp, pci_devemu_set) { pdp = *pdpp; printf("%s\n", pdp->pe_emu); } } uint32_t pci_config_read_reg(const struct pcisel *const host_sel, nvlist_t *nvl, const uint32_t reg, const uint8_t size, const uint32_t def) { const char *config; const nvlist_t *pci_regs; assert(size == 1 || size == 2 || size == 4); pci_regs = find_relative_config_node(nvl, "pcireg"); if (pci_regs == NULL) { return def; } switch (reg) { case PCIR_DEVICE: config = get_config_value_node(pci_regs, "device"); break; case PCIR_VENDOR: config = get_config_value_node(pci_regs, "vendor"); break; case PCIR_REVID: config = get_config_value_node(pci_regs, "revid"); break; case PCIR_SUBVEND_0: config = get_config_value_node(pci_regs, "subvendor"); break; case PCIR_SUBDEV_0: config = get_config_value_node(pci_regs, "subdevice"); break; default: return (-1); } if (config == NULL) { return def; } else if (host_sel != NULL && strcmp(config, "host") == 0) { #ifdef __amd64__ return pci_host_read_config(host_sel, reg, size); #else errx(1, "cannot fetch host PCI configuration"); #endif } else { return strtol(config, NULL, 16); } } static int pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset) { if (offset < pi->pi_msix.pba_offset) return (0); if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) { return (0); } return (1); } int pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size, uint64_t value) { int msix_entry_offset; int tab_index; char *dest; /* support only 4 or 8 byte writes */ if (size != 4 && size != 8) return (-1); /* * Return if table index is beyond what device supports */ tab_index = offset / MSIX_TABLE_ENTRY_SIZE; if (tab_index >= pi->pi_msix.table_count) return (-1); msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; /* support only aligned writes */ if ((msix_entry_offset % size) != 0) return (-1); dest = (char *)(pi->pi_msix.table + tab_index); dest += msix_entry_offset; if (size == 4) *((uint32_t *)dest) = value; else *((uint64_t *)dest) = value; return (0); } uint64_t pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size) { char *dest; int msix_entry_offset; int tab_index; uint64_t retval = ~0; /* * The PCI standard only allows 4 and 8 byte accesses to the MSI-X * table but we also allow 1 byte access to accommodate reads from * ddb. */ if (size != 1 && size != 4 && size != 8) return (retval); msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; /* support only aligned reads */ if ((msix_entry_offset % size) != 0) { return (retval); } tab_index = offset / MSIX_TABLE_ENTRY_SIZE; if (tab_index < pi->pi_msix.table_count) { /* valid MSI-X Table access */ dest = (char *)(pi->pi_msix.table + tab_index); dest += msix_entry_offset; if (size == 1) retval = *((uint8_t *)dest); else if (size == 4) retval = *((uint32_t *)dest); else retval = *((uint64_t *)dest); } else if (pci_valid_pba_offset(pi, offset)) { /* return 0 for PBA access */ retval = 0; } return (retval); } int pci_msix_table_bar(struct pci_devinst *pi) { if (pi->pi_msix.table != NULL) return (pi->pi_msix.table_bar); else return (-1); } int pci_msix_pba_bar(struct pci_devinst *pi) { if (pi->pi_msix.table != NULL) return (pi->pi_msix.pba_bar); else return (-1); } #ifdef __amd64__ static int pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port, int bytes, uint32_t *eax, void *arg) { struct pci_devinst *pdi = arg; struct pci_devemu *pe = pdi->pi_d; uint64_t offset; int i; assert(port >= 0); for (i = 0; i <= PCI_BARMAX; i++) { if (pdi->pi_bar[i].type == PCIBAR_IO && (uint64_t)port >= pdi->pi_bar[i].addr && (uint64_t)port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) { offset = port - pdi->pi_bar[i].addr; if (in) *eax = (*pe->pe_barread)(pdi, i, offset, bytes); else (*pe->pe_barwrite)(pdi, i, offset, bytes, *eax); return (0); } } return (-1); } #else static int pci_emul_iomem_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr, int size, uint64_t *val, void *arg1, long arg2) { struct pci_devinst *pdi = arg1; struct pci_devemu *pe = pdi->pi_d; uint64_t offset; int bidx = (int)arg2; assert(bidx <= PCI_BARMAX); assert(pdi->pi_bar[bidx].type == PCIBAR_IO); assert(addr >= pdi->pi_bar[bidx].addr && addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size); assert(size == 1 || size == 2 || size == 4); offset = addr - pdi->pi_bar[bidx].addr; if (dir == MEM_F_READ) *val = (*pe->pe_barread)(pdi, bidx, offset, size); else (*pe->pe_barwrite)(pdi, bidx, offset, size, *val); return (0); } #endif /* !__amd64__ */ static int pci_emul_mem_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr, int size, uint64_t *val, void *arg1, long arg2) { struct pci_devinst *pdi = arg1; struct pci_devemu *pe = pdi->pi_d; uint64_t offset; int bidx = (int)arg2; assert(bidx <= PCI_BARMAX); assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 || pdi->pi_bar[bidx].type == PCIBAR_MEM64); assert(addr >= pdi->pi_bar[bidx].addr && addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size); offset = addr - pdi->pi_bar[bidx].addr; if (dir == MEM_F_WRITE) { if (size == 8) { (*pe->pe_barwrite)(pdi, bidx, offset, 4, *val & 0xffffffff); (*pe->pe_barwrite)(pdi, bidx, offset + 4, 4, *val >> 32); } else { (*pe->pe_barwrite)(pdi, bidx, offset, size, *val); } } else { if (size == 8) { *val = (*pe->pe_barread)(pdi, bidx, offset, 4); *val |= (*pe->pe_barread)(pdi, bidx, offset + 4, 4) << 32; } else { *val = (*pe->pe_barread)(pdi, bidx, offset, size); } } return (0); } static int pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size, uint64_t *addr) { uint64_t base; assert((size & (size - 1)) == 0); /* must be a power of 2 */ base = roundup2(*baseptr, size); if (base + size <= limit) { *addr = base; *baseptr = base + size; return (0); } else return (-1); } /* * Register (or unregister) the MMIO or I/O region associated with the BAR * register 'idx' of an emulated pci device. */ static void modify_bar_registration(struct pci_devinst *pi, int idx, int registration) { struct pci_devemu *pe; int error; enum pcibar_type type; pe = pi->pi_d; type = pi->pi_bar[idx].type; switch (type) { case PCIBAR_IO: { #ifdef __amd64__ struct inout_port iop; bzero(&iop, sizeof(struct inout_port)); iop.name = pi->pi_name; iop.port = pi->pi_bar[idx].addr; iop.size = pi->pi_bar[idx].size; if (registration) { iop.flags = IOPORT_F_INOUT; iop.handler = pci_emul_io_handler; iop.arg = pi; error = register_inout(&iop); } else error = unregister_inout(&iop); #else struct mem_range mr; bzero(&mr, sizeof(struct mem_range)); mr.name = pi->pi_name; mr.base = pi->pi_bar[idx].addr; mr.size = pi->pi_bar[idx].size; if (registration) { mr.flags = MEM_F_RW; mr.handler = pci_emul_iomem_handler; mr.arg1 = pi; mr.arg2 = idx; error = register_mem(&mr); } else error = unregister_mem(&mr); #endif break; } case PCIBAR_MEM32: case PCIBAR_MEM64: { struct mem_range mr; bzero(&mr, sizeof(struct mem_range)); mr.name = pi->pi_name; mr.base = pi->pi_bar[idx].addr; mr.size = pi->pi_bar[idx].size; if (registration) { mr.flags = MEM_F_RW; mr.handler = pci_emul_mem_handler; mr.arg1 = pi; mr.arg2 = idx; error = register_mem(&mr); } else error = unregister_mem(&mr); break; } case PCIBAR_ROM: error = 0; break; default: error = EINVAL; break; } assert(error == 0); if (pe->pe_baraddr != NULL) (*pe->pe_baraddr)(pi, idx, registration, pi->pi_bar[idx].addr); } static void unregister_bar(struct pci_devinst *pi, int idx) { modify_bar_registration(pi, idx, 0); } static void register_bar(struct pci_devinst *pi, int idx) { modify_bar_registration(pi, idx, 1); } /* Is the ROM enabled for the emulated pci device? */ static int romen(struct pci_devinst *pi) { return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) == PCIM_BIOS_ENABLE; } /* Are we decoding i/o port accesses for the emulated pci device? */ static int porten(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (cmd & PCIM_CMD_PORTEN); } /* Are we decoding memory accesses for the emulated pci device? */ static int memen(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (cmd & PCIM_CMD_MEMEN); } /* * Update the MMIO or I/O address that is decoded by the BAR register. * * If the pci device has enabled the address space decoding then intercept * the address range decoded by the BAR register. */ static void update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type) { int decode; if (pi->pi_bar[idx].type == PCIBAR_IO) decode = porten(pi); else decode = memen(pi); if (decode) unregister_bar(pi, idx); switch (type) { case PCIBAR_IO: case PCIBAR_MEM32: pi->pi_bar[idx].addr = addr; break; case PCIBAR_MEM64: pi->pi_bar[idx].addr &= ~0xffffffffUL; pi->pi_bar[idx].addr |= addr; break; case PCIBAR_MEMHI64: pi->pi_bar[idx].addr &= 0xffffffff; pi->pi_bar[idx].addr |= addr; break; default: assert(0); } if (decode) register_bar(pi, idx); } int pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type, uint64_t size) { assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX)); assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX)); if ((size & (size - 1)) != 0) size = 1UL << flsl(size); /* round up to a power of 2 */ /* Enforce minimum BAR sizes required by the PCI standard */ if (type == PCIBAR_IO) { if (size < 4) size = 4; } else if (type == PCIBAR_ROM) { if (size < ~PCIM_BIOS_ADDR_MASK + 1) size = ~PCIM_BIOS_ADDR_MASK + 1; } else { if (size < 16) size = 16; } /* * To reduce fragmentation of the MMIO space, we allocate the BARs by * size. Therefore, don't allocate the BAR yet. We create a list of all * BAR allocation which is sorted by BAR size. When all PCI devices are * initialized, we will assign an address to the BARs. */ /* create a new list entry */ struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar)); memset(new_bar, 0, sizeof(*new_bar)); new_bar->pdi = pdi; new_bar->idx = idx; new_bar->type = type; new_bar->size = size; /* * Search for a BAR which size is lower than the size of our newly * allocated BAR. */ struct pci_bar_allocation *bar = NULL; TAILQ_FOREACH(bar, &pci_bars, chain) { if (bar->size < size) { break; } } if (bar == NULL) { /* * Either the list is empty or new BAR is the smallest BAR of * the list. Append it to the end of our list. */ TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain); } else { /* * The found BAR is smaller than our new BAR. For that reason, * insert our new BAR before the found BAR. */ TAILQ_INSERT_BEFORE(bar, new_bar, chain); } /* * Enable PCI BARs only if we don't have a boot ROM, i.e., bhyveload was * used to load the initial guest image. Otherwise, we rely on the boot * ROM to handle this. */ if (!get_config_bool_default("pci.enable_bars", !bootrom_boot())) return (0); /* * pci_passthru devices synchronize their physical and virtual command * register on init. For that reason, the virtual cmd reg should be * updated as early as possible. */ uint16_t enbit = 0; switch (type) { case PCIBAR_IO: enbit = PCIM_CMD_PORTEN; break; case PCIBAR_MEM64: case PCIBAR_MEM32: enbit = PCIM_CMD_MEMEN; break; default: enbit = 0; break; } const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND); pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit); return (0); } static int pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx, const enum pcibar_type type, const uint64_t size) { int error; uint64_t *baseptr, limit, addr, mask, lobits, bar; switch (type) { case PCIBAR_NONE: baseptr = NULL; addr = mask = lobits = 0; break; case PCIBAR_IO: baseptr = &pci_emul_iobase; limit = PCI_EMUL_IOLIMIT; mask = PCIM_BAR_IO_BASE; lobits = PCIM_BAR_IO_SPACE; break; case PCIBAR_MEM64: /* * XXX * Some drivers do not work well if the 64-bit BAR is allocated * above 4GB. Allow for this by allocating small requests under * 4GB unless then allocation size is larger than some arbitrary * number (128MB currently). */ if (size > 128 * 1024 * 1024) { baseptr = &pci_emul_membase64; limit = pci_emul_memlim64; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | PCIM_BAR_MEM_PREFETCH; } else { baseptr = &pci_emul_membase32; limit = PCI_EMUL_MEMLIMIT32; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64; } break; case PCIBAR_MEM32: baseptr = &pci_emul_membase32; limit = PCI_EMUL_MEMLIMIT32; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; break; case PCIBAR_ROM: /* do not claim memory for ROM. OVMF will do it for us. */ baseptr = NULL; limit = 0; mask = PCIM_BIOS_ADDR_MASK; lobits = 0; break; default: printf("pci_emul_alloc_base: invalid bar type %d\n", type); assert(0); } if (baseptr != NULL) { error = pci_emul_alloc_resource(baseptr, limit, size, &addr); if (error != 0) return (error); } else { addr = 0; } pdi->pi_bar[idx].type = type; pdi->pi_bar[idx].addr = addr; pdi->pi_bar[idx].size = size; /* * passthru devices are using same lobits as physical device they set * this property */ if (pdi->pi_bar[idx].lobits != 0) { lobits = pdi->pi_bar[idx].lobits; } else { pdi->pi_bar[idx].lobits = lobits; } /* Initialize the BAR register in config space */ bar = (addr & mask) | lobits; pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar); if (type == PCIBAR_MEM64) { assert(idx + 1 <= PCI_BARMAX); pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64; pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32); } switch (type) { case PCIBAR_IO: if (porten(pdi)) register_bar(pdi, idx); break; case PCIBAR_MEM32: case PCIBAR_MEM64: case PCIBAR_MEMHI64: if (memen(pdi)) register_bar(pdi, idx); break; default: break; } return (0); } int pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size, void **const addr) { /* allocate ROM space once on first call */ if (pci_emul_rombase == 0) { pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM, "pcirom", PCI_EMUL_ROMSIZE); if (pci_emul_rombase == MAP_FAILED) { warnx("%s: failed to create rom segment", __func__); return (-1); } pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE; pci_emul_romoffset = 0; } /* ROM size should be a power of 2 and greater than 2 KB */ const uint64_t rom_size = MAX(1UL << flsl(size), ~PCIM_BIOS_ADDR_MASK + 1); /* check if ROM fits into ROM space */ if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) { warnx("%s: no space left in rom segment:", __func__); warnx("%16lu bytes left", PCI_EMUL_ROMSIZE - pci_emul_romoffset); warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus, pdi->pi_slot, pdi->pi_func); return (-1); } /* allocate ROM BAR */ const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM, rom_size); if (error) return error; /* return address */ *addr = pci_emul_rombase + pci_emul_romoffset; /* save offset into ROM Space */ pdi->pi_romoffset = pci_emul_romoffset; /* increase offset for next ROM */ pci_emul_romoffset += rom_size; return (0); } int pci_emul_add_boot_device(struct pci_devinst *pi, int bootindex) { struct boot_device *new_device, *device; /* don't permit a negative bootindex */ if (bootindex < 0) { errx(4, "Invalid bootindex %d for %s", bootindex, pi->pi_name); } /* alloc new boot device */ new_device = calloc(1, sizeof(struct boot_device)); if (new_device == NULL) { return (ENOMEM); } new_device->pdi = pi; new_device->bootindex = bootindex; /* search for boot device with higher boot index */ TAILQ_FOREACH(device, &boot_devices, boot_device_chain) { if (device->bootindex == bootindex) { errx(4, "Could not set bootindex %d for %s. Bootindex already occupied by %s", bootindex, pi->pi_name, device->pdi->pi_name); } else if (device->bootindex > bootindex) { break; } } /* add boot device to queue */ if (device == NULL) { TAILQ_INSERT_TAIL(&boot_devices, new_device, boot_device_chain); } else { TAILQ_INSERT_BEFORE(device, new_device, boot_device_chain); } return (0); } #define CAP_START_OFFSET 0x40 static int pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen) { int i, capoff, reallen; uint16_t sts; assert(caplen > 0); reallen = roundup2(caplen, 4); /* dword aligned */ sts = pci_get_cfgdata16(pi, PCIR_STATUS); if ((sts & PCIM_STATUS_CAPPRESENT) == 0) capoff = CAP_START_OFFSET; else capoff = pi->pi_capend + 1; /* Check if we have enough space */ if (capoff + reallen > PCI_REGMAX + 1) return (-1); /* Set the previous capability pointer */ if ((sts & PCIM_STATUS_CAPPRESENT) == 0) { pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff); pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT); } else pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff); /* Copy the capability */ for (i = 0; i < caplen; i++) pci_set_cfgdata8(pi, capoff + i, capdata[i]); /* Set the next capability pointer */ pci_set_cfgdata8(pi, capoff + 1, 0); pi->pi_prevcap = capoff; pi->pi_capend = capoff + reallen - 1; return (0); } static struct pci_devemu * pci_emul_finddev(const char *name) { struct pci_devemu **pdpp, *pdp; SET_FOREACH(pdpp, pci_devemu_set) { pdp = *pdpp; if (!strcmp(pdp->pe_emu, name)) { return (pdp); } } return (NULL); } static int pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot, int func, struct funcinfo *fi) { struct pci_devinst *pdi; int err; pdi = calloc(1, sizeof(struct pci_devinst)); pdi->pi_vmctx = ctx; pdi->pi_bus = bus; pdi->pi_slot = slot; pdi->pi_func = func; pthread_mutex_init(&pdi->pi_lintr.lock, NULL); pdi->pi_lintr.pin = 0; pdi->pi_lintr.state = IDLE; pci_irq_init_irq(&pdi->pi_lintr.irq); pdi->pi_d = pde; snprintf(pdi->pi_name, PI_NAMESZ, "%s@pci.%d.%d.%d", pde->pe_emu, bus, slot, func); /* Disable legacy interrupts */ pci_set_cfgdata8(pdi, PCIR_INTLINE, 255); pci_set_cfgdata8(pdi, PCIR_INTPIN, 0); if (get_config_bool_default("pci.enable_bars", !bootrom_boot())) pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN); err = (*pde->pe_init)(pdi, fi->fi_config); if (err == 0) fi->fi_devi = pdi; else free(pdi); return (err); } void pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr) { int mmc; /* Number of msi messages must be a power of 2 between 1 and 32 */ assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32); mmc = ffs(msgnum) - 1; bzero(msicap, sizeof(struct msicap)); msicap->capid = PCIY_MSI; msicap->nextptr = nextptr; msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1); } int pci_emul_add_msicap(struct pci_devinst *pi, int msgnum) { struct msicap msicap; pci_populate_msicap(&msicap, msgnum, 0); return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap))); } static void pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum, uint32_t msix_tab_size) { assert(msix_tab_size % 4096 == 0); bzero(msixcap, sizeof(struct msixcap)); msixcap->capid = PCIY_MSIX; /* * Message Control Register, all fields set to * zero except for the Table Size. * Note: Table size N is encoded as N-1 */ msixcap->msgctrl = msgnum - 1; /* * MSI-X BAR setup: * - MSI-X table start at offset 0 * - PBA table starts at a 4K aligned offset after the MSI-X table */ msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK; msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK); } static void pci_msix_table_init(struct pci_devinst *pi, int table_entries) { int i, table_size; assert(table_entries > 0); assert(table_entries <= MAX_MSIX_TABLE_ENTRIES); table_size = table_entries * MSIX_TABLE_ENTRY_SIZE; pi->pi_msix.table = calloc(1, table_size); /* set mask bit of vector control register */ for (i = 0; i < table_entries; i++) pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK; } int pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum) { uint32_t tab_size; struct msixcap msixcap; assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES); assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0); tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE; /* Align table size to nearest 4K */ tab_size = roundup2(tab_size, 4096); pi->pi_msix.table_bar = barnum; pi->pi_msix.pba_bar = barnum; pi->pi_msix.table_offset = 0; pi->pi_msix.table_count = msgnum; pi->pi_msix.pba_offset = tab_size; pi->pi_msix.pba_size = PBA_SIZE(msgnum); pci_msix_table_init(pi, msgnum); pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size); /* allocate memory for MSI-X Table and PBA */ pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32, tab_size + pi->pi_msix.pba_size); return (pci_emul_add_capability(pi, (u_char *)&msixcap, sizeof(msixcap))); } static void msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { uint16_t msgctrl, rwmask; int off; off = offset - capoff; /* Message Control Register */ if (off == 2 && bytes == 2) { rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK; msgctrl = pci_get_cfgdata16(pi, offset); msgctrl &= ~rwmask; msgctrl |= val & rwmask; val = msgctrl; pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE; pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK; pci_lintr_update(pi); } CFGWRITE(pi, offset, val, bytes); } static void msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { uint16_t msgctrl, rwmask, msgdata, mme; uint32_t addrlo; /* * If guest is writing to the message control register make sure * we do not overwrite read-only fields. */ if ((offset - capoff) == 2 && bytes == 2) { rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE; msgctrl = pci_get_cfgdata16(pi, offset); msgctrl &= ~rwmask; msgctrl |= val & rwmask; val = msgctrl; } CFGWRITE(pi, offset, val, bytes); msgctrl = pci_get_cfgdata16(pi, capoff + 2); addrlo = pci_get_cfgdata32(pi, capoff + 4); if (msgctrl & PCIM_MSICTRL_64BIT) msgdata = pci_get_cfgdata16(pi, capoff + 12); else msgdata = pci_get_cfgdata16(pi, capoff + 8); mme = msgctrl & PCIM_MSICTRL_MME_MASK; pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0; if (pi->pi_msi.enabled) { pi->pi_msi.addr = addrlo; pi->pi_msi.msg_data = msgdata; pi->pi_msi.maxmsgnum = 1 << (mme >> 4); } else { pi->pi_msi.maxmsgnum = 0; } pci_lintr_update(pi); } static void pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset, int bytes, uint32_t val) { /* XXX don't write to the readonly parts */ CFGWRITE(pi, offset, val, bytes); } #define PCIECAP_VERSION 0x2 int pci_emul_add_pciecap(struct pci_devinst *pi, int type) { int err; struct pciecap pciecap; bzero(&pciecap, sizeof(pciecap)); /* * Use the integrated endpoint type for endpoints on a root complex bus. * * NB: bhyve currently only supports a single PCI bus that is the root * complex bus, so all endpoints are integrated. */ if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0)) type = PCIEM_TYPE_ROOT_INT_EP; pciecap.capid = PCIY_EXPRESS; pciecap.pcie_capabilities = PCIECAP_VERSION | type; if (type != PCIEM_TYPE_ROOT_INT_EP) { pciecap.link_capabilities = 0x411; /* gen1, x1 */ pciecap.link_status = 0x11; /* gen1, x1 */ } err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap)); return (err); } /* * This function assumes that 'coff' is in the capabilities region of the * config space. A capoff parameter of zero will force a search for the * offset and type. */ void pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val, uint8_t capoff, int capid) { uint8_t nextoff; /* Do not allow un-aligned writes */ if ((offset & (bytes - 1)) != 0) return; if (capoff == 0) { /* Find the capability that we want to update */ capoff = CAP_START_OFFSET; while (1) { nextoff = pci_get_cfgdata8(pi, capoff + 1); if (nextoff == 0) break; if (offset >= capoff && offset < nextoff) break; capoff = nextoff; } assert(offset >= capoff); capid = pci_get_cfgdata8(pi, capoff); } /* * Capability ID and Next Capability Pointer are readonly. * However, some o/s's do 4-byte writes that include these. * For this case, trim the write back to 2 bytes and adjust * the data. */ if (offset == capoff || offset == capoff + 1) { if (offset == capoff && bytes == 4) { bytes = 2; offset += 2; val >>= 16; } else return; } switch (capid) { case PCIY_MSI: msicap_cfgwrite(pi, capoff, offset, bytes, val); break; case PCIY_MSIX: msixcap_cfgwrite(pi, capoff, offset, bytes, val); break; case PCIY_EXPRESS: pciecap_cfgwrite(pi, capoff, offset, bytes, val); break; default: break; } } static int pci_emul_iscap(struct pci_devinst *pi, int offset) { uint16_t sts; sts = pci_get_cfgdata16(pi, PCIR_STATUS); if ((sts & PCIM_STATUS_CAPPRESENT) != 0) { if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend) return (1); } return (0); } static int pci_emul_fallback_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr __unused, int size __unused, uint64_t *val, void *arg1 __unused, long arg2 __unused) { /* * Ignore writes; return 0xff's for reads. The mem read code * will take care of truncating to the correct size. */ if (dir == MEM_F_READ) { *val = 0xffffffffffffffff; } return (0); } static int pci_emul_ecfg_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr, int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused) { int bus, slot, func, coff, in; coff = addr & 0xfff; func = (addr >> 12) & 0x7; slot = (addr >> 15) & 0x1f; bus = (addr >> 20) & 0xff; in = (dir == MEM_F_READ); if (in) *val = ~0UL; pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val); return (0); } uint64_t pci_ecfg_base(void) { return (PCI_EMUL_ECFG_BASE); } static int init_bootorder(void) { struct boot_device *device; FILE *fp; char *bootorder; size_t bootorder_len; if (TAILQ_EMPTY(&boot_devices)) return (0); fp = open_memstream(&bootorder, &bootorder_len); TAILQ_FOREACH(device, &boot_devices, boot_device_chain) { fprintf(fp, "/pci@i0cf8/pci@%d,%d\n", device->pdi->pi_slot, device->pdi->pi_func); } fclose(fp); return (qemu_fwcfg_add_file("bootorder", bootorder_len, bootorder)); } #define BUSIO_ROUNDUP 32 #define BUSMEM32_ROUNDUP (1024 * 1024) #define BUSMEM64_ROUNDUP (512 * 1024 * 1024) int init_pci(struct vmctx *ctx) { char node_name[sizeof("pci.XXX.XX.X")]; struct mem_range mr; struct pci_devemu *pde; struct businfo *bi; struct slotinfo *si; struct funcinfo *fi; nvlist_t *nvl; const char *emul; size_t lowmem; int bus, slot, func; int error; if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32) errx(EX_OSERR, "Invalid lowmem limit"); pci_emul_iobase = PCI_EMUL_IOBASE; pci_emul_membase32 = PCI_EMUL_MEMBASE32; pci_emul_membase64 = vm_get_highmem_base(ctx) + vm_get_highmem_size(ctx); pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64); pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64; TAILQ_INIT(&boot_devices); for (bus = 0; bus < MAXBUSES; bus++) { snprintf(node_name, sizeof(node_name), "pci.