/*- * Copyright (c) 1998 Doug Rabson * Copyright (c) 2000 Mitsuru IWASAKI * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpidump.h" #define BEGIN_COMMENT "/*\n" #define END_COMMENT " */\n" static void acpi_print_string(char *s, size_t length); static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas); static int acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt); static void acpi_handle_fadt(ACPI_TABLE_HEADER *fadt); static void acpi_print_cpu(u_char cpu_id); static void acpi_print_cpu_uid(uint32_t uid, char *uid_string); static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags); static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr); static void acpi_print_mps_flags(uint16_t flags); static void acpi_print_intr(uint32_t intr, uint16_t mps_flags); static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags); static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp); static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp); static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp); static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp); static void acpi_handle_wddt(ACPI_TABLE_HEADER *sdp); static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain, uint32_t flags); static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp); static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat); static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp); static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp); static void acpi_print_nfit(ACPI_NFIT_HEADER *nfit); static void acpi_handle_nfit(ACPI_TABLE_HEADER *sdp); static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp); static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp); static void acpi_print_facs(ACPI_TABLE_FACS *facs); static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp); static ACPI_TABLE_HEADER *acpi_map_sdt(vm_offset_t pa); static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp); static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp); static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_SUBTABLE_HEADER *)); static void acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_NFIT_HEADER *)); /* Size of an address. 32-bit for ACPI 1.0, 64-bit for ACPI 2.0 and up. */ static int addr_size; /* Strings used in the TCPA table */ static const char *tcpa_event_type_strings[] = { "PREBOOT Certificate", "POST Code", "Unused", "No Action", "Separator", "Action", "Event Tag", "S-CRTM Contents", "S-CRTM Version", "CPU Microcode", "Platform Config Flags", "Table of Devices", "Compact Hash", "IPL", "IPL Partition Data", "Non-Host Code", "Non-Host Config", "Non-Host Info" }; static const char *TCPA_pcclient_strings[] = { "", "SMBIOS", "BIS Certificate", "POST BIOS ROM Strings", "ESCD", "CMOS", "NVRAM", "Option ROM Execute", "Option ROM Configurateion", "", "Option ROM Microcode Update ", "S-CRTM Version String", "S-CRTM Contents", "POST Contents", "Table of Devices", }; #define PRINTFLAG_END() printflag_end() static char pf_sep = '{'; static void printflag_end(void) { if (pf_sep != '{') { printf("}"); pf_sep = '{'; } printf("\n"); } static void printflag(uint64_t var, uint64_t mask, const char *name) { if (var & mask) { printf("%c%s", pf_sep, name); pf_sep = ','; } } static void acpi_print_string(char *s, size_t length) { int c; /* Trim trailing spaces and NULLs */ while (length > 0 && (s[length - 1] == ' ' || s[length - 1] == '\0')) length--; while (length--) { c = *s++; putchar(c); } } static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas) { switch(gas->SpaceId) { case ACPI_GAS_MEMORY: if (gas->BitWidth <= 32) printf("0x%08x:%u[%u] (Memory)", (u_int)gas->Address, gas->BitOffset, gas->BitWidth); else printf("0x%016jx:%u[%u] (Memory)", (uintmax_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_IO: printf("0x%02x:%u[%u] (IO)", (u_int)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_PCI: printf("%x:%x+0x%x (PCI)", (uint16_t)(gas->Address >> 32), (uint16_t)((gas->Address >> 16) & 0xffff), (uint16_t)gas->Address); break; /* XXX How to handle these below? */ case ACPI_GAS_EMBEDDED: printf("0x%x:%u[%u] (EC)", (uint16_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_SMBUS: printf("0x%x:%u[%u] (SMBus)", (uint16_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_GAS_CMOS: case ACPI_GAS_PCIBAR: case ACPI_GAS_DATATABLE: case ACPI_GAS_FIXED: default: printf("0x%016jx (?)", (uintmax_t)gas->Address); break; } } /* The FADT revision indicates whether we use the DSDT or X_DSDT addresses. */ static int acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt) { int fadt_revision; /* Set the FADT revision separately from the RSDP version. */ if (addr_size == 8) { fadt_revision = 2; /* * A few systems (e.g., IBM T23) have an RSDP that claims * revision 2 but the 64 bit addresses are invalid. If * revision 2 and the 32 bit address is non-zero but the * 32 and 64 bit versions don't match, prefer the 32 bit * version for all subsequent tables. */ if (fadt->Facs != 0 && (fadt->XFacs & 0xffffffff) != fadt->Facs) fadt_revision = 1; } else fadt_revision = 1; return (fadt_revision); } static void acpi_handle_fadt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HEADER *dsdp; ACPI_TABLE_FACS *facs; ACPI_TABLE_FADT *fadt; int fadt_revision; fadt = (ACPI_TABLE_FADT *)sdp; acpi_print_fadt(sdp); fadt_revision = acpi_get_fadt_revision(fadt); if (fadt_revision == 1) facs = (ACPI_TABLE_FACS *)acpi_map_sdt(fadt->Facs); else facs = (ACPI_TABLE_FACS *)acpi_map_sdt(fadt->XFacs); if (memcmp(facs->Signature, ACPI_SIG_FACS, 4) != 0 || facs->Length < 64) errx(1, "FACS is corrupt"); acpi_print_facs(facs); if (fadt_revision == 1) dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt); else dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt); if (acpi_checksum(dsdp, dsdp->Length)) errx(1, "DSDT is corrupt"); acpi_print_dsdt(dsdp); } static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_SUBTABLE_HEADER *)) { ACPI_SUBTABLE_HEADER *subtable; char *end; subtable = first; end = (char *)table + table->Length; while ((char *)subtable < end) { printf("\n"); if (subtable->Length < sizeof(ACPI_SUBTABLE_HEADER)) { warnx("invalid subtable length %u", subtable->Length); return; } action(subtable); subtable = (ACPI_SUBTABLE_HEADER *)((char *)subtable + subtable->Length); } } static void acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_NFIT_HEADER *)) { ACPI_NFIT_HEADER *subtable; char *end; subtable = first; end = (char *)table + table->Length; while ((char *)subtable < end) { printf("\n"); if (subtable->Length < sizeof(ACPI_NFIT_HEADER)) { warnx("invalid subtable length %u", subtable->Length); return; } action(subtable); subtable = (ACPI_NFIT_HEADER *)((char *)subtable + subtable->Length); } } static void acpi_print_cpu(u_char cpu_id) { printf("\tACPI CPU="); if (cpu_id == 0xff) printf("ALL\n"); else printf("%d\n", (u_int)cpu_id); } static void acpi_print_cpu_uid(uint32_t uid, char *uid_string) { printf("\tUID=%d", uid); if (uid_string != NULL) printf(" (%s)", uid_string); printf("\n"); } static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags) { printf("\tFlags={"); if (flags & ACPI_MADT_ENABLED) printf("ENABLED"); else printf("DISABLED"); printf("}\n"); printf("\tAPIC ID=%d\n", apic_id); } static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr) { printf("\tAPIC ID=%d\n", apic_id); printf("\tINT BASE=%d\n", int_base); printf("\tADDR=0x%016jx\n", (uintmax_t)apic_addr); } static void acpi_print_mps_flags(uint16_t flags) { printf("\tFlags={Polarity="); switch (flags & ACPI_MADT_POLARITY_MASK) { case ACPI_MADT_POLARITY_CONFORMS: printf("conforming"); break; case ACPI_MADT_POLARITY_ACTIVE_HIGH: printf("active-hi"); break; case ACPI_MADT_POLARITY_ACTIVE_LOW: printf("active-lo"); break; default: printf("0x%x", flags & ACPI_MADT_POLARITY_MASK); break; } printf(", Trigger="); switch (flags & ACPI_MADT_TRIGGER_MASK) { case ACPI_MADT_TRIGGER_CONFORMS: printf("conforming"); break; case ACPI_MADT_TRIGGER_EDGE: printf("edge"); break; case ACPI_MADT_TRIGGER_LEVEL: printf("level"); break; default: printf("0x%x", (flags & ACPI_MADT_TRIGGER_MASK) >> 2); } printf("}\n"); } static void acpi_print_gicc_flags(uint32_t flags) { printf("\tFlags={Performance intr="); if (flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) printf("edge"); else printf("level"); printf(", VGIC intr="); if (flags & ACPI_MADT_VGIC_IRQ_MODE) printf("edge"); else printf("level"); printf("}\n"); } static void acpi_print_intr(uint32_t intr, uint16_t mps_flags) { printf("\tINTR=%d\n", intr); acpi_print_mps_flags(mps_flags); } static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags) { printf("\tLINT Pin=%d\n", lint); acpi_print_mps_flags(mps_flags); } static const char *apic_types[] = { [ACPI_MADT_TYPE_LOCAL_APIC] = "Local APIC", [ACPI_MADT_TYPE_IO_APIC] = "IO APIC", [ACPI_MADT_TYPE_INTERRUPT_OVERRIDE] = "INT Override", [ACPI_MADT_TYPE_NMI_SOURCE] = "NMI", [ACPI_MADT_TYPE_LOCAL_APIC_NMI] = "Local APIC NMI", [ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE] = "Local APIC Override", [ACPI_MADT_TYPE_IO_SAPIC] = "IO SAPIC", [ACPI_MADT_TYPE_LOCAL_SAPIC] = "Local SAPIC", [ACPI_MADT_TYPE_INTERRUPT_SOURCE] = "Platform Interrupt", [ACPI_MADT_TYPE_LOCAL_X2APIC] = "Local X2APIC", [ACPI_MADT_TYPE_LOCAL_X2APIC_NMI] = "Local X2APIC NMI", [ACPI_MADT_TYPE_GENERIC_INTERRUPT] = "GIC CPU Interface Structure", [ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR] = "GIC Distributor Structure", [ACPI_MADT_TYPE_GENERIC_MSI_FRAME] = "GICv2m MSI Frame", [ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR] = "GIC Redistributor Structure", [ACPI_MADT_TYPE_GENERIC_TRANSLATOR] = "GIC ITS Structure" }; static const char *platform_int_types[] = { "0 (unknown)", "PMI", "INIT", "Corrected Platform Error" }; static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp) { ACPI_MADT_LOCAL_APIC *lapic; ACPI_MADT_IO_APIC *ioapic; ACPI_MADT_INTERRUPT_OVERRIDE *over; ACPI_MADT_NMI_SOURCE *nmi; ACPI_MADT_LOCAL_APIC_NMI *lapic_nmi; ACPI_MADT_LOCAL_APIC_OVERRIDE *lapic_over; ACPI_MADT_IO_SAPIC *iosapic; ACPI_MADT_LOCAL_SAPIC *lsapic; ACPI_MADT_INTERRUPT_SOURCE *isrc; ACPI_MADT_LOCAL_X2APIC *x2apic; ACPI_MADT_LOCAL_X2APIC_NMI *x2apic_nmi; ACPI_MADT_GENERIC_INTERRUPT *gicc; ACPI_MADT_GENERIC_DISTRIBUTOR *gicd; ACPI_MADT_GENERIC_REDISTRIBUTOR *gicr; ACPI_MADT_GENERIC_TRANSLATOR *gict; if (mp->Type < nitems(apic_types)) printf("\tType=%s\n", apic_types[mp->Type]); else printf("\tType=%d (unknown)\n", mp->Type); switch (mp->Type) { case ACPI_MADT_TYPE_LOCAL_APIC: lapic = (ACPI_MADT_LOCAL_APIC *)mp; acpi_print_cpu(lapic->ProcessorId); acpi_print_local_apic(lapic->Id, lapic->LapicFlags); break; case ACPI_MADT_TYPE_IO_APIC: ioapic = (ACPI_MADT_IO_APIC *)mp; acpi_print_io_apic(ioapic->Id, ioapic->GlobalIrqBase, ioapic->Address); break; case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: over = (ACPI_MADT_INTERRUPT_OVERRIDE *)mp; printf("\tBUS=%d\n", (u_int)over->Bus); printf("\tIRQ=%d\n", (u_int)over->SourceIrq); acpi_print_intr(over->GlobalIrq, over->IntiFlags); break; case ACPI_MADT_TYPE_NMI_SOURCE: nmi = (ACPI_MADT_NMI_SOURCE *)mp; acpi_print_intr(nmi->GlobalIrq, nmi->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_APIC_NMI: lapic_nmi = (ACPI_MADT_LOCAL_APIC_NMI *)mp; acpi_print_cpu(lapic_nmi->ProcessorId); acpi_print_local_nmi(lapic_nmi->Lint, lapic_nmi->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: lapic_over = (ACPI_MADT_LOCAL_APIC_OVERRIDE *)mp; printf("\tLocal APIC ADDR=0x%016jx\n", (uintmax_t)lapic_over->Address); break; case ACPI_MADT_TYPE_IO_SAPIC: iosapic = (ACPI_MADT_IO_SAPIC *)mp; acpi_print_io_apic(iosapic->Id, iosapic->GlobalIrqBase, iosapic->Address); break; case ACPI_MADT_TYPE_LOCAL_SAPIC: lsapic = (ACPI_MADT_LOCAL_SAPIC *)mp; acpi_print_cpu(lsapic->ProcessorId); acpi_print_local_apic(lsapic->Id, lsapic->LapicFlags); printf("\tAPIC EID=%d\n", (u_int)lsapic->Eid); if (mp->Length > __offsetof(ACPI_MADT_LOCAL_SAPIC, Uid)) acpi_print_cpu_uid(lsapic->Uid, lsapic->UidString); break; case ACPI_MADT_TYPE_INTERRUPT_SOURCE: isrc = (ACPI_MADT_INTERRUPT_SOURCE *)mp; if (isrc->Type < nitems(platform_int_types)) printf("\tType=%s\n", platform_int_types[isrc->Type]); else printf("\tType=%d (unknown)\n", isrc->Type); printf("\tAPIC ID=%d\n", (u_int)isrc->Id); printf("\tAPIC EID=%d\n", (u_int)isrc->Eid); printf("\tSAPIC Vector=%d\n", (u_int)isrc->IoSapicVector); acpi_print_intr(isrc->GlobalIrq, isrc->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_X2APIC: x2apic = (ACPI_MADT_LOCAL_X2APIC *)mp; acpi_print_cpu_uid(x2apic->Uid, NULL); acpi_print_local_apic(x2apic->LocalApicId, x2apic->LapicFlags); break; case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: x2apic_nmi = (ACPI_MADT_LOCAL_X2APIC_NMI *)mp; acpi_print_cpu_uid(x2apic_nmi->Uid, NULL); acpi_print_local_nmi(x2apic_nmi->Lint, x2apic_nmi->IntiFlags); break; case ACPI_MADT_TYPE_GENERIC_INTERRUPT: gicc = (ACPI_MADT_GENERIC_INTERRUPT *)mp; acpi_print_cpu_uid(gicc->Uid, NULL); printf("\tCPU INTERFACE=%x\n", gicc->CpuInterfaceNumber); acpi_print_gicc_flags(gicc->Flags); printf("\tParking Protocol Version=%x\n", gicc->ParkingVersion); printf("\tPERF INTR=%d\n", gicc->PerformanceInterrupt); printf("\tParked ADDR=%016jx\n", (uintmax_t)gicc->ParkedAddress); printf("\tBase ADDR=%016jx\n", (uintmax_t)gicc->BaseAddress); printf("\tGICV=%016jx\n", (uintmax_t)gicc->GicvBaseAddress); printf("\tGICH=%016jx\n", (uintmax_t)gicc->GichBaseAddress); printf("\tVGIC INTR=%d\n", gicc->VgicInterrupt); printf("\tGICR ADDR=%016jx\n", (uintmax_t)gicc->GicrBaseAddress); printf("\tMPIDR=%jx\n", (uintmax_t)gicc->ArmMpidr); printf("\tEfficency Class=%d\n", (u_int)gicc->EfficiencyClass); break; case ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR: gicd = (ACPI_MADT_GENERIC_DISTRIBUTOR *)mp; printf("\tGIC ID=%d\n", (u_int)gicd->GicId); printf("\tBase ADDR=%016jx\n", (uintmax_t)gicd->BaseAddress); printf("\tVector Base=%d\n", gicd->GlobalIrqBase); printf("\tGIC VERSION=%d\n", (u_int)gicd->Version); break; case ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR: gicr = (ACPI_MADT_GENERIC_REDISTRIBUTOR *)mp; printf("\tBase ADDR=%016jx\n", (uintmax_t)gicr->BaseAddress); printf("\tLength=%08x\n", gicr->Length); break; case ACPI_MADT_TYPE_GENERIC_TRANSLATOR: gict = (ACPI_MADT_GENERIC_TRANSLATOR *)mp; printf("\tGIC ITS ID=%d\n", gict->TranslationId); printf("\tBase ADDR=%016jx\n", (uintmax_t)gict->BaseAddress); break; } } static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MADT *madt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); madt = (ACPI_TABLE_MADT *)sdp; printf("\tLocal APIC ADDR=0x%08x\n", madt->Address); printf("\tFlags={"); if (madt->Flags & ACPI_MADT_PCAT_COMPAT) printf("PC-AT"); printf("}\n"); acpi_walk_subtables(sdp, (madt + 1), acpi_print_madt); printf(END_COMMENT); } static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HPET *hpet; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); hpet = (ACPI_TABLE_HPET *)sdp; printf("\tHPET Number=%d\n", hpet->Sequence); printf("\tADDR="); acpi_print_gas(&hpet->Address); printf("\tHW Rev=0x%x\n", hpet->Id & ACPI_HPET_ID_HARDWARE_REV_ID); printf("\tComparators=%d\n", (hpet->Id & ACPI_HPET_ID_COMPARATORS) >> 8); printf("\tCounter Size=%d\n", hpet->Id & ACPI_HPET_ID_COUNT_SIZE_CAP ? 1 : 0); printf("\tLegacy IRQ routing capable={"); if (hpet->Id & ACPI_HPET_ID_LEGACY_CAPABLE) printf("TRUE}\n"); else printf("FALSE}\n"); printf("\tPCI Vendor ID=0x%04x\n", hpet->Id >> 16); printf("\tMinimal Tick=%d\n", hpet->MinimumTick); printf("\tFlags=0x%02x\n", hpet->Flags); printf(END_COMMENT); } static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_ECDT *ecdt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); ecdt = (ACPI_TABLE_ECDT *)sdp; printf("\tEC_CONTROL="); acpi_print_gas(&ecdt->Control); printf("\n\tEC_DATA="); acpi_print_gas(&ecdt->Data); printf("\n\tUID=%#x, ", ecdt->Uid); printf("GPE_BIT=%#x\n", ecdt->Gpe); printf("\tEC_ID=%s\n", ecdt->Id); printf(END_COMMENT); } static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MCFG *mcfg; ACPI_MCFG_ALLOCATION *alloc; u_int i, entries; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); mcfg = (ACPI_TABLE_MCFG *)sdp; entries = (sdp->Length - sizeof(ACPI_TABLE_MCFG)) / sizeof(ACPI_MCFG_ALLOCATION); alloc = (ACPI_MCFG_ALLOCATION *)(mcfg + 1); for (i = 0; i < entries; i++, alloc++) { printf("\n"); printf("\tBase Address=0x%016jx\n", (uintmax_t)alloc->Address); printf("\tSegment Group=0x%04x\n", alloc->PciSegment); printf("\tStart Bus=%d\n", alloc->StartBusNumber); printf("\tEnd Bus=%d\n", alloc->EndBusNumber); } printf(END_COMMENT); } static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SLIT *slit; UINT64 i, j; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); slit = (ACPI_TABLE_SLIT *)sdp; printf("\tLocality Count=%ju\n", (uintmax_t)slit->LocalityCount); printf("\n\t "); for (i = 0; i < slit->LocalityCount; i++) printf(" %3ju", (uintmax_t)i); printf("\n\t +"); for (i = 0; i < slit->LocalityCount; i++) printf("----"); printf("\n"); for (i = 0; i < slit->LocalityCount; i++) { printf("\t %3ju |", (uintmax_t)i); for (j = 0; j < slit->LocalityCount; j++) printf(" %3d", slit->Entry[i * slit->LocalityCount + j]); printf("\n"); } printf(END_COMMENT); } static void acpi_handle_wddt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WDDT *wddt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); wddt = (ACPI_TABLE_WDDT *)sdp; printf("\tSpecVersion=0x%04x, TableVersion=0x%04x\n", wddt->SpecVersion, wddt->TableVersion); printf("\tPciVendorId=0x%04x, Address=", wddt->PciVendorId); acpi_print_gas(&wddt->Address); printf("\n\tMaxCount=%u, MinCount=%u, Period=%ums\n", wddt->MaxCount, wddt->MinCount, wddt->Period); #define PRINTFLAG(var, flag) printflag((var), ACPI_WDDT_## flag, #flag) printf("\tStatus="); PRINTFLAG(wddt->Status, AVAILABLE); PRINTFLAG(wddt->Status, ACTIVE); PRINTFLAG(wddt->Status, TCO_OS_OWNED); PRINTFLAG(wddt->Status, USER_RESET); PRINTFLAG(wddt->Status, WDT_RESET); PRINTFLAG(wddt->Status, POWER_FAIL); PRINTFLAG(wddt->Status, UNKNOWN_RESET); PRINTFLAG_END(); printf("\tCapability="); PRINTFLAG(wddt->Capability, AUTO_RESET); PRINTFLAG(wddt->Capability, ALERT_SUPPORT); PRINTFLAG_END(); #undef