/* * Copyright 1997 Sean Eric Fagan * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Sean Eric Fagan * 4. Neither the name of the author may be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * This file has routines used to print out system calls and their * arguments. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "truss.h" #include "extern.h" #include "syscall.h" /* usr.bin/kdump/utrace.c */ int kdump_print_utrace(FILE *, void *, size_t, int); /* 64-bit alignment on 32-bit platforms. */ #if !defined(__LP64__) && defined(__powerpc__) #define QUAD_ALIGN 1 #else #define QUAD_ALIGN 0 #endif /* Number of slots needed for a 64-bit argument. */ #ifdef __LP64__ #define QUAD_SLOTS 1 #else #define QUAD_SLOTS 2 #endif /* * This should probably be in its own file, sorted alphabetically. */ static struct syscall decoded_syscalls[] = { /* Native ABI */ { .name = "__getcwd", .ret_type = 1, .nargs = 2, .args = { { Name | OUT, 0 }, { Int, 1 } } }, { .name = "_umtx_op", .ret_type = 1, .nargs = 5, .args = { { Ptr, 0 }, { Umtxop, 1 }, { LongHex, 2 }, { Ptr, 3 }, { Ptr, 4 } } }, { .name = "accept", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } }, { .name = "access", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Accessmode, 1 } } }, { .name = "bind", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Sockaddr | IN, 1 }, { Int, 2 } } }, { .name = "bindat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Int, 1 }, { Sockaddr | IN, 2 }, { Int, 3 } } }, { .name = "break", .ret_type = 1, .nargs = 1, .args = { { Ptr, 0 } } }, { .name = "chdir", .ret_type = 1, .nargs = 1, .args = { { Name, 0 } } }, { .name = "chflags", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Hex, 1 } } }, { .name = "chmod", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Octal, 1 } } }, { .name = "chown", .ret_type = 1, .nargs = 3, .args = { { Name, 0 }, { Int, 1 }, { Int, 2 } } }, { .name = "chroot", .ret_type = 1, .nargs = 1, .args = { { Name, 0 } } }, { .name = "clock_gettime", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Timespec | OUT, 1 } } }, { .name = "close", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "connect", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Sockaddr | IN, 1 }, { Int, 2 } } }, { .name = "connectat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Int, 1 }, { Sockaddr | IN, 2 }, { Int, 3 } } }, { .name = "eaccess", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Accessmode, 1 } } }, { .name = "execve", .ret_type = 1, .nargs = 3, .args = { { Name | IN, 0 }, { ExecArgs | IN, 1 }, { ExecEnv | IN, 2 } } }, { .name = "exit", .ret_type = 0, .nargs = 1, .args = { { Hex, 0 } } }, { .name = "faccessat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name | IN, 1 }, { Accessmode, 2 }, { Atflags, 3 } } }, { .name = "fchmod", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Octal, 1 } } }, { .name = "fchmodat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 }, { Atflags, 3 } } }, { .name = "fchown", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Int, 1 }, { Int, 2 } } }, { .name = "fchownat", .ret_type = 1, .nargs = 5, .args = { { Atfd, 0 }, { Name, 1 }, { Int, 2 }, { Int, 3 }, { Atflags, 4 } } }, { .name = "fcntl", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Fcntl, 1 }, { Fcntlflag, 2 } } }, { .name = "fstat", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Stat | OUT, 1 } } }, { .name = "fstatat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name | IN, 1 }, { Stat | OUT, 2 }, { Atflags, 3 } } }, { .name = "fstatfs", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { StatFs | OUT, 1 } } }, { .name = "ftruncate", .ret_type = 1, .nargs = 2, .args = { { Int | IN, 0 }, { QuadHex | IN, 1 + QUAD_ALIGN } } }, { .name = "futimens", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Timespec2 | IN, 1 } } }, { .name = "futimes", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Timeval2 | IN, 1 } } }, { .name = "futimesat", .ret_type = 1, .nargs = 3, .args = { { Atfd, 0 }, { Name | IN, 1 }, { Timeval2 | IN, 2 } } }, { .name = "getitimer", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Itimerval | OUT, 2 } } }, { .name = "getpeername", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } }, { .name = "getpgid", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "getrlimit", .ret_type = 1, .nargs = 2, .args = { { Resource, 0 }, { Rlimit | OUT, 1 } } }, { .name = "getrusage", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Rusage | OUT, 1 } } }, { .name = "getsid", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "getsockname", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Sockaddr | OUT, 1 }, { Ptr | OUT, 2 } } }, { .name = "gettimeofday", .ret_type = 1, .nargs = 2, .args = { { Timeval | OUT, 0 }, { Ptr, 1 } } }, { .name = "ioctl", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Ioctl, 1 }, { Hex, 2 } } }, { .name = "kevent", .ret_type = 1, .nargs = 6, .args = { { Int, 0 }, { Kevent, 1 }, { Int, 2 }, { Kevent | OUT, 3 }, { Int, 4 }, { Timespec, 5 } } }, { .name = "kill", .ret_type = 1, .nargs = 2, .args = { { Int | IN, 0 }, { Signal | IN, 1 } } }, { .name = "kldfind", .ret_type = 1, .nargs = 1, .args = { { Name | IN, 0 } } }, { .name = "kldfirstmod", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "kldload", .ret_type = 1, .nargs = 1, .args = { { Name | IN, 0 } } }, { .name = "kldnext", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "kldstat", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Ptr, 1 } } }, { .name = "kldunload", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "kse_release", .ret_type = 0, .nargs = 1, .args = { { Timespec, 0 } } }, { .name = "lchflags", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Hex, 1 } } }, { .name = "lchmod", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Octal, 1 } } }, { .name = "lchown", .ret_type = 1, .nargs = 3, .args = { { Name, 0 }, { Int, 1 }, { Int, 2 } } }, { .name = "link", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Name, 1 } } }, { .name = "linkat", .ret_type = 1, .nargs = 5, .args = { { Atfd, 0 }, { Name, 1 }, { Atfd, 2 }, { Name, 3 }, { Atflags, 4 } } }, { .name = "lseek", .ret_type = 2, .nargs = 3, .args = { { Int, 0 }, { QuadHex, 1 + QUAD_ALIGN }, { Whence, 1 + QUAD_SLOTS + QUAD_ALIGN } } }, { .name = "lstat", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Stat | OUT, 1 } } }, { .name = "lutimes", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Timeval2 | IN, 1 } } }, { .name = "mkdir", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Octal, 1 } } }, { .name = "mkdirat", .ret_type = 1, .nargs = 3, .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 } } }, { .name = "mkfifo", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Octal, 1 } } }, { .name = "mkfifoat", .ret_type = 1, .nargs = 3, .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 } } }, { .name = "mknod", .ret_type = 1, .nargs = 3, .args = { { Name, 0 }, { Octal, 1 }, { Int, 2 } } }, { .name = "mknodat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name, 1 }, { Octal, 2 }, { Int, 3 } } }, { .name = "mmap", .ret_type = 1, .nargs = 6, .args = { { Ptr, 0 }, { Int, 1 }, { Mprot, 2 }, { Mmapflags, 3 }, { Int, 4 }, { QuadHex, 5 + QUAD_ALIGN } } }, { .name = "modfind", .ret_type = 1, .nargs = 1, .args = { { Name | IN, 0 } } }, { .name = "mount", .ret_type = 1, .nargs = 4, .args = { { Name, 0 }, { Name, 1 }, { Int, 2 }, { Ptr, 3 } } }, { .name = "mprotect", .ret_type = 1, .nargs = 3, .args = { { Ptr, 0 }, { Int, 1 }, { Mprot, 2 } } }, { .name = "munmap", .ret_type = 1, .nargs = 2, .args = { { Ptr, 0 }, { Int, 1 } } }, { .name = "nanosleep", .ret_type = 1, .nargs = 1, .args = { { Timespec, 0 } } }, { .name = "open", .ret_type = 1, .nargs = 3, .args = { { Name | IN, 0 }, { Open, 1 }, { Octal, 2 } } }, { .name = "openat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name | IN, 1 }, { Open, 2 }, { Octal, 3 } } }, { .name = "pathconf", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Pathconf, 1 } } }, { .name = "pipe", .ret_type = 1, .nargs = 1, .args = { { PipeFds | OUT, 0 } } }, { .name = "pipe2", .ret_type = 1, .nargs = 2, .args = { { Ptr, 0 }, { Open, 1 } } }, { .name = "poll", .ret_type = 1, .nargs = 3, .args = { { Pollfd, 0 }, { Int, 1 }, { Int, 2 } } }, { .name = "posix_openpt", .ret_type = 