%d", bus); nvl = find_config_node(node_name); if (nvl == NULL) continue; pci_businfo[bus] = calloc(1, sizeof(struct businfo)); bi = pci_businfo[bus]; /* * Keep track of the i/o and memory resources allocated to * this bus. */ bi->iobase = pci_emul_iobase; bi->membase32 = pci_emul_membase32; bi->membase64 = pci_emul_membase64; /* first run: init devices */ for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (func = 0; func < MAXFUNCS; func++) { fi = &si->si_funcs[func]; snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bus, slot, func); nvl = find_config_node(node_name); if (nvl == NULL) continue; fi->fi_config = nvl; emul = get_config_value_node(nvl, "device"); if (emul == NULL) { EPRINTLN("pci slot %d:%d:%d: missing " "\"device\" value", bus, slot, func); return (EINVAL); } pde = pci_emul_finddev(emul); if (pde == NULL) { EPRINTLN("pci slot %d:%d:%d: unknown " "device \"%s\"", bus, slot, func, emul); return (EINVAL); } if (pde->pe_alias != NULL) { EPRINTLN("pci slot %d:%d:%d: legacy " "device \"%s\", use \"%s\" instead", bus, slot, func, emul, pde->pe_alias); return (EINVAL); } fi->fi_pde = pde; error = pci_emul_init(ctx, pde, bus, slot, func, fi); if (error) return (error); } } /* second run: assign BARs and free list */ struct pci_bar_allocation *bar; struct pci_bar_allocation *bar_tmp; TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) { pci_emul_assign_bar(bar->pdi, bar->idx, bar->type, bar->size); free(bar); } TAILQ_INIT(&pci_bars); /* * Add some slop to the I/O and memory resources decoded by * this bus to give a guest some flexibility if it wants to * reprogram the BARs. */ pci_emul_iobase += BUSIO_ROUNDUP; pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP); bi->iolimit = pci_emul_iobase; pci_emul_membase32 += BUSMEM32_ROUNDUP; pci_emul_membase32 = roundup2(pci_emul_membase32, BUSMEM32_ROUNDUP); bi->memlimit32 = pci_emul_membase32; pci_emul_membase64 += BUSMEM64_ROUNDUP; pci_emul_membase64 = roundup2(pci_emul_membase64, BUSMEM64_ROUNDUP); bi->memlimit64 = pci_emul_membase64; } /* * PCI backends are initialized before routing INTx interrupts * so that LPC devices are able to reserve ISA IRQs before * routing PIRQ pins. */ for (bus = 0; bus < MAXBUSES; bus++) { if ((bi = pci_businfo[bus]) == NULL) continue; for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (func = 0; func < MAXFUNCS; func++) { fi = &si->si_funcs[func]; if (fi->fi_devi == NULL) continue; pci_lintr_route(fi->fi_devi); } } } #ifdef __amd64__ lpc_pirq_routed(); #endif if ((error = init_bootorder()) != 0) { warnx("%s: Unable to init bootorder", __func__); return (error); } /* * The guest physical memory map looks like the following on amd64: * [0, lowmem) guest system memory * [lowmem, 0xC0000000) memory hole (may be absent) * [0xC0000000, 0xE0000000) PCI hole (32-bit BAR allocation) * [0xE0000000, 0xF0000000) PCI extended config window * [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware * [4GB, 4GB + highmem) guest system memory * [roundup(4GB + highmem, 32GB), ...) PCI 64-bit BAR allocation * * On arm64 the guest physical memory map looks like this: * [0x0DF00000, 0x10000000) PCI I/O memory * [0xA0000000, 0xE0000000) PCI 32-bit BAR allocation * [0xE0000000, 0xF0000000) PCI extended config window * [4GB, 4GB + highmem) guest system memory * [roundup(4GB + highmem, 32GB), ...) PCI 64-bit BAR allocation * * "lowmem" is guest memory below 0xC0000000. amd64 guests provisioned * with less than 3GB of RAM will have no memory above the 4GB boundary. * System memory for arm64 guests is all above the 4GB boundary. */ /* * Accesses to memory addresses that are not allocated to system * memory or PCI devices return 0xff's. */ lowmem = vm_get_lowmem_size(ctx); bzero(&mr, sizeof(struct mem_range)); mr.name = "PCI hole"; mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; mr.base = lowmem; mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem; mr.handler = pci_emul_fallback_handler; error = register_mem_fallback(&mr); assert(error == 0); /* PCI extended config space */ bzero(&mr, sizeof(struct mem_range)); mr.name = "PCI ECFG"; mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; mr.base = PCI_EMUL_ECFG_BASE; mr.size = PCI_EMUL_ECFG_SIZE; mr.handler = pci_emul_ecfg_handler; error = register_mem(&mr); assert(error == 0); return (0); } #ifdef __amd64__ static void pci_apic_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq, void *arg __unused) { dsdt_line(" Package ()"); dsdt_line(" {"); dsdt_line(" 0x%X,", slot << 16 | 0xffff); dsdt_line(" 0x%02X,", pin - 1); dsdt_line(" Zero,"); dsdt_line(" 0x%X", irq->ioapic_irq); dsdt_line(" },"); } static void pci_pirq_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq, void *arg __unused) { char *name; name = lpc_pirq_name(irq->pirq_pin); if (name == NULL) return; dsdt_line(" Package ()"); dsdt_line(" {"); dsdt_line(" 0x%X,", slot << 16 | 0xffff); dsdt_line(" 0x%02X,", pin - 1); dsdt_line(" %s,", name); dsdt_line(" 0x00"); dsdt_line(" },"); free(name); } #endif /* * A bhyve virtual machine has a flat PCI hierarchy with a root port * corresponding to each PCI bus. */ static void pci_bus_write_dsdt(int bus) { struct businfo *bi; struct slotinfo *si; struct pci_devinst *pi; int func, slot; /* * If there are no devices on this 'bus' then just return. */ if ((bi = pci_businfo[bus]) == NULL) { /* * Bus 0 is special because it decodes the I/O ports used * for PCI config space access even if there are no devices * on it. */ if (bus != 0) return; } dsdt_line(" Device (PC%02X)", bus); dsdt_line(" {"); dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))"); dsdt_line(" Method (_BBN, 0, NotSerialized)"); dsdt_line(" {"); dsdt_line(" Return (0x%08X)", bus); dsdt_line(" }"); dsdt_line(" Name (_CRS, ResourceTemplate ()"); dsdt_line(" {"); dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, " "MaxFixed, PosDecode,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x%04X, // Range Minimum", bus); dsdt_line(" 0x%04X, // Range Maximum", bus); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x0001, // Length"); dsdt_line(" ,, )"); #ifdef __amd64__ if (bus == 0) { dsdt_indent(3); dsdt_fixed_ioport(0xCF8, 8); dsdt_unindent(3); dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x0000, // Range Minimum"); dsdt_line(" 0x0CF7, // Range Maximum"); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x0CF8, // Length"); dsdt_line(" ,, , TypeStatic)"); dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x0D00, // Range Minimum"); dsdt_line(" 0x%04X, // Range Maximum", PCI_EMUL_IOBASE - 1); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x%04X, // Length", PCI_EMUL_IOBASE - 0x0D00); dsdt_line(" ,, , TypeStatic)"); if (bi == NULL) { dsdt_line(" })"); goto done; } } #endif assert(bi != NULL); /* i/o window */ dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x%04X, // Range Minimum", bi->iobase); dsdt_line(" 0x%04X, // Range Maximum", bi->iolimit - 1); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x%04X, // Length", bi->iolimit - bi->iobase); dsdt_line(" ,, , TypeStatic)"); /* mmio window (32-bit) */ dsdt_line(" DWordMemory (ResourceProducer, PosDecode, " "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); dsdt_line(" 0x00000000, // Granularity"); dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32); dsdt_line(" 0x%08X, // Range Maximum\n", bi->memlimit32 - 1); dsdt_line(" 0x00000000, // Translation Offset"); dsdt_line(" 0x%08X, // Length\n", bi->memlimit32 - bi->membase32); dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); /* mmio window (64-bit) */ dsdt_line(" QWordMemory (ResourceProducer, PosDecode, " "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); dsdt_line(" 0x0000000000000000, // Granularity"); dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64); dsdt_line(" 0x%016lX, // Range Maximum\n", bi->memlimit64 - 1); dsdt_line(" 0x0000000000000000, // Translation Offset"); dsdt_line(" 0x%016lX, // Length\n", bi->memlimit64 - bi->membase64); dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); dsdt_line(" })"); #ifdef __amd64__ if (pci_count_lintr(bus) != 0) { dsdt_indent(2); dsdt_line("Name (PPRT, Package ()"); dsdt_line("{"); pci_walk_lintr(bus, pci_pirq_prt_entry, NULL); dsdt_line("})"); dsdt_line("Name (APRT, Package ()"); dsdt_line("{"); pci_walk_lintr(bus, pci_apic_prt_entry, NULL); dsdt_line("})"); dsdt_line("Method (_PRT, 0, NotSerialized)"); dsdt_line("{"); dsdt_line(" If (PICM)"); dsdt_line(" {"); dsdt_line(" Return (APRT)"); dsdt_line(" }"); dsdt_line(" Else"); dsdt_line(" {"); dsdt_line(" Return (PPRT)"); dsdt_line(" }"); dsdt_line("}"); dsdt_unindent(2); } #endif dsdt_indent(2); for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (func = 0; func < MAXFUNCS; func++) { pi = si->si_funcs[func].fi_devi; if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL) pi->pi_d->pe_write_dsdt(pi); } } dsdt_unindent(2); #ifdef __amd64__ done: #endif dsdt_line(" }"); } void pci_write_dsdt(void) { int bus; dsdt_indent(1); dsdt_line("Name (PICM, 0x00)"); dsdt_line("Method (_PIC, 1, NotSerialized)"); dsdt_line("{"); dsdt_line(" Store (Arg0, PICM)"); dsdt_line("}"); dsdt_line(""); dsdt_line("Scope (_SB)"); dsdt_line("{"); for (bus = 0; bus < MAXBUSES; bus++) pci_bus_write_dsdt(bus); dsdt_line("}"); dsdt_unindent(1); } int pci_bus_configured(int bus) { assert(bus >= 0 && bus < MAXBUSES); return (pci_businfo[bus] != NULL); } int pci_msi_enabled(struct pci_devinst *pi) { return (pi->pi_msi.enabled); } int pci_msi_maxmsgnum(struct pci_devinst *pi) { if (pi->pi_msi.enabled) return (pi->pi_msi.maxmsgnum); else return (0); } int pci_msix_enabled(struct pci_devinst *pi) { return (pi->pi_msix.enabled && !pi->pi_msi.enabled); } void pci_generate_msix(struct pci_devinst *pi, int index) { struct msix_table_entry *mte; if (!pci_msix_enabled(pi)) return; if (pi->pi_msix.function_mask) return; if (index >= pi->pi_msix.table_count) return; mte = &pi->pi_msix.table[index]; if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) { /* XXX Set PBA bit if interrupt is disabled */ vm_raise_msi(pi->pi_vmctx, mte->addr, mte->msg_data, pi->pi_bus, pi->pi_slot, pi->pi_func); } } void pci_generate_msi(struct pci_devinst *pi, int index) { if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) { vm_raise_msi(pi->pi_vmctx, pi->pi_msi.addr, pi->pi_msi.msg_data + index, pi->pi_bus, pi->pi_slot, pi->pi_func); } } static bool pci_lintr_permitted(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (!(pi->pi_msi.enabled || pi->pi_msix.enabled || (cmd & PCIM_CMD_INTxDIS))); } void pci_lintr_request(struct pci_devinst *pi) { struct businfo *bi; struct slotinfo *si; int bestpin, bestcount, pin; bi = pci_businfo[pi->pi_bus]; assert(bi != NULL); /* * Just allocate a pin from our slot. The pin will be * assigned IRQs later when interrupts are routed. */ si = &bi->slotinfo[pi->pi_slot]; bestpin = 0; bestcount = si->si_intpins[0].ii_count; for (pin = 1; pin < 4; pin++) { if (si->si_intpins[pin].ii_count < bestcount) { bestpin = pin; bestcount = si->si_intpins[pin].ii_count; } } si->si_intpins[bestpin].ii_count++; pi->pi_lintr.pin = bestpin + 1; pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1); } static void pci_lintr_route(struct pci_devinst *pi) { struct businfo *bi; struct intxinfo *ii; struct pci_irq *irq; if (pi->pi_lintr.pin == 0) return; bi = pci_businfo[pi->pi_bus]; assert(bi != NULL); ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1]; irq = &ii->ii_irq; pci_irq_route(pi, irq); pi->pi_lintr.irq = *irq; pci_set_cfgdata8(pi, PCIR_INTLINE, pci_irq_intline(irq)); } void pci_lintr_assert(struct pci_devinst *pi) { assert(pi->pi_lintr.pin > 0); pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == IDLE) { if (pci_lintr_permitted(pi)) { pi->pi_lintr.state = ASSERTED; pci_irq_assert(pi); } else pi->pi_lintr.state = PENDING; } pthread_mutex_unlock(&pi->pi_lintr.lock); } void pci_lintr_deassert(struct pci_devinst *pi) { assert(pi->pi_lintr.pin > 0); pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == ASSERTED) { pi->pi_lintr.state = IDLE; pci_irq_deassert(pi); } else if (pi->pi_lintr.state == PENDING) pi->pi_lintr.state = IDLE; pthread_mutex_unlock(&pi->pi_lintr.lock); } static void pci_lintr_update(struct pci_devinst *pi) { pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) { pci_irq_deassert(pi); pi->pi_lintr.state = PENDING; } else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) { pi->pi_lintr.state = ASSERTED; pci_irq_assert(pi); } pthread_mutex_unlock(&pi->pi_lintr.lock); } int pci_count_lintr(int bus) { int count, slot, pin; struct slotinfo *slotinfo; count = 0; if (pci_businfo[bus] != NULL) { for (slot = 0; slot < MAXSLOTS; slot++) { slotinfo = &pci_businfo[bus]->slotinfo[slot]; for (pin = 0; pin < 4; pin++) { if (slotinfo->si_intpins[pin].ii_count != 0) count++; } } } return (count); } void pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg) { struct businfo *bi; struct slotinfo *si; struct intxinfo *ii; int slot, pin; if ((bi = pci_businfo[bus]) == NULL) return; for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (pin = 0; pin < 4; pin++) { ii = &si->si_intpins[pin]; if (ii->ii_count != 0) cb(bus, slot, pin + 1, &ii->ii_irq, arg); } } } /* * Return 1 if the emulated device in 'slot' is a