PRINTFLAG printf(END_COMMENT); } static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain, uint32_t flags) { printf("\tFlags={"); if (flags & ACPI_SRAT_CPU_ENABLED) printf("ENABLED"); else printf("DISABLED"); printf("}\n"); printf("\tAPIC ID=%d\n", apic_id); printf("\tProximity Domain=%d\n", proximity_domain); } static char * acpi_tcpa_evname(struct TCPAevent *event) { struct TCPApc_event *pc_event; char *eventname = NULL; pc_event = (struct TCPApc_event *)(event + 1); switch(event->event_type) { case PREBOOT: case POST_CODE: case UNUSED: case NO_ACTION: case SEPARATOR: case SCRTM_CONTENTS: case SCRTM_VERSION: case CPU_MICROCODE: case PLATFORM_CONFIG_FLAGS: case TABLE_OF_DEVICES: case COMPACT_HASH: case IPL: case IPL_PARTITION_DATA: case NONHOST_CODE: case NONHOST_CONFIG: case NONHOST_INFO: asprintf(&eventname, "%s", tcpa_event_type_strings[event->event_type]); break; case ACTION: eventname = calloc(event->event_size + 1, sizeof(char)); memcpy(eventname, pc_event, event->event_size); break; case EVENT_TAG: switch (pc_event->event_id) { case SMBIOS: case BIS_CERT: case CMOS: case NVRAM: case OPTION_ROM_EXEC: case OPTION_ROM_CONFIG: case S_CRTM_VERSION: case POST_BIOS_ROM: case ESCD: case OPTION_ROM_MICROCODE: case S_CRTM_CONTENTS: case POST_CONTENTS: asprintf(&eventname, "%s", TCPA_pcclient_strings[pc_event->event_id]); break; default: asprintf(&eventname, "", pc_event->event_id); break; } break; default: asprintf(&eventname, "", event->event_type); break; } return eventname; } static void acpi_print_tcpa(struct TCPAevent *event) { int i; char *eventname; eventname = acpi_tcpa_evname(event); printf("\t%d", event->pcr_index); printf(" 0x"); for (i = 0; i < 20; i++) printf("%02x", event->pcr_value[i]); printf(" [%s]\n", eventname ? eventname : ""); free(eventname); } static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp) { struct TCPAbody *tcpa; struct TCPAevent *event; uintmax_t len, paddr; unsigned char *vaddr = NULL; unsigned char *vend = NULL; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); tcpa = (struct TCPAbody *) sdp; switch (tcpa->platform_class) { case ACPI_TCPA_BIOS_CLIENT: len = tcpa->client.log_max_len; paddr = tcpa->client.log_start_addr; break; case ACPI_TCPA_BIOS_SERVER: len = tcpa->server.log_max_len; paddr = tcpa->server.log_start_addr; break; default: printf("XXX"); printf(END_COMMENT); return; } printf("\tClass %u Base Address 0x%jx Length %ju\n\n", tcpa->platform_class, paddr, len); if (len == 0) { printf("\tEmpty TCPA table\n"); printf(END_COMMENT); return; } if(sdp->Revision == 1){ printf("\tOLD TCPA spec log found. Dumping not supported.\n"); printf(END_COMMENT); return; } vaddr = (unsigned char *)acpi_map_physical(paddr, len); vend = vaddr + len; while (vaddr != NULL) { if ((vaddr + sizeof(struct TCPAevent) >= vend)|| (vaddr + sizeof(struct TCPAevent) < vaddr)) break; event = (struct TCPAevent *)(void *)vaddr; if (vaddr + event->event_size >= vend) break; if (vaddr + event->event_size < vaddr) break; if (event->event_type == 0 && event->event_size == 0) break; #if 0 { unsigned int i, j, k; printf("\n\tsize %d\n\t\t%p ", event->event_size, vaddr); for (j = 0, i = 0; i < sizeof(struct TCPAevent) + event->event_size; i++) { printf("%02x ", vaddr[i]); if ((i+1) % 8 == 0) { for (k = 0; k < 8; k++) printf("%c", isprint(vaddr[j+k]) ? vaddr[j+k] : '.'); printf("\n\t\t%p ", &vaddr[i + 1]); j = i + 1; } } printf("\n"); } #endif acpi_print_tcpa(event); vaddr += sizeof(struct TCPAevent) + event->event_size; } printf(END_COMMENT); } static const char * devscope_type2str(int type) { static char typebuf[16]; switch (type) { case 1: return ("PCI Endpoint Device"); case 2: return ("PCI Sub-Hierarchy"); case 3: return ("IOAPIC"); case 4: return ("HPET"); default: snprintf(typebuf, sizeof(typebuf), "%d", type); return (typebuf); } } static int acpi_handle_dmar_devscope(void *addr, int remaining) { char sep; int pathlen; ACPI_DMAR_PCI_PATH *path, *pathend; ACPI_DMAR_DEVICE_SCOPE *devscope = addr; if (remaining < (int)sizeof(ACPI_DMAR_DEVICE_SCOPE)) return (-1); if (remaining < devscope->Length) return (-1); printf("\n"); printf("\t\tType=%s\n", devscope_type2str(devscope->EntryType)); printf("\t\tLength=%d\n", devscope->Length); printf("\t\tEnumerationId=%d\n", devscope->EnumerationId); printf("\t\tStartBusNumber=%d\n", devscope->Bus); path = (ACPI_DMAR_PCI_PATH *)(devscope + 1); pathlen = devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE); pathend = path + pathlen / sizeof(ACPI_DMAR_PCI_PATH); if (path < pathend) { sep = '{'; printf("\t\tPath="); do { printf("%c%d:%d", sep, path->Device, path->Function); sep=','; path++; } while (path < pathend); printf("}\n"); } return (devscope->Length); } static void acpi_handle_dmar_drhd(ACPI_DMAR_HARDWARE_UNIT *drhd) { char *cp; int remaining, consumed; printf("\n"); printf("\tType=DRHD\n"); printf("\tLength=%d\n", drhd->Header.Length); #define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag) printf("\tFlags="); PRINTFLAG(drhd->Flags, INCLUDE_ALL); PRINTFLAG_END(); #undef PRINTFLAG printf("\tSegment=%d\n", drhd->Segment); printf("\tAddress=0x%016jx\n", (uintmax_t)drhd->Address); remaining = drhd->Header.Length - sizeof(ACPI_DMAR_HARDWARE_UNIT); if (remaining > 0) printf("\tDevice Scope:"); while (remaining > 0) { cp = (char *)drhd + drhd->Header.Length - remaining; consumed = acpi_handle_dmar_devscope(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } } static void acpi_handle_dmar_rmrr(ACPI_DMAR_RESERVED_MEMORY *rmrr) { char *cp; int remaining, consumed; printf("\n"); printf("\tType=RMRR\n"); printf("\tLength=%d\n", rmrr->Header.Length); printf("\tSegment=%d\n", rmrr->Segment); printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rmrr->BaseAddress); printf("\tLimitAddress=0x%016jx\n", (uintmax_t)rmrr->EndAddress); remaining = rmrr->Header.Length - sizeof(ACPI_DMAR_RESERVED_MEMORY); if (remaining > 0) printf("\tDevice Scope:"); while (remaining > 0) { cp = (char *)rmrr + rmrr->Header.Length - remaining; consumed = acpi_handle_dmar_devscope(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } } static void acpi_handle_dmar_atsr(ACPI_DMAR_ATSR *atsr) { char *cp; int remaining, consumed; printf("\n"); printf("\tType=ATSR\n"); printf("\tLength=%d\n", atsr->Header.Length); #define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag) printf("\tFlags="); PRINTFLAG(atsr->Flags, ALL_PORTS); PRINTFLAG_END(); #undef PRINTFLAG printf("\tSegment=%d\n", atsr->Segment); remaining = atsr->Header.Length - sizeof(ACPI_DMAR_ATSR); if (remaining > 0) printf("\tDevice Scope:"); while (remaining > 0) { cp = (char *)atsr + atsr->Header.Length - remaining; consumed = acpi_handle_dmar_devscope(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } } static void acpi_handle_dmar_rhsa(ACPI_DMAR_RHSA *rhsa) { printf("\n"); printf("\tType=RHSA\n"); printf("\tLength=%d\n", rhsa->Header.Length); printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rhsa->BaseAddress); printf("\tProximityDomain=0x%08x\n", rhsa->ProximityDomain); } static int acpi_handle_dmar_remapping_structure(void *addr, int remaining) { ACPI_DMAR_HEADER *hdr = addr; if (remaining < (int)sizeof(ACPI_DMAR_HEADER)) return (-1); if (remaining < hdr->Length) return (-1); switch (hdr->Type) { case ACPI_DMAR_TYPE_HARDWARE_UNIT: acpi_handle_dmar_drhd(addr); break; case ACPI_DMAR_TYPE_RESERVED_MEMORY: acpi_handle_dmar_rmrr(addr); break; case ACPI_DMAR_TYPE_ROOT_ATS: acpi_handle_dmar_atsr(addr); break; case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: acpi_handle_dmar_rhsa(addr); break; default: printf("\n"); printf("\tType=%d\n", hdr->Type); printf("\tLength=%d\n", hdr->Length); break; } return (hdr->Length); } #ifndef ACPI_DMAR_X2APIC_OPT_OUT #define ACPI_DMAR_X2APIC_OPT_OUT (0x2) #endif static void acpi_handle_dmar(ACPI_TABLE_HEADER *sdp) { char *cp; int remaining, consumed; ACPI_TABLE_DMAR *dmar; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); dmar = (ACPI_TABLE_DMAR *)sdp; printf("\tHost Address Width=%d\n", dmar->Width + 1); #define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag) printf("\tFlags="); PRINTFLAG(dmar->Flags, INTR_REMAP); PRINTFLAG(dmar->Flags, X2APIC_OPT_OUT); PRINTFLAG_END(); #undef PRINTFLAG remaining = sdp->Length - sizeof(ACPI_TABLE_DMAR); while (remaining > 0) { cp = (char *)sdp + sdp->Length - remaining; consumed = acpi_handle_dmar_remapping_structure(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } printf(END_COMMENT); } static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp) { printf("\tFlags={"); if (mp->Flags & ACPI_SRAT_MEM_ENABLED) printf("ENABLED"); else printf("DISABLED"); if (mp->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) printf(",HOT_PLUGGABLE"); if (mp->Flags & ACPI_SRAT_MEM_NON_VOLATILE) printf(",NON_VOLATILE"); printf("}\n"); printf("\tBase Address=0x%016jx\n", (uintmax_t)mp->BaseAddress); printf("\tLength=0x%016jx\n", (uintmax_t)mp->Length); printf("\tProximity Domain=%d\n", mp->ProximityDomain); } static const char *srat_types[] = { [ACPI_SRAT_TYPE_CPU_AFFINITY] = "CPU", [ACPI_SRAT_TYPE_MEMORY_AFFINITY] = "Memory", [ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY] = "X2APIC", [ACPI_SRAT_TYPE_GICC_AFFINITY] = "GICC", [ACPI_SRAT_TYPE_GIC_ITS_AFFINITY] = "GIC ITS", }; static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat) { ACPI_SRAT_CPU_AFFINITY *cpu; ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic; ACPI_SRAT_GICC_AFFINITY *gic; if (srat->Type < nitems(srat_types)) printf("\tType=%s\n", srat_types[srat->Type]); else printf("\tType=%d (unknown)\n", srat->Type); switch (srat->Type) { case ACPI_SRAT_TYPE_CPU_AFFINITY: cpu = (ACPI_SRAT_CPU_AFFINITY *)srat; acpi_print_srat_cpu(cpu->ApicId, cpu->ProximityDomainHi[2] << 24 | cpu->ProximityDomainHi[1] << 16 | cpu->ProximityDomainHi[0] << 0 | cpu->ProximityDomainLo, cpu->Flags); break; case ACPI_SRAT_TYPE_MEMORY_AFFINITY: acpi_print_srat_memory((ACPI_SRAT_MEM_AFFINITY *)srat); break; case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)srat; acpi_print_srat_cpu(x2apic->ApicId, x2apic->ProximityDomain, x2apic->Flags); break; case ACPI_SRAT_TYPE_GICC_AFFINITY: gic = (ACPI_SRAT_GICC_AFFINITY *)srat; acpi_print_srat_cpu(gic->AcpiProcessorUid, gic->ProximityDomain, gic->Flags); break; } } static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SRAT *srat; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); srat = (ACPI_TABLE_SRAT *)sdp; printf("\tTable Revision=%d\n", srat->TableRevision); acpi_walk_subtables(sdp, (srat + 1), acpi_print_srat); printf(END_COMMENT); } static const char *nfit_types[] = { [ACPI_NFIT_TYPE_SYSTEM_ADDRESS] = "System Address", [ACPI_NFIT_TYPE_MEMORY_MAP] = "Memory Map", [ACPI_NFIT_TYPE_INTERLEAVE] = "Interleave", [ACPI_NFIT_TYPE_SMBIOS] = "SMBIOS", [ACPI_NFIT_TYPE_CONTROL_REGION] = "Control Region", [ACPI_NFIT_TYPE_DATA_REGION] = "Data Region", [ACPI_NFIT_TYPE_FLUSH_ADDRESS] = "Flush Address" }; static void acpi_print_nfit(ACPI_NFIT_HEADER *nfit) { char *uuidstr; uint32_t status; ACPI_NFIT_SYSTEM_ADDRESS *sysaddr; ACPI_NFIT_MEMORY_MAP *mmap; ACPI_NFIT_INTERLEAVE *ileave; ACPI_NFIT_SMBIOS *smbios; ACPI_NFIT_CONTROL_REGION *ctlreg; ACPI_NFIT_DATA_REGION *datareg; ACPI_NFIT_FLUSH_ADDRESS *fladdr; if (nfit->Type < nitems(nfit_types)) printf("\tType=%s\n", nfit_types[nfit->Type]); else printf("\tType=%u (unknown)\n", nfit->Type); switch (nfit->Type) { case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: sysaddr = (ACPI_NFIT_SYSTEM_ADDRESS *)nfit; printf("\tRangeIndex=%u\n", (u_int)sysaddr->RangeIndex); printf("\tProximityDomain=%u\n", (u_int)sysaddr->ProximityDomain); uuid_to_string((uuid_t *)(sysaddr->RangeGuid), &uuidstr, &status); if (status != uuid_s_ok) errx(1, "uuid_to_string: status=%u", status); printf("\tRangeGuid=%s\n", uuidstr); free(uuidstr); printf("\tAddress=0x%016jx\n", (uintmax_t)sysaddr->Address); printf("\tLength=0x%016jx\n", (uintmax_t)sysaddr->Length); printf("\tMemoryMapping=0x%016jx\n", (uintmax_t)sysaddr->MemoryMapping); #define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag) printf("\tFlags="); PRINTFLAG(sysaddr->Flags, ADD_ONLINE_ONLY); PRINTFLAG(sysaddr->Flags, PROXIMITY_VALID); PRINTFLAG_END(); #undef