1, .nargs = 1, .args = { { Open, 0 } } }, { .name = "procctl", .ret_type = 1, .nargs = 4, .args = { { Idtype, 0 }, { Quad, 1 + QUAD_ALIGN }, { Procctl, 1 + QUAD_ALIGN + QUAD_SLOTS }, { Ptr, 2 + QUAD_ALIGN + QUAD_SLOTS } } }, { .name = "read", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { BinString | OUT, 1 }, { Int, 2 } } }, { .name = "readlink", .ret_type = 1, .nargs = 3, .args = { { Name, 0 }, { Readlinkres | OUT, 1 }, { Int, 2 } } }, { .name = "readlinkat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name, 1 }, { Readlinkres | OUT, 2 }, { Int, 3 } } }, { .name = "recvfrom", .ret_type = 1, .nargs = 6, .args = { { Int, 0 }, { BinString | OUT, 1 }, { Int, 2 }, { Hex, 3 }, { Sockaddr | OUT, 4 }, { Ptr | OUT, 5 } } }, { .name = "rename", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Name, 1 } } }, { .name = "renameat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name, 1 }, { Atfd, 2 }, { Name, 3 } } }, { .name = "rfork", .ret_type = 1, .nargs = 1, .args = { { Rforkflags, 0 } } }, { .name = "select", .ret_type = 1, .nargs = 5, .args = { { Int, 0 }, { Fd_set, 1 }, { Fd_set, 2 }, { Fd_set, 3 }, { Timeval, 4 } } }, { .name = "sendto", .ret_type = 1, .nargs = 6, .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 2 }, { Hex, 3 }, { Sockaddr | IN, 4 }, { Ptr | IN, 5 } } }, { .name = "setitimer", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Itimerval, 1 }, { Itimerval | OUT, 2 } } }, { .name = "setrlimit", .ret_type = 1, .nargs = 2, .args = { { Resource, 0 }, { Rlimit | IN, 1 } } }, { .name = "shutdown", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Shutdown, 1 } } }, { .name = "sigaction", .ret_type = 1, .nargs = 3, .args = { { Signal, 0 }, { Sigaction | IN, 1 }, { Sigaction | OUT, 2 } } }, { .name = "sigpending", .ret_type = 1, .nargs = 1, .args = { { Sigset | OUT, 0 } } }, { .name = "sigprocmask", .ret_type = 1, .nargs = 3, .args = { { Sigprocmask, 0 }, { Sigset, 1 }, { Sigset | OUT, 2 } } }, { .name = "sigqueue", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Signal, 1 }, { LongHex, 2 } } }, { .name = "sigreturn", .ret_type = 1, .nargs = 1, .args = { { Ptr, 0 } } }, { .name = "sigsuspend", .ret_type = 1, .nargs = 1, .args = { { Sigset | IN, 0 } } }, { .name = "sigtimedwait", .ret_type = 1, .nargs = 3, .args = { { Sigset | IN, 0 }, { Ptr, 1 }, { Timespec | IN, 2 } } }, { .name = "sigwait", .ret_type = 1, .nargs = 2, .args = { { Sigset | IN, 0 }, { Ptr, 1 } } }, { .name = "sigwaitinfo", .ret_type = 1, .nargs = 2, .args = { { Sigset | IN, 0 }, { Ptr, 1 } } }, { .name = "socket", .ret_type = 1, .nargs = 3, .args = { { Sockdomain, 0 }, { Socktype, 1 }, { Int, 2 } } }, { .name = "stat", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Stat | OUT, 1 } } }, { .name = "statfs", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { StatFs | OUT, 1 } } }, { .name = "symlink", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Name, 1 } } }, { .name = "symlinkat", .ret_type = 1, .nargs = 3, .args = { { Name, 0 }, { Atfd, 1 }, { Name, 2 } } }, { .name = "sysarch", .ret_type = 1, .nargs = 2, .args = { { Sysarch, 0 }, { Ptr, 1 } } }, { .name = "thr_kill", .ret_type = 1, .nargs = 2, .args = { { Long, 0 }, { Signal, 1 } } }, { .name = "thr_self", .ret_type = 1, .nargs = 1, .args = { { Ptr, 0 } } }, { .name = "truncate", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { QuadHex | IN, 1 + QUAD_ALIGN } } }, #if 0 /* Does not exist */ { .name = "umount", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Int, 2 } } }, #endif { .name = "unlink", .ret_type = 1, .nargs = 1, .args = { { Name, 0 } } }, { .name = "unlinkat", .ret_type = 1, .nargs = 3, .args = { { Atfd, 0 }, { Name, 1 }, { Atflags, 2 } } }, { .name = "unmount", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Int, 1 } } }, { .name = "utimensat", .ret_type = 1, .nargs = 4, .args = { { Atfd, 0 }, { Name | IN, 1 }, { Timespec2 | IN, 2 }, { Atflags, 3 } } }, { .name = "utimes", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Timeval2 | IN, 1 } } }, { .name = "utrace", .ret_type = 1, .nargs = 1, .args = { { Utrace, 0 } } }, { .name = "wait4", .ret_type = 1, .nargs = 4, .args = { { Int, 