multi-function device. * Return 0 otherwise. */ static int pci_emul_is_mfdev(int bus, int slot) { struct businfo *bi; struct slotinfo *si; int f, numfuncs; numfuncs = 0; if ((bi = pci_businfo[bus]) != NULL) { si = &bi->slotinfo[slot]; for (f = 0; f < MAXFUNCS; f++) { if (si->si_funcs[f].fi_devi != NULL) { numfuncs++; } } } return (numfuncs > 1); } /* * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on * whether or not is a multi-function being emulated in the pci 'slot'. */ static void pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv) { int mfdev; if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) { mfdev = pci_emul_is_mfdev(bus, slot); switch (bytes) { case 1: case 2: *rv &= ~PCIM_MFDEV; if (mfdev) { *rv |= PCIM_MFDEV; } break; case 4: *rv &= ~(PCIM_MFDEV << 16); if (mfdev) { *rv |= (PCIM_MFDEV << 16); } break; } } } /* * Update device state in response to changes to the PCI command * register. */ void pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old) { int i; uint16_t changed, new; new = pci_get_cfgdata16(pi, PCIR_COMMAND); changed = old ^ new; /* * If the MMIO or I/O address space decoding has changed then * register/unregister all BARs that decode that address space. */ for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) { switch (pi->pi_bar[i].type) { case PCIBAR_NONE: case PCIBAR_MEMHI64: break; case PCIBAR_IO: /* I/O address space decoding changed? */ if (changed & PCIM_CMD_PORTEN) { if (new & PCIM_CMD_PORTEN) register_bar(pi, i); else unregister_bar(pi, i); } break; case PCIBAR_ROM: /* skip (un-)register of ROM if it disabled */ if (!romen(pi)) break; /* fallthrough */ case PCIBAR_MEM32: case PCIBAR_MEM64: /* MMIO address space decoding changed? */ if (changed & PCIM_CMD_MEMEN) { if (new & PCIM_CMD_MEMEN) register_bar(pi, i); else unregister_bar(pi, i); } break; default: assert(0); } } /* * If INTx has been unmasked and is pending, assert the * interrupt. */ pci_lintr_update(pi); } static void pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes) { int rshift; uint32_t cmd, old, readonly; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */ /* * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3. * * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are * 'write 1 to clear'. However these bits are not set to '1' by * any device emulation so it is simpler to treat them as readonly. */ rshift = (coff & 0x3) * 8; readonly = 0xFFFFF880 >> rshift; old = CFGREAD(pi, coff, bytes); new &= ~readonly; new |= (old & readonly); CFGWRITE(pi, coff, new, bytes); /* update config */ pci_emul_cmd_changed(pi, cmd); } static void pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes, uint32_t *valp) { struct businfo *bi; struct slotinfo *si; struct pci_devinst *pi; struct pci_devemu *pe; int idx, needcfg; uint64_t addr, bar, mask; if ((bi = pci_businfo[bus]) != NULL) { si = &bi->slotinfo[slot]; pi = si->si_funcs[func].fi_devi; } else pi = NULL; /* * Just return if there is no device at this slot:func or if the * guest is doing an un-aligned access. */ if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) || (coff & (bytes - 1)) != 0) { if (in) *valp = 0xffffffff; return; } /* * Ignore all writes beyond the standard config space and return all * ones on reads. */ if (coff >= PCI_REGMAX + 1) { if (in) { *valp = 0xffffffff; /* * Extended capabilities begin at offset 256 in config * space. Absence of extended capabilities is signaled * with all 0s in the extended capability header at * offset 256. */ if (coff <= PCI_REGMAX + 4) *valp = 0x00000000; } return; } pe = pi->pi_d; /* * Config read */ if (in) { /* Let the device emulation override the default handler */ if (pe->pe_cfgread != NULL) { needcfg = pe->pe_cfgread(pi, coff, bytes, valp); } else { needcfg = 1; } if (needcfg) *valp = CFGREAD(pi, coff, bytes); pci_emul_hdrtype_fixup(bus, slot, coff, bytes, valp); } else { /* Let the device emulation override the default handler */ if (pe->pe_cfgwrite != NULL && (*pe->pe_cfgwrite)(pi, coff, bytes, *valp) == 0) return; /* * Special handling for write to BAR and ROM registers */ if (is_pcir_bar(coff) || is_pcir_bios(coff)) { /* * Ignore writes to BAR registers that are not * 4-byte aligned. */ if (bytes != 4 || (coff & 0x3) != 0) return; if (is_pcir_bar(coff)) { idx = (coff - PCIR_BAR(0)) / 4; } else if (is_pcir_bios(coff)) { idx = PCI_ROM_IDX; } else { errx(4, "%s: invalid BAR offset %d", __func__, coff); } mask = ~(pi->pi_bar[idx].size - 1); switch (pi->pi_bar[idx].type) { case PCIBAR_NONE: pi->pi_bar[idx].addr = bar = 0; break; case PCIBAR_IO: addr = *valp & mask; #if defined(PCI_EMUL_IOMASK) addr &= PCI_EMUL_IOMASK; #endif bar = addr | pi->pi_bar[idx].lobits; /* * Register the new BAR value for interception */ if (addr != pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_IO); } break; case PCIBAR_MEM32: addr = bar = *valp & mask; bar |= pi->pi_bar[idx].lobits; if (addr != pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_MEM32); } break; case PCIBAR_MEM64: addr = bar = *valp & mask; bar |= pi->pi_bar[idx].lobits; if (addr != (uint32_t)pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_MEM64); } break; case PCIBAR_MEMHI64: mask = ~(pi->pi_bar[idx - 1].size - 1); addr = ((uint64_t)*valp << 32) & mask; bar = addr >> 32; if (bar != pi->pi_bar[idx - 1].addr >> 32) { update_bar_address(pi, addr, idx - 1, PCIBAR_MEMHI64); } break; case PCIBAR_ROM: addr = bar = *valp & mask; if (memen(pi) && romen(pi)) { unregister_bar(pi, idx); } pi->pi_bar[idx].addr = addr; pi->pi_bar[idx].lobits = *valp & PCIM_BIOS_ENABLE; /* romen could have changed it value */ if (memen(pi) && romen(pi)) { register_bar(pi, idx); } bar |= pi->pi_bar[idx].lobits; break; default: assert(0); } pci_set_cfgdata32(pi, coff, bar); } else if (pci_emul_iscap(pi, coff)) { pci_emul_capwrite(pi, coff, bytes, *valp, 0, 0); } else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) { pci_emul_cmdsts_write(pi, coff, *valp, bytes); } else { CFGWRITE(pi, coff, *valp, bytes); } } } #ifdef __amd64__ static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff; static int pci_emul_cfgaddr(struct vmctx *ctx __unused, int in, int port __unused, int bytes, uint32_t *eax, void *arg __unused) { uint32_t x; if (bytes != 4) { if (in) *eax = (bytes == 2) ? 