PRINTFLAG break; case ACPI_NFIT_TYPE_MEMORY_MAP: mmap = (ACPI_NFIT_MEMORY_MAP *)nfit; printf("\tDeviceHandle=%u\n", (u_int)mmap->DeviceHandle); printf("\tPhysicalId=%u\n", (u_int)mmap->PhysicalId); printf("\tRegionId=%u\n", (u_int)mmap->RegionId); printf("\tRangeIndex=%u\n", (u_int)mmap->RangeIndex); printf("\tRegionIndex=%u\n", (u_int)mmap->RegionIndex); printf("\tRegionSize=0x%016jx\n", (uintmax_t)mmap->RegionSize); printf("\tRegionOffset=0x%016jx\n", (uintmax_t)mmap->RegionOffset); printf("\tAddress=0x%016jx\n", (uintmax_t)mmap->Address); printf("\tInterleaveIndex=%u\n", (u_int)mmap->InterleaveIndex); printf("\tInterleaveWays=%u\n", (u_int)mmap->InterleaveWays); #define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_MEM_## flag, #flag) printf("\tFlags="); PRINTFLAG(mmap->Flags, SAVE_FAILED); PRINTFLAG(mmap->Flags, RESTORE_FAILED); PRINTFLAG(mmap->Flags, FLUSH_FAILED); PRINTFLAG(mmap->Flags, NOT_ARMED); PRINTFLAG(mmap->Flags, HEALTH_OBSERVED); PRINTFLAG(mmap->Flags, HEALTH_ENABLED); PRINTFLAG(mmap->Flags, MAP_FAILED); PRINTFLAG_END(); #undef PRINTFLAG break; case ACPI_NFIT_TYPE_INTERLEAVE: ileave = (ACPI_NFIT_INTERLEAVE *)nfit; printf("\tInterleaveIndex=%u\n", (u_int)ileave->InterleaveIndex); printf("\tLineCount=%u\n", (u_int)ileave->LineCount); printf("\tLineSize=%u\n", (u_int)ileave->LineSize); /* XXX ileave->LineOffset[i] output is not supported */ break; case ACPI_NFIT_TYPE_SMBIOS: smbios = (ACPI_NFIT_SMBIOS *)nfit; /* XXX smbios->Data[x] output is not supported */ break; case ACPI_NFIT_TYPE_CONTROL_REGION: ctlreg = (ACPI_NFIT_CONTROL_REGION *)nfit; printf("\tRegionIndex=%u\n", (u_int)ctlreg->RegionIndex); printf("\tVendorId=0x%04x\n", (u_int)ctlreg->VendorId); printf("\tDeviceId=0x%04x\n", (u_int)ctlreg->DeviceId); printf("\tRevisionId=%u\n", (u_int)ctlreg->RevisionId); printf("\tSubsystemVendorId=0x%04x\n", (u_int)ctlreg->SubsystemVendorId); printf("\tSubsystemDeviceId=0x%04x\n", (u_int)ctlreg->SubsystemDeviceId); printf("\tSubsystemRevisionId=%u\n", (u_int)ctlreg->SubsystemRevisionId); printf("\tValidFields=0x%02x\n", (u_int)ctlreg->ValidFields); printf("\tManufacturingLocation=%u\n", (u_int)ctlreg->ManufacturingLocation); printf("\tManufacturingDate=%u\n", (u_int)ctlreg->ManufacturingDate); printf("\tSerialNumber=%u\n", (u_int)ctlreg->SerialNumber); printf("\tCode=0x%04x\n", (u_int)ctlreg->Code); printf("\tWindows=%u\n", (u_int)ctlreg->Windows); printf("\tWindowSize=0x%016jx\n", (uintmax_t)ctlreg->WindowSize); printf("\tCommandOffset=0x%016jx\n", (uintmax_t)ctlreg->CommandOffset); printf("\tCommandSize=0x%016jx\n", (uintmax_t)ctlreg->CommandSize); printf("\tStatusOffset=0x%016jx\n", (uintmax_t)ctlreg->StatusOffset); printf("\tStatusSize=0x%016jx\n", (uintmax_t)ctlreg->StatusSize); #define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag) printf("\tFlags="); PRINTFLAG(ctlreg->Flags, CONTROL_BUFFERED); PRINTFLAG_END(); #undef PRINTFLAG break; case ACPI_NFIT_TYPE_DATA_REGION: datareg = (ACPI_NFIT_DATA_REGION *)nfit; printf("\tRegionIndex=%u\n", (u_int)datareg->RegionIndex); printf("\tWindows=%u\n", (u_int)datareg->Windows); printf("\tOffset=0x%016jx\n", (uintmax_t)datareg->Offset); printf("\tSize=0x%016jx\n", (uintmax_t)datareg->Size); printf("\tCapacity=0x%016jx\n", (uintmax_t)datareg->Capacity); printf("\tStartAddress=0x%016jx\n", (uintmax_t)datareg->StartAddress); break; case ACPI_NFIT_TYPE_FLUSH_ADDRESS: fladdr = (ACPI_NFIT_FLUSH_ADDRESS *)nfit; printf("\tDeviceHandle=%u\n", (u_int)fladdr->DeviceHandle); printf("\tHintCount=%u\n", (u_int)fladdr->HintCount); /* XXX fladdr->HintAddress[i] output is not supported */ break; } } static void acpi_handle_nfit(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_NFIT *nfit; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); nfit = (ACPI_TABLE_NFIT *)sdp; acpi_walk_nfit(sdp, (nfit + 1), acpi_print_nfit); printf(END_COMMENT); } static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp) { printf(" "); acpi_print_string(sdp->Signature, ACPI_NAME_SIZE); printf(": Length=%d, Revision=%d, Checksum=%d,\n", sdp->Length, sdp->Revision, sdp->Checksum); printf("\tOEMID="); acpi_print_string(sdp->OemId, ACPI_OEM_ID_SIZE); printf(", OEM Table ID="); acpi_print_string(sdp->OemTableId, ACPI_OEM_TABLE_ID_SIZE); printf(", OEM Revision=0x%x,\n", sdp->OemRevision); printf("\tCreator ID="); acpi_print_string(sdp->AslCompilerId, ACPI_NAME_SIZE); printf(", Creator Revision=0x%x\n", sdp->AslCompilerRevision); } static void acpi_print_rsdt(ACPI_TABLE_HEADER *rsdp) { ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; int i, entries; rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; printf(BEGIN_COMMENT); acpi_print_sdt(rsdp); entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; printf("\tEntries={ "); for (i = 0; i < entries; i++) { if (i > 0) printf(", "); if (addr_size == 4) printf("0x%08x", le32toh(rsdt->TableOffsetEntry[i])); else printf("0x%016jx", (uintmax_t)le64toh(xsdt->TableOffsetEntry[i])); } printf(" }\n"); printf(END_COMMENT); } static const char *acpi_pm_profiles[] = { "Unspecified", "Desktop", "Mobile", "Workstation", "Enterprise Server", "SOHO Server", "Appliance PC" }; static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_FADT *fadt; const char *pm; fadt = (ACPI_TABLE_FADT *)sdp; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); printf(" \tFACS=0x%x, DSDT=0x%x\n", fadt->Facs, fadt->Dsdt); printf("\tINT_MODEL=%s\n", fadt->Model ? "APIC" : "PIC"); if (fadt->PreferredProfile >= sizeof(acpi_pm_profiles) / sizeof(char *)) pm = "Reserved"; else pm = acpi_pm_profiles[fadt->PreferredProfile]; printf("\tPreferred_PM_Profile=%s (%d)\n", pm, fadt->PreferredProfile); printf("\tSCI_INT=%d\n", fadt->SciInterrupt); printf("\tSMI_CMD=0x%x, ", fadt->SmiCommand); printf("ACPI_ENABLE=0x%x, ", fadt->AcpiEnable); printf("ACPI_DISABLE=0x%x, ", fadt->AcpiDisable); printf("S4BIOS_REQ=0x%x\n", fadt->S4BiosRequest); printf("\tPSTATE_CNT=0x%x\n", fadt->PstateControl); printf("\tPM1a_EVT_BLK=0x%x-0x%x\n", fadt->Pm1aEventBlock, fadt->Pm1aEventBlock + fadt->Pm1EventLength - 1); if (fadt->Pm1bEventBlock != 0) printf("\tPM1b_EVT_BLK=0x%x-0x%x\n", fadt->Pm1bEventBlock, fadt->Pm1bEventBlock + fadt->Pm1EventLength - 1); printf("\tPM1a_CNT_BLK=0x%x-0x%x\n", fadt->Pm1aControlBlock, fadt->Pm1aControlBlock + fadt->Pm1ControlLength - 1); if (fadt->Pm1bControlBlock != 0) printf("\tPM1b_CNT_BLK=0x%x-0x%x\n", fadt->Pm1bControlBlock, fadt->Pm1bControlBlock + fadt->Pm1ControlLength - 1); if (fadt->Pm2ControlBlock != 0) printf("\tPM2_CNT_BLK=0x%x-0x%x\n", fadt->Pm2ControlBlock, fadt->Pm2ControlBlock + fadt->Pm2ControlLength - 1); printf("\tPM_TMR_BLK=0x%x-0x%x\n", fadt->PmTimerBlock, fadt->PmTimerBlock + fadt->PmTimerLength - 1); if (fadt->Gpe0Block != 0) printf("\tGPE0_BLK=0x%x-0x%x\n", fadt->Gpe0Block, fadt->Gpe0Block + fadt->Gpe0BlockLength - 1); if (fadt->Gpe1Block != 0) printf("\tGPE1_BLK=0x%x-0x%x, GPE1_BASE=%d\n", fadt->Gpe1Block, fadt->Gpe1Block + fadt->Gpe1BlockLength - 1, fadt->Gpe1Base); if (fadt->CstControl != 0) printf("\tCST_CNT=0x%x\n", fadt->CstControl); printf("\tP_LVL2_LAT=%d us, P_LVL3_LAT=%d us\n", fadt->C2Latency, fadt->C3Latency); printf("\tFLUSH_SIZE=%d, FLUSH_STRIDE=%d\n", fadt->FlushSize, fadt->FlushStride); printf("\tDUTY_OFFSET=%d, DUTY_WIDTH=%d\n", fadt->DutyOffset, fadt->DutyWidth); printf("\tDAY_ALRM=%d, MON_ALRM=%d, CENTURY=%d\n", fadt->DayAlarm, fadt->MonthAlarm, fadt->Century); #define PRINTFLAG(var, flag) printflag((var), ACPI_FADT_## flag, #flag) printf("\tIAPC_BOOT_ARCH="); PRINTFLAG(fadt->BootFlags, LEGACY_DEVICES); PRINTFLAG(fadt->BootFlags, 8042); PRINTFLAG(fadt->BootFlags, NO_VGA); PRINTFLAG(fadt->BootFlags, NO_MSI); PRINTFLAG(fadt->BootFlags, NO_ASPM); PRINTFLAG(fadt->BootFlags, NO_CMOS_RTC); PRINTFLAG_END(); printf("\tFlags="); PRINTFLAG(fadt->Flags, WBINVD); PRINTFLAG(fadt->Flags, WBINVD_FLUSH); PRINTFLAG(fadt->Flags, C1_SUPPORTED); PRINTFLAG(fadt->Flags, C2_MP_SUPPORTED); PRINTFLAG(fadt->Flags, POWER_BUTTON); PRINTFLAG(fadt->Flags, SLEEP_BUTTON); PRINTFLAG(fadt->Flags, FIXED_RTC); PRINTFLAG(fadt->Flags, S4_RTC_WAKE); PRINTFLAG(fadt->Flags, 32BIT_TIMER); PRINTFLAG(fadt->Flags, DOCKING_SUPPORTED); PRINTFLAG(fadt->Flags, RESET_REGISTER); PRINTFLAG(fadt->Flags, SEALED_CASE); PRINTFLAG(fadt->Flags, HEADLESS); PRINTFLAG(fadt->Flags, SLEEP_TYPE); PRINTFLAG(fadt->Flags, PCI_EXPRESS_WAKE); PRINTFLAG(fadt->Flags, PLATFORM_CLOCK); PRINTFLAG(fadt->Flags, S4_RTC_VALID); PRINTFLAG(fadt->Flags, REMOTE_POWER_ON); PRINTFLAG(fadt->Flags, APIC_CLUSTER); PRINTFLAG(fadt->Flags, APIC_PHYSICAL); PRINTFLAG(fadt->Flags, HW_REDUCED); PRINTFLAG(fadt->Flags, LOW_POWER_S0); PRINTFLAG_END(); #undef PRINTFLAG if (fadt->Flags & ACPI_FADT_RESET_REGISTER) { printf("\tRESET_REG="); acpi_print_gas(&fadt->ResetRegister); printf(", RESET_VALUE=%#x\n", fadt->ResetValue); } if (acpi_get_fadt_revision(fadt) > 1) { printf("\tX_FACS=0x%016jx, ", (uintmax_t)fadt->XFacs); printf("X_DSDT=0x%016jx\n", (uintmax_t)fadt->XDsdt); printf("\tX_PM1a_EVT_BLK="); acpi_print_gas(&fadt->XPm1aEventBlock); if (fadt->XPm1bEventBlock.Address != 0) { printf("\n\tX_PM1b_EVT_BLK="); acpi_print_gas(&fadt->XPm1bEventBlock); } printf("\n\tX_PM1a_CNT_BLK="); acpi_print_gas(&fadt->XPm1aControlBlock); if (fadt->XPm1bControlBlock.Address != 0) { printf("\n\tX_PM1b_CNT_BLK="); acpi_print_gas(&fadt->XPm1bControlBlock); } if (fadt->XPm2ControlBlock.Address != 0) { printf("\n\tX_PM2_CNT_BLK="); acpi_print_gas(&fadt->XPm2ControlBlock); } printf("\n\tX_PM_TMR_BLK="); acpi_print_gas(&fadt->XPmTimerBlock); if (fadt->XGpe0Block.Address != 0) { printf("\n\tX_GPE0_BLK="); acpi_print_gas(&fadt->XGpe0Block); } if (fadt->XGpe1Block.Address != 0) { printf("\n\tX_GPE1_BLK="); acpi_print_gas(&fadt->XGpe1Block); } printf("\n"); } printf(END_COMMENT); } static void acpi_print_facs(ACPI_TABLE_FACS *facs) { printf(BEGIN_COMMENT); printf(" FACS:\tLength=%u, ", facs->Length); printf("HwSig=0x%08x, ", facs->HardwareSignature); printf("Firm_Wake_Vec=0x%08x\n", facs->FirmwareWakingVector); printf("\tGlobal_Lock="); if (facs->GlobalLock != 0) { if (facs->GlobalLock & ACPI_GLOCK_PENDING) printf("PENDING,"); if (facs->GlobalLock & ACPI_GLOCK_OWNED) printf("OWNED"); } printf("\n"); printf("\tFlags="); if (facs->Flags & ACPI_FACS_S4_BIOS_PRESENT) printf("S4BIOS"); printf("\n"); if (facs->XFirmwareWakingVector != 0) printf("\tX_Firm_Wake_Vec=%016jx\n", (uintmax_t)facs->XFirmwareWakingVector); printf("\tVersion=%u\n", facs->Version); printf(END_COMMENT); } static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp) { printf(BEGIN_COMMENT); acpi_print_sdt(dsdp); printf(END_COMMENT); } int acpi_checksum(void *p, size_t length) { uint8_t *bp; uint8_t sum; bp = p; sum = 0; while (length--) sum += *bp++; return (sum); } static ACPI_TABLE_HEADER * acpi_map_sdt(vm_offset_t pa) { ACPI_TABLE_HEADER *sp; sp = acpi_map_physical(pa, sizeof(ACPI_TABLE_HEADER)); sp = acpi_map_physical(pa, sp->Length); return (sp); } static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp) { printf(BEGIN_COMMENT); printf(" RSD PTR: OEM="); acpi_print_string(rp->OemId, ACPI_OEM_ID_SIZE); printf(", ACPI_Rev=%s (%d)\n", rp->Revision < 2 ? "1.0x" : "2.0x", rp->Revision); if (rp->Revision < 2) { printf("\tRSDT=0x%08x, cksum=%u\n", rp->RsdtPhysicalAddress, rp->Checksum); } else { printf("\tXSDT=0x%016jx, length=%u, cksum=%u\n", (uintmax_t)rp->XsdtPhysicalAddress, rp->Length, rp->ExtendedChecksum); } printf(END_COMMENT); } static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp) { ACPI_TABLE_HEADER *sdp; ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; vm_offset_t addr; int entries, i; acpi_print_rsdt(rsdp); rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; for (i = 0; i < entries; i++) { if (addr_size == 4) addr = le32toh(rsdt->TableOffsetEntry[i]); else addr = le64toh(xsdt->TableOffsetEntry[i]); if (addr == 0) continue; sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr); if (acpi_checksum(sdp, sdp->Length)) { warnx("RSDT entry %d (sig %.4s) is