0 }, { ExitStatus | OUT, 1 }, { Waitoptions, 2 }, { Rusage | OUT, 3 } } }, { .name = "wait6", .ret_type = 1, .nargs = 6, .args = { { Idtype, 0 }, { Quad, 1 + QUAD_ALIGN }, { ExitStatus | OUT, 1 + QUAD_ALIGN + QUAD_SLOTS }, { Waitoptions, 2 + QUAD_ALIGN + QUAD_SLOTS }, { Rusage | OUT, 3 + QUAD_ALIGN + QUAD_SLOTS }, { Ptr, 4 + QUAD_ALIGN + QUAD_SLOTS } } }, { .name = "write", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 2 } } }, /* Linux ABI */ { .name = "linux_access", .ret_type = 1, .nargs = 2, .args = { { Name, 0 }, { Accessmode, 1 } } }, { .name = "linux_execve", .ret_type = 1, .nargs = 3, .args = { { Name | IN, 0 }, { ExecArgs | IN, 1 }, { ExecEnv | IN, 2 } } }, { .name = "linux_lseek", .ret_type = 2, .nargs = 3, .args = { { Int, 0 }, { Int, 1 }, { Whence, 2 } } }, { .name = "linux_mkdir", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Int, 1 } } }, { .name = "linux_newfstat", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Ptr | OUT, 1 } } }, { .name = "linux_newstat", .ret_type = 1, .nargs = 2, .args = { { Name | IN, 0 }, { Ptr | OUT, 1 } } }, { .name = "linux_open", .ret_type = 1, .nargs = 3, .args = { { Name, 0 }, { Hex, 1 }, { Octal, 2 } } }, { .name = "linux_readlink", .ret_type = 1, .nargs = 3, .args = { { Name, 0 }, { Name | OUT, 1 }, { Int, 2 } } }, { .name = "linux_socketcall", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { LinuxSockArgs, 1 } } }, { .name = "linux_stat64", .ret_type = 1, .nargs = 3, .args = { { Name | IN, 0 }, { Ptr | OUT, 1 }, { Ptr | IN, 1 } } }, /* CloudABI system calls. */ { .name = "cloudabi_sys_clock_res_get", .ret_type = 1, .nargs = 1, .args = { { CloudABIClockID, 0 } } }, { .name = "cloudabi_sys_clock_time_get", .ret_type = 1, .nargs = 2, .args = { { CloudABIClockID, 0 }, { CloudABITimestamp, 1 } } }, { .name = "cloudabi_sys_condvar_signal", .ret_type = 1, .nargs = 3, .args = { { Ptr, 0 }, { CloudABIMFlags, 1 }, { UInt, 2 } } }, { .name = "cloudabi_sys_fd_close", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "cloudabi_sys_fd_create1", .ret_type = 1, .nargs = 1, .args = { { CloudABIFileType, 0 } } }, { .name = "cloudabi_sys_fd_create2", .ret_type = 1, .nargs = 2, .args = { { CloudABIFileType, 0 }, { PipeFds | OUT, 0 } } }, { .name = "cloudabi_sys_fd_datasync", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "cloudabi_sys_fd_dup", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "cloudabi_sys_fd_replace", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Int, 1 } } }, { .name = "cloudabi_sys_fd_seek", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Int, 1 }, { CloudABIWhence, 2 } } }, { .name = "cloudabi_sys_fd_stat_get", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { CloudABIFDStat | OUT, 1 } } }, { .name = "cloudabi_sys_fd_stat_put", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { CloudABIFDStat | IN, 1 }, { ClouduABIFDSFlags, 2 } } }, { .name = "cloudabi_sys_fd_sync", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "cloudabi_sys_file_advise", .ret_type = 1, .nargs = 4, .args = { { Int, 0 }, { Int, 1 }, { Int, 2 }, { CloudABIAdvice, 3 } } }, { .name = "cloudabi_sys_file_allocate", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Int, 1 }, { Int, 2 } } }, { .name = "cloudabi_sys_file_create", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { BinString | IN, 1 }, { CloudABIFileType, 3 } } }, { .name = "cloudabi_sys_file_link", .ret_type = 1, .nargs = 4, .args = { { CloudABILookup, 0 }, { BinString | IN, 1 }, { Int, 3 }, { BinString | IN, 4 } } }, { .name = "cloudabi_sys_file_open", .ret_type = 1, .nargs = 4, .args = { { Int, 0 }, { BinString | IN, 1 }, { CloudABIOFlags, 3 }, { CloudABIFDStat | IN, 4 } } }, { .name = "cloudabi_sys_file_readdir", .ret_type = 1, .nargs = 4, .args = { { Int, 0 }, { BinString | OUT, 1 }, { Int, 2 }, { Int, 3 } } }, { .name = "cloudabi_sys_file_readlink", .ret_type = 1, .nargs = 4, .args = { { Int, 0 }, { BinString | IN, 1 }, { BinString | OUT, 3 }, { Int, 4 } } }, { .name = "cloudabi_sys_file_rename", .ret_type = 1, .nargs = 4, .