0xffff : 0xff; return (0); } if (in) { x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff; if (cfgenable) x |= CONF1_ENABLE; *eax = x; } else { x = *eax; cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE; cfgoff = (x & PCI_REGMAX) & ~0x03; cfgfunc = (x >> 8) & PCI_FUNCMAX; cfgslot = (x >> 11) & PCI_SLOTMAX; cfgbus = (x >> 16) & PCI_BUSMAX; } return (0); } INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr); static int pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port, int bytes, uint32_t *eax, void *arg __unused) { int coff; assert(bytes == 1 || bytes == 2 || bytes == 4); coff = cfgoff + (port - CONF1_DATA_PORT); if (cfgenable) { pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax); } else { /* Ignore accesses to cfgdata if not enabled by cfgaddr */ if (in) *eax = 0xffffffff; } return (0); } INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata); #endif #ifdef BHYVE_SNAPSHOT /* * Saves/restores PCI device emulated state. Returns 0 on success. */ static int pci_snapshot_pci_dev(struct vm_snapshot_meta *meta) { struct pci_devinst *pi; int i; int ret; pi = meta->dev_data; SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done); SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata), meta, ret, done); for (i = 0; i < (int)nitems(pi->pi_bar); i++) { SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done); } /* Restore MSI-X table. */ for (i = 0; i < pi->pi_msix.table_count; i++) { SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data, meta, ret, done); SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control, meta, ret, done); } done: return (ret); } int pci_snapshot(struct vm_snapshot_meta *meta) { struct pci_devemu *pde; struct pci_devinst *pdi; int ret; assert(meta->dev_name != NULL); pdi = meta->dev_data; pde = pdi->pi_d; if (pde->pe_snapshot == NULL) return (ENOTSUP); ret = pci_snapshot_pci_dev(meta); if (ret == 0) ret = (*pde->pe_snapshot)(meta); return (ret); } int pci_pause(struct pci_devinst *pdi) { struct pci_devemu *pde = pdi->pi_d; if (pde->pe_pause == NULL) { /* The pause/resume functionality is optional. */ return (0); } return (*pde->pe_pause)(pdi); } int pci_resume(struct pci_devinst *pdi) { struct pci_devemu *pde = pdi->pi_d; if (pde->pe_resume == NULL) { /* The pause/resume functionality is optional. */ return (0); } return (*pde->pe_resume)(pdi); } #endif #define PCI_EMUL_TEST #ifdef PCI_EMUL_TEST /* * Define a dummy test device */ #define DIOSZ 8 #define DMEMSZ 4096 struct pci_emul_dsoftc { uint8_t ioregs[DIOSZ]; uint8_t memregs[2][DMEMSZ]; }; #define PCI_EMUL_MSI_MSGS 4 #define PCI_EMUL_MSIX_MSGS 16 static int pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused) { int error; struct pci_emul_dsoftc *sc; sc = calloc(1, sizeof(struct pci_emul_dsoftc)); pi->pi_arg = sc; pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001); pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD); pci_set_cfgdata8(pi, PCIR_CLASS, 0x02); error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS); assert(error == 0); error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ); assert(error == 0); error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ); assert(error == 0); error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ); assert(error == 0); return (0); } static void pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size, uint64_t value) { int i; struct pci_emul_dsoftc *sc = pi->pi_arg; if (baridx == 0) { if (offset + size > DIOSZ) { printf("diow: iow too large, offset %ld size %d\n", offset, size); return; } if (size == 1) { sc->ioregs[offset] = value & 0xff; } else if (size == 2) { *(uint16_t *)&sc->ioregs[offset] = value & 0xffff; } else if (size == 4) { *(uint32_t *)&sc->ioregs[offset] = value; } else { printf("diow: iow unknown size %d\n", size); } /* * Special magic value to generate an interrupt */ if (offset == 4 && size == 4 && pci_msi_enabled(pi)) pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi)); if (value == 0xabcdef) { for (i = 0; i < pci_msi_maxmsgnum(pi); i++) pci_generate_msi(pi, i); } } if (baridx == 1 || baridx == 2) { if (offset + size > DMEMSZ) { printf("diow: memw too large, offset %ld size %d\n", offset, size); return; } i = baridx - 1; /* 'memregs' index */ if (size == 1) { sc->memregs[i][offset] = value; } else if (size == 2) { *(uint16_t *)&sc->memregs[i][offset] = value; } else if (size == 4) { *(uint32_t *)&sc->memregs[i][offset] = value; } else if (size == 8) { *(uint64_t *)&sc->memregs[i][offset] = value; } else { printf("diow: memw unknown size %d\n", size); } /* * magic interrupt ?? */ } if (baridx > 2 || baridx < 0) { printf("diow: unknown bar idx %d\n", baridx); } } static uint64_t pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size) { struct pci_emul_dsoftc *sc = pi->pi_arg; uint32_t value; int i; if (baridx == 0) { if (offset + size > DIOSZ) { printf("dior: ior too large, offset %ld size %d\n", offset, size); return (0); } value = 0; if (size == 1) { value = sc->ioregs[offset]; } else if (size == 2) { value = *(uint16_t *) &sc->ioregs[offset]; } else if (size == 4) { value = *(uint32_t *) &sc->ioregs[offset]; } else { printf("dior: ior unknown size %d\n", size); } } if (baridx == 1 || baridx == 2) { if (offset + size > DMEMSZ) { printf("dior: memr too large, offset %ld size %d\n", offset, size); return (0); } i = baridx - 1; /* 'memregs' index */ if (size == 1) { value = sc->memregs[i][offset]; } else if (size == 2) { value = *(uint16_t *) &sc->memregs[i][offset]; } else if (size == 4) { value = *(uint32_t *) &sc->memregs[i][offset]; } else if (size == 8) { value = *(uint64_t *) &sc->memregs[i][offset]; } else { printf("dior: ior unknown size %d\n", size); } } if (baridx > 2 || baridx < 0) { printf("dior: unknown bar idx %d\n", baridx); return (0); } return (value); } #ifdef BHYVE_SNAPSHOT struct pci_devinst * pci_next(const struct pci_devinst *cursor) { unsigned bus = 0, slot = 0, func = 0; struct businfo *bi; struct slotinfo *si; struct funcinfo *fi; bus = cursor ? cursor->pi_bus : 0; slot = cursor ? cursor->pi_slot : 0; func = cursor ? (cursor->pi_func + 1) : 0; for (; bus < MAXBUSES; bus++) { if ((bi = pci_businfo[bus]) == NULL) continue; if (slot >= MAXSLOTS) slot = 0; for (; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; if (func >= MAXFUNCS) func = 0; for (; func < MAXFUNCS; func++) { fi = &si->si_funcs[func]; if (fi->fi_devi == NULL) continue; return (fi->fi_devi); } } } return (NULL); } static int pci_emul_snapshot(struct vm_snapshot_meta *meta __unused) { return (0); } #endif static const struct pci_devemu pci_dummy = { .pe_emu = "dummy", .pe_init = pci_emul_dinit, .pe_barwrite = pci_emul_diow, .pe_barread = pci_emul_dior, #ifdef BHYVE_SNAPSHOT .pe_snapshot = pci_emul_snapshot, #endif }; PCI_EMUL_SET(pci_dummy); #endif /* PCI_EMUL_TEST */