corrupt", i, sdp->Signature); continue; } if (!memcmp(sdp->Signature, ACPI_SIG_FADT, 4)) acpi_handle_fadt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MADT, 4)) acpi_handle_madt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_HPET, 4)) acpi_handle_hpet(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_ECDT, 4)) acpi_handle_ecdt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MCFG, 4)) acpi_handle_mcfg(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SLIT, 4)) acpi_handle_slit(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SRAT, 4)) acpi_handle_srat(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_TCPA, 4)) acpi_handle_tcpa(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_DMAR, 4)) acpi_handle_dmar(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_NFIT, 4)) acpi_handle_nfit(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WDDT, 4)) acpi_handle_wddt(sdp); else { printf(BEGIN_COMMENT); acpi_print_sdt(sdp); printf(END_COMMENT); } } } ACPI_TABLE_HEADER * sdt_load_devmem(void) { ACPI_TABLE_RSDP *rp; ACPI_TABLE_HEADER *rsdp; rp = acpi_find_rsd_ptr(); if (!rp) errx(1, "Can't find ACPI information"); if (tflag) acpi_print_rsd_ptr(rp); if (rp->Revision < 2) { rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->RsdtPhysicalAddress); if (memcmp(rsdp->Signature, "RSDT", 4) != 0 || acpi_checksum(rsdp, rsdp->Length) != 0) errx(1, "RSDT is corrupted"); addr_size = sizeof(uint32_t); } else { rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->XsdtPhysicalAddress); if (memcmp(rsdp->Signature, "XSDT", 4) != 0 || acpi_checksum(rsdp, rsdp->Length) != 0) errx(1, "XSDT is corrupted"); addr_size = sizeof(uint64_t); } return (rsdp); } /* Write the DSDT to a file, concatenating any SSDTs (if present). */ static int write_dsdt(int fd, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdt) { ACPI_TABLE_HEADER sdt; ACPI_TABLE_HEADER *ssdt; uint8_t sum; /* Create a new checksum to account for the DSDT and any SSDTs. */ sdt = *dsdt; if (rsdt != NULL) { sdt.Checksum = 0; sum = acpi_checksum(dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, NULL); while (ssdt != NULL) { sdt.Length += ssdt->Length - sizeof(ACPI_TABLE_HEADER); sum += acpi_checksum(ssdt + 1, ssdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, ssdt); } sum += acpi_checksum(&sdt, sizeof(ACPI_TABLE_HEADER)); sdt.Checksum -= sum; } /* Write out the DSDT header and body. */ write(fd, &sdt, sizeof(ACPI_TABLE_HEADER)); write(fd, dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER)); /* Write out any SSDTs (if present.) */ if (rsdt != NULL) { ssdt = sdt_from_rsdt(rsdt, "SSDT", NULL); while (ssdt != NULL) { write(fd, ssdt + 1, ssdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, "SSDT", ssdt); } } return (0); } void dsdt_save_file(char *outfile, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp) { int fd; mode_t mode; assert(outfile != NULL); mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; fd = open(outfile, O_WRONLY | O_CREAT | O_TRUNC, mode); if (fd == -1) { perror("dsdt_save_file"); return; } write_dsdt(fd, rsdt, dsdp); close(fd); } void aml_disassemble(ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp) { char buf[PATH_MAX], tmpstr[PATH_MAX], wrkdir[PATH_MAX]; const char *iname = "/acpdump.din"; const char *oname = "/acpdump.dsl"; const char *tmpdir; FILE *fp; size_t len; int fd, status; pid_t pid; tmpdir = getenv("TMPDIR"); if (tmpdir == NULL) tmpdir = _PATH_TMP; if (realpath(tmpdir, buf) == NULL) { perror("realpath tmp dir"); return; } len = sizeof(wrkdir) - strlen(iname); if ((size_t)snprintf(wrkdir, len, "%s/acpidump.XXXXXX", buf) > len-1 ) { fprintf(stderr, "$TMPDIR too long\n"); return; } if (mkdtemp(wrkdir) == NULL) { perror("mkdtemp tmp working dir"); return; } len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, iname); assert(len <= sizeof(tmpstr) - 1); fd = open(tmpstr, O_CREAT | O_WRONLY, S_IRUSR | S_IWUSR); if (fd < 0) { perror("iasl tmp file"); return; } write_dsdt(fd, rsdt, dsdp); close(fd); /* Run iasl -d on the temp file */ if ((pid = fork()) == 0) { close(STDOUT_FILENO); if (vflag == 0) close(STDERR_FILENO); execl("/usr/sbin/iasl", "iasl", "-d", tmpstr, NULL); err(1, "exec"); } if (pid > 0) wait(&status); if (unlink(tmpstr) < 0) { perror("unlink"); goto out; } if (pid < 0) { perror("fork"); goto out; } if (status != 0) { fprintf(stderr, "iast exit status = %d\n", status); } /* Dump iasl's output to stdout */ len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, oname); assert(len <= sizeof(tmpstr) - 1); fp = fopen(tmpstr, "r"); if (unlink(tmpstr) < 0) { perror("unlink"); goto out; } if (fp == NULL) { perror("iasl tmp file (read)"); goto out; } while ((len = fread(buf, 1, sizeof(buf), fp)) > 0) fwrite(buf, 1, len, stdout); fclose(fp); out: if (rmdir(wrkdir) < 0) perror("rmdir"); } void sdt_print_all(ACPI_TABLE_HEADER *rsdp) { acpi_handle_rsdt(rsdp); } /* Fetch a table matching the given signature via the RSDT. */ ACPI_TABLE_HEADER * sdt_from_rsdt(ACPI_TABLE_HEADER *rsdp, const char *sig, ACPI_TABLE_HEADER *last) { ACPI_TABLE_HEADER *sdt; ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; vm_offset_t addr; int entries, i; rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; for (i = 0; i < entries; i++) { if (addr_size == 4) addr = le32toh(rsdt->TableOffsetEntry[i]); else addr = le64toh(xsdt->TableOffsetEntry[i]); if (addr == 0) continue; sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr); if (last != NULL) { if (sdt == last) last = NULL; continue; } if (memcmp(sdt->Signature, sig, strlen(sig))) continue; if (acpi_checksum(sdt, sdt->Length)) errx(1, "RSDT entry %d is corrupt", i); return (sdt); } return (NULL); } ACPI_TABLE_HEADER * dsdt_from_fadt(ACPI_TABLE_FADT *fadt) { ACPI_TABLE_HEADER *sdt; /* Use the DSDT address if it is version 1, otherwise use XDSDT. */ if (acpi_get_fadt_revision(fadt) == 1) sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt); else sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt); if (acpi_checksum(sdt, sdt->Length)) errx(1, "DSDT is corrupt\n"); return (sdt); }