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 3 }, { BinString | IN, 4 } } }, { .name = "cloudabi_sys_file_stat_fget", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { CloudABIFileStat | OUT, 1 } } }, { .name = "cloudabi_sys_file_stat_fput", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { CloudABIFileStat | IN, 1 }, { CloudABIFSFlags, 2 } } }, { .name = "cloudabi_sys_file_stat_get", .ret_type = 1, .nargs = 3, .args = { { CloudABILookup, 0 }, { BinString | IN, 1 }, { CloudABIFileStat | OUT, 3 } } }, { .name = "cloudabi_sys_file_stat_put", .ret_type = 1, .nargs = 4, .args = { { CloudABILookup, 0 }, { BinString | IN, 1 }, { CloudABIFileStat | IN, 3 }, { CloudABIFSFlags, 4 } } }, { .name = "cloudabi_sys_file_symlink", .ret_type = 1, .nargs = 3, .args = { { BinString | IN, 0 }, { Int, 2 }, { BinString | IN, 3 } } }, { .name = "cloudabi_sys_file_unlink", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { BinString | IN, 1 }, { CloudABIULFlags, 3 } } }, { .name = "cloudabi_sys_lock_unlock", .ret_type = 1, .nargs = 2, .args = { { Ptr, 0 }, { CloudABIMFlags, 1 } } }, { .name = "cloudabi_sys_mem_advise", .ret_type = 1, .nargs = 3, .args = { { Ptr, 0 }, { Int, 1 }, { CloudABIAdvice, 2 } } }, { .name = "cloudabi_sys_mem_lock", .ret_type = 1, .nargs = 2, .args = { { Ptr, 0 }, { Int, 1 } } }, { .name = "cloudabi_sys_mem_map", .ret_type = 1, .nargs = 6, .args = { { Ptr, 0 }, { Int, 1 }, { CloudABIMProt, 2 }, { CloudABIMFlags, 3 }, { Int, 4 }, { Int, 5 } } }, { .name = "cloudabi_sys_mem_protect", .ret_type = 1, .nargs = 3, .args = { { Ptr, 0 }, { Int, 1 }, { CloudABIMProt, 2 } } }, { .name = "cloudabi_sys_mem_sync", .ret_type = 1, .nargs = 3, .args = { { Ptr, 0 }, { Int, 1 }, { CloudABIMSFlags, 2 } } }, { .name = "cloudabi_sys_mem_unlock", .ret_type = 1, .nargs = 2, .args = { { Ptr, 0 }, { Int, 1 } } }, { .name = "cloudabi_sys_mem_unmap", .ret_type = 1, .nargs = 2, .args = { { Ptr, 0 }, { Int, 1 } } }, { .name = "cloudabi_sys_proc_exec", .ret_type = 1, .nargs = 5, .args = { { Int, 0 }, { BinString | IN, 1 }, { Int, 2 }, { IntArray, 3 }, { Int, 4 } } }, { .name = "cloudabi_sys_proc_exit", .ret_type = 1, .nargs = 1, .args = { { Int, 0 } } }, { .name = "cloudabi_sys_proc_fork", .ret_type = 1, .nargs = 0 }, { .name = "cloudabi_sys_proc_raise", .ret_type = 1, .nargs = 1, .args = { { CloudABISignal, 0 } } }, { .name = "cloudabi_sys_random_get", .ret_type = 1, .nargs = 2, .args = { { BinString | OUT, 0 }, { Int, 1 } } }, { .name = "cloudabi_sys_sock_accept", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { CloudABISockStat | OUT, 1 } } }, { .name = "cloudabi_sys_sock_bind", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Int, 1 }, { BinString | IN, 2 } } }, { .name = "cloudabi_sys_sock_connect", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { Int, 1 }, { BinString | IN, 2 } } }, { .name = "cloudabi_sys_sock_listen", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { Int, 1 } } }, { .name = "cloudabi_sys_sock_shutdown", .ret_type = 1, .nargs = 2, .args = { { Int, 0 }, { CloudABISDFlags, 1 } } }, { .name = "cloudabi_sys_sock_stat_get", .ret_type = 1, .nargs = 3, .args = { { Int, 0 }, { CloudABISockStat | OUT, 1 }, { CloudABISSFlags, 2 } } }, { .name = "cloudabi_sys_thread_exit", .ret_type = 1, .nargs = 2, .args = { { Ptr, 0 }, { CloudABIMFlags, 1 } } }, { .name = "cloudabi_sys_thread_tcb_set", .ret_type = 1, .nargs = 1, .args = { { Ptr, 0 } } }, { .name = "cloudabi_sys_thread_yield", .ret_type = 1, .nargs = 0 }, { .name = 0 }, }; static STAILQ_HEAD(, syscall) syscalls; /* Xlat idea taken from strace */ struct xlat { int val; const char *str; }; #define X(a) { a, #a }, #define XEND { 0, NULL } static struct xlat kevent_filters[] = { X(EVFILT_READ) X(EVFILT_WRITE) X(EVFILT_AIO) X(EVFILT_VNODE) X(EVFILT_PROC) X(EVFILT_SIGNAL) X(EVFILT_TIMER) X(EVFILT_PROCDESC) X(EVFILT_FS) X(EVFILT_LIO) X(EVFILT_USER) X(EVFILT_SENDFILE) XEND }; static struct xlat kevent_flags[] = { X(EV_ADD) X(EV_DELETE) X(EV_ENABLE) X(EV_DISABLE) X(EV_ONESHOT) X(EV_CLEAR) X(EV_RECEIPT) X(EV_DISPATCH) X(EV_FORCEONESHOT) X(EV_DROP) X(EV_FLAG1) X(EV_ERROR) X(EV_EOF) XEND }; static struct xlat kevent_user_ffctrl[] = { X(NOTE_FFNOP) X(NOTE_FFAND) X(NOTE_FFOR) X(NOTE_FFCOPY) XEND }; static struct xlat kevent_rdwr_fflags[] = { X(NOTE_LOWAT) X(NOTE_FILE_POLL) XEND }; static struct xlat kevent_vnode_fflags[] = { X(NOTE_DELETE) X(NOTE_WRITE) X(NOTE_EXTEND) X(NOTE_ATTRIB) X(NOTE_LINK) X(NOTE_RENAME) X(NOTE_REVOKE) XEND }; static struct xlat kevent_proc_fflags[] = { X(NOTE_EXIT) X(NOTE_FORK) X(NOTE_EXEC) X(NOTE_TRACK) X(NOTE_TRACKERR) X(NOTE_CHILD) XEND }; static struct xlat kevent_timer_fflags[] = { X(NOTE_SECONDS) X(NOTE_MSECONDS) X(NOTE_USECONDS) X(NOTE_NSECONDS) XEND }; static struct xlat poll_flags[] = { X(POLLSTANDARD) X(POLLIN) X(POLLPRI) X(POLLOUT) X(POLLERR) X(POLLHUP) X(POLLNVAL) X(POLLRDNORM) X(POLLRDBAND) X(POLLWRBAND) X(POLLINIGNEOF) XEND }; static struct xlat mmap_flags[] = { X(MAP_SHARED) X(MAP_PRIVATE) X(MAP_FIXED) X(MAP_RESERVED0020) X(MAP_RESERVED0040) X(MAP_RESERVED0080) X(MAP_RESERVED0100) X(MAP_HASSEMAPHORE) X(MAP_STACK) X(MAP_NOSYNC) X(MAP_ANON) X(MAP_EXCL) X(MAP_NOCORE) X(MAP_PREFAULT_READ) #ifdef MAP_32BIT X(MAP_32BIT) #endif XEND }; static struct xlat mprot_flags[] = { X(PROT_NONE) X(PROT_READ) X(PROT_WRITE) X(PROT_EXEC) XEND }; static struct xlat whence_arg[] = { X(SEEK_SET) X(SEEK_CUR) X(SEEK_END) X(SEEK_DATA) X(SEEK_HOLE) XEND }; static struct xlat sigaction_flags[] = { X(SA_ONSTACK) X(SA_RESTART) X(SA_RESETHAND) X(SA_NOCLDSTOP) X(SA_NODEFER) X(SA_NOCLDWAIT) X(SA_SIGINFO) XEND }; static struct xlat fcntl_arg[] = { X(F_DUPFD) X(F_GETFD) X(F_SETFD) X(F_GETFL) X(F_SETFL) X(F_GETOWN) X(F_SETOWN) X(F_OGETLK) X(F_OSETLK) X(F_OSETLKW) X(F_DUP2FD) X(F_GETLK) X(F_SETLK) X(F_SETLKW) X(F_SETLK_REMOTE) X(F_READAHEAD) X(F_RDAHEAD) X(F_DUPFD_CLOEXEC) X(F_DUP2FD_CLOEXEC) XEND }; static struct xlat fcntlfd_arg[] = { X(FD_CLOEXEC) XEND }; static struct xlat fcntlfl_arg[] = { X(O_APPEND) X(O_ASYNC) X(O_FSYNC) X(O_NONBLOCK) X(O_NOFOLLOW) X(FRDAHEAD) X(O_DIRECT) XEND }; static struct xlat sockdomain_arg[] = { X(PF_UNSPEC) X(PF_LOCAL) X(PF_UNIX) X(PF_INET) X(PF_IMPLINK) X(PF_PUP) X(PF_CHAOS) X(PF_NETBIOS) X(PF_ISO) X(PF_OSI) X(PF_ECMA) X(PF_DATAKIT) X(PF_CCITT) X(PF_SNA) X(PF_DECnet) X(PF_DLI) X(PF_LAT) X(PF_HYLINK) X(PF_APPLETALK) X(PF_ROUTE) X(PF_LINK) X(PF_XTP) X(PF_COIP) X(PF_CNT) X(PF_SIP) X(PF_IPX) X(PF_RTIP) X(PF_PIP) X(PF_ISDN) X(PF_KEY) X(PF_INET6) X(PF_NATM) X(PF_ATM) X(PF_NETGRAPH) X(PF_SLOW) X(PF_SCLUSTER) X(PF_ARP) X(PF_BLUETOOTH) X(PF_IEEE80211) X(PF_INET_SDP) X(PF_INET6_SDP) XEND }; static struct xlat socktype_arg[] = { X(SOCK_STREAM) X(SOCK_DGRAM) X(SOCK_RAW) X(SOCK_RDM) X(SOCK_SEQPACKET) XEND }; static struct xlat open_flags[] = { X(O_RDONLY) X(O_WRONLY) X(O_RDWR) X(O_ACCMODE) X(O_NONBLOCK) X(O_APPEND) X(O_SHLOCK) X(O_EXLOCK) X(O_ASYNC) X(O_FSYNC) X(O_NOFOLLOW) X(O_CREAT) X(O_TRUNC) X(O_EXCL) X(O_NOCTTY) X(O_DIRECT) X(O_DIRECTORY) X(O_EXEC) X(O_TTY_INIT) X(O_CLOEXEC) X(O_VERIFY) XEND }; static struct xlat shutdown_arg[] = { X(SHUT_RD) X(SHUT_WR) X(SHUT_RDWR) XEND }; static struct xlat resource_arg[] = { X(RLIMIT_CPU) X(RLIMIT_FSIZE) X(RLIMIT_DATA) X(RLIMIT_STACK) X(RLIMIT_CORE) X(RLIMIT_RSS) X(RLIMIT_MEMLOCK) X(RLIMIT_NPROC) X(RLIMIT_NOFILE) X(RLIMIT_SBSIZE) X(RLIMIT_VMEM) X(RLIMIT_NPTS) X(RLIMIT_SWAP) X(RLIMIT_KQUEUES) XEND }; static struct xlat pathconf_arg[] = { X(_PC_LINK_MAX) X(_PC_MAX_CANON) X(_PC_MAX_INPUT) X(_PC_NAME_MAX) X(_PC_PATH_MAX) X(_PC_PIPE_BUF) X(_PC_CHOWN_RESTRICTED) X(_PC_NO_TRUNC) X(_PC_VDISABLE) X(_PC_ASYNC_IO) X(_PC_PRIO_IO) X(_PC_SYNC_IO) X(_PC_ALLOC_SIZE_MIN) X(_PC_FILESIZEBITS) X(_PC_REC_INCR_XFER_SIZE) X(_PC_REC_MAX_XFER_SIZE) X(_PC_REC_MIN_XFER_SIZE) X(_PC_REC_XFER_ALIGN) X(_PC_SYMLINK_MAX) X(_PC_ACL_EXTENDED) X(_PC_ACL_PATH_MAX) X(_PC_CAP_PRESENT) X(_PC_INF_PRESENT) X(_PC_MAC_PRESENT) X(_PC_ACL_NFS4) X(_PC_MIN_HOLE_SIZE) XEND }; static struct xlat rfork_flags[] = { X(RFFDG) X(RFPROC) X(RFMEM) X(RFNOWAIT) X(RFCFDG) X(RFTHREAD) X(RFSIGSHARE) X(RFLINUXTHPN) X(RFTSIGZMB) X(RFPPWAIT) XEND }; static struct xlat wait_options[] = { X(WNOHANG) X(WUNTRACED) X(WCONTINUED) X(WNOWAIT) X(WEXITED) X(WTRAPPED) XEND }; static struct xlat idtype_arg[] = { X(P_PID) X(P_PPID) X(P_PGID) X(P_SID) X(P_CID) X(P_UID) X(P_GID) X(P_ALL) X(P_LWPID) X(P_TASKID) X(P_PROJID) X(P_POOLID) X(P_JAILID) X(P_CTID) X(P_CPUID) X(P_PSETID) XEND }; static struct xlat procctl_arg[] = { X(PROC_SPROTECT) X(PROC_REAP_ACQUIRE) X(PROC_REAP_RELEASE) X(PROC_REAP_STATUS) X(PROC_REAP_GETPIDS) X(PROC_REAP_KILL) X(PROC_TRACE_CTL) X(PROC_TRACE_STATUS) XEND }; static struct xlat umtx_ops[] = { X(UMTX_OP_RESERVED0) X(UMTX_OP_RESERVED1) X(UMTX_OP_WAIT) X(UMTX_OP_WAKE) X(UMTX_OP_MUTEX_TRYLOCK) X(UMTX_OP_MUTEX_LOCK) X(UMTX_OP_MUTEX_UNLOCK) X(UMTX_OP_SET_CEILING) X(UMTX_OP_CV_WAIT) X(UMTX_OP_CV_SIGNAL) X(UMTX_OP_CV_BROADCAST) X(UMTX_OP_WAIT_UINT) X(UMTX_OP_RW_RDLOCK) X(UMTX_OP_RW_WRLOCK) X(UMTX_OP_RW_UNLOCK) X(UMTX_OP_WAIT_UINT_PRIVATE) X(UMTX_OP_WAKE_PRIVATE) X(UMTX_OP_MUTEX_WAIT) X(UMTX_OP_MUTEX_WAKE) X(UMTX_OP_SEM_WAIT) X(UMTX_OP_SEM_WAKE) X(UMTX_OP_NWAKE_PRIVATE) X(UMTX_OP_MUTEX_WAKE2) X(UMTX_OP_SEM2_WAIT) X(UMTX_OP_SEM2_WAKE) XEND }; static struct xlat at_flags[] = { X(AT_EACCESS) X(AT_SYMLINK_NOFOLLOW) X(AT_SYMLINK_FOLLOW) X(AT_REMOVEDIR) XEND }; static struct xlat access_modes[] = { X(R_OK) X(W_OK) X(X_OK) XEND }; static struct xlat sysarch_ops[] = { #if defined(__i386__) || defined(__amd64__) X(I386_GET_LDT) X(I386_SET_LDT) X(I386_GET_IOPERM) X(I386_SET_IOPERM) X(I386_VM86) X(I386_GET_FSBASE) X(I386_SET_FSBASE) X(I386_GET_GSBASE) X(I386_SET_GSBASE) X(I386_GET_XFPUSTATE) X(AMD64_GET_FSBASE) X(AMD64_SET_FSBASE) X(AMD64_GET_GSBASE) X(AMD64_SET_GSBASE) X(AMD64_GET_XFPUSTATE) #endif XEND }; static struct xlat linux_socketcall_ops[] = { X(LINUX_SOCKET) X(LINUX_BIND) X(LINUX_CONNECT) X(LINUX_LISTEN) X(LINUX_ACCEPT) X(LINUX_GETSOCKNAME) X(LINUX_GETPEERNAME) X(LINUX_SOCKETPAIR) X(LINUX_SEND) X(LINUX_RECV) X(LINUX_SENDTO) X(LINUX_RECVFROM) X(LINUX_SHUTDOWN) X(LINUX_SETSOCKOPT) X(LINUX_GETSOCKOPT) X(LINUX_SENDMSG) X(LINUX_RECVMSG) XEND }; static struct xlat sigprocmask_ops[] = { X(SIG_BLOCK) X(SIG_UNBLOCK) X(SIG_SETMASK) XEND }; #undef X #define X(a) { CLOUDABI_##a, #a }, static struct xlat cloudabi_advice[] = { X(ADVICE_DONTNEED) X(ADVICE_NOREUSE) X(ADVICE_NORMAL) X(ADVICE_RANDOM) X(ADVICE_SEQUENTIAL) X(ADVICE_WILLNEED) XEND }; static struct xlat cloudabi_clockid[] = { X(CLOCK_MONOTONIC) X(CLOCK_PROCESS_CPUTIME_ID) X(CLOCK_REALTIME) X(CLOCK_THREAD_CPUTIME_ID) XEND }; static struct xlat cloudabi_errno[] = { X(E2BIG) X(EACCES) X(EADDRINUSE) X(EADDRNOTAVAIL) X(EAFNOSUPPORT) X(EAGAIN) X(EALREADY) X(EBADF) X(EBADMSG) X(EBUSY) X(ECANCELED) X(ECHILD) X(ECONNABORTED) X(ECONNREFUSED) X(ECONNRESET) X(EDEADLK) X(EDESTADDRREQ) X(EDOM) X(EDQUOT) X(EEXIST) X(EFAULT) X(EFBIG) X(EHOSTUNREACH) X(EIDRM) X(EILSEQ) X(EINPROGRESS) X(EINTR) X(EINVAL) X(EIO) X(EISCONN) X(EISDIR) X(ELOOP) X(EMFILE) X(EMLINK) X(EMSGSIZE) X(EMULTIHOP) X(ENAMETOOLONG) X(ENETDOWN) X(ENETRESET) X(ENETUNREACH) X(ENFILE) X(ENOBUFS) X(ENODEV) X(ENOENT) X(ENOEXEC) X(ENOLCK) X(ENOLINK) X(ENOMEM) X(ENOMSG) X(ENOPROTOOPT) X(ENOSPC) X(ENOSYS) X(ENOTCONN) X(ENOTDIR) X(ENOTEMPTY) X(ENOTRECOVERABLE) X(ENOTSOCK) X(ENOTSUP) X(ENOTTY) X(ENXIO) X(EOVERFLOW) X(EOWNERDEAD) X(EPERM) X(EPIPE) X(EPROTO) X(EPROTONOSUPPORT) X(EPROTOTYPE) X(ERANGE) X(EROFS) X(ESPIPE) X(ESRCH) X(ESTALE) X(ETIMEDOUT) X(ETXTBSY) X(EXDEV) X(ENOTCAPABLE) XEND }; static struct xlat cloudabi_fdflags[] = { X(FDFLAG_APPEND) X(FDFLAG_DSYNC) X(FDFLAG_NONBLOCK) X(FDFLAG_RSYNC) X(FDFLAG_SYNC) XEND }; static struct xlat cloudabi_fdsflags[] = { X(FDSTAT_FLAGS) X(FDSTAT_RIGHTS) XEND }; static struct xlat cloudabi_filetype[] = { X(FILETYPE_UNKNOWN) X(FILETYPE_BLOCK_DEVICE) X(FILETYPE_CHARACTER_DEVICE) X(FILETYPE_DIRECTORY) X(FILETYPE_FIFO) X(FILETYPE_POLL) X(FILETYPE_PROCESS) X(FILETYPE_REGULAR_FILE) X(FILETYPE_SHARED_MEMORY) X(FILETYPE_SOCKET_DGRAM) X(FILETYPE_SOCKET_SEQPACKET) X(FILETYPE_SOCKET_STREAM) X(FILETYPE_SYMBOLIC_LINK) XEND }; static struct xlat cloudabi_fsflags[] = { X(FILESTAT_ATIM) X(FILESTAT_ATIM_NOW) X(FILESTAT_MTIM) X(FILESTAT_MTIM_NOW) X(FILESTAT_SIZE) XEND }; static struct xlat cloudabi_mflags[] = { X(MAP_ANON) X(MAP_FIXED) X(MAP_PRIVATE) X(MAP_SHARED) XEND }; static struct xlat cloudabi_mprot[] = { X(PROT_EXEC) X(PROT_WRITE) X(PROT_READ) XEND }; static struct xlat cloudabi_msflags[] = { X(MS_ASYNC) X(MS_INVALIDATE) X(MS_SYNC) XEND }; static struct xlat cloudabi_oflags[] = { X(O_CREAT) X(O_DIRECTORY) X(O_EXCL) X(O_TRUNC) XEND }; static struct xlat cloudabi_sa_family[] = { X(AF_UNSPEC) X(AF_INET) X(AF_INET6) X(AF_UNIX) XEND }; static struct xlat cloudabi_sdflags[] = { X(SHUT_RD) X(SHUT_WR) XEND }; static struct xlat cloudabi_signal[] = { X(SIGABRT) X(SIGALRM) X(SIGBUS) X(SIGCHLD) X(SIGCONT) X(SIGFPE) X(SIGHUP) X(SIGILL) X(SIGINT) X(SIGKILL) X(SIGPIPE) X(SIGQUIT) X(SIGSEGV) X(SIGSTOP) X(SIGSYS) X(SIGTERM) X(SIGTRAP) X(SIGTSTP) X(SIGTTIN) X(SIGTTOU) X(SIGURG) X(SIGUSR1) X(SIGUSR2) X(SIGVTALRM) X(SIGXCPU) X(SIGXFSZ) XEND }; static struct xlat cloudabi_ssflags[] = { X(SOCKSTAT_CLEAR_ERROR) XEND }; static struct xlat cloudabi_ssstate[] = { X(SOCKSTAT_ACCEPTCONN) XEND }; static struct xlat cloudabi_ulflags[] = { X(UNLINK_REMOVEDIR) XEND }; static struct xlat cloudabi_whence[] = { X(WHENCE_CUR) X(WHENCE_END) X(WHENCE_SET) XEND }; #undef X #undef XEND /* * Searches an xlat array for a value, and returns it if found. Otherwise * return a string representation. */ static const char * lookup(struct xlat *xlat, int val, int base) { static char tmp[16]; for (; xlat->str != NULL; xlat++) if (xlat->val == val) return (xlat->str); switch (base) { case 8: sprintf(tmp, "0%o", val); break; case 16: sprintf(tmp, "0x%x", val); break; case 10: sprintf(tmp, "%u", val); break; default: errx(1,"Unknown lookup base"); break; } return (tmp); } static const char * xlookup(struct xlat *xlat, int val) { return (lookup(xlat, val, 16)); } /* * Searches an xlat array containing bitfield values. Remaining bits * set after removing the known ones are printed at the end: * IN|0x400. */ static char * xlookup_bits(struct xlat *xlat, int val) { int len, rem; static char str[512]; len = 0; rem = val; for (; xlat->str != NULL; xlat++) { if ((xlat->val & rem) == xlat->val) { /* * Don't print the "all-bits-zero" string unless all * bits are really zero. */ if (xlat->val == 0 && val != 0) continue; len += sprintf(str + len, "%s|", xlat->str); rem &= ~(xlat->val); } } /* * If we have leftover bits or didn't match anything, print * the remainder. */ if (rem || len == 0) len += sprintf(str + len, "0x%x", rem); if (len && str[len - 1] == '|') len--; str[len] = 0; return (str); } void init_syscalls(void) { struct syscall *sc; STAILQ_INIT(&syscalls); for (sc = decoded_syscalls; sc->name != NULL; sc++) STAILQ_INSERT_HEAD(&syscalls, sc, entries); } /* * If/when the list gets big, it might be desirable to do it * as a hash table or binary search. */ struct syscall * get_syscall(const char *name, int nargs) { struct syscall *sc; int i; if (name == NULL) return (NULL); STAILQ_FOREACH(sc, &syscalls, entries) if (strcmp(name, sc->name) == 0) return (sc); /* It is unknown. Add it into the list. */ #if DEBUG fprintf(stderr, "unknown syscall %s -- setting args to %d\n", name, nargs); #endif sc = calloc(1, sizeof(struct syscall)); sc->name = strdup(name); sc->ret_type = 1; sc->nargs = nargs; for (i = 0; i < nargs; i++) { sc->args[i].offset = i; /* Treat all unknown arguments as LongHex. */ sc->args[i].type = LongHex; } STAILQ_INSERT_HEAD(&syscalls, sc, entries); return (sc); } /* * Copy a fixed amount of bytes from the process. */ static int get_struct(pid_t pid, void *offset, void *buf, int len) { struct ptrace_io_desc iorequest; iorequest.piod_op = PIOD_READ_D; iorequest.piod_offs = offset; iorequest.piod_addr = buf; iorequest.piod_len = len; if (ptrace(PT_IO, pid, (caddr_t)&iorequest, 0) < 0) return (-1); return (0); } #define MAXSIZE 4096 /* * Copy a string from the process. Note that it is * expected to be a C string, but if max is set, it will * only get that much. */ static char * get_string(pid_t pid, void *addr, int max) { struct ptrace_io_desc iorequest; char *buf, *nbuf; size_t offset, size, totalsize; offset = 0; if (max) size = max + 1; else { /* Read up to the end of the current page. */ size = PAGE_SIZE - ((uintptr_t)addr % PAGE_SIZE); if (size > MAXSIZE) size = MAXSIZE; } totalsize = size; buf = malloc(totalsize); if (buf == NULL) return (NULL); for (;;) { iorequest.piod_op = PIOD_READ_D; iorequest.piod_offs = (char *)addr + offset; iorequest.piod_addr = buf + offset; iorequest.piod_len = size; if (ptrace(PT_IO, pid, (caddr_t)&iorequest, 0) < 0) { free(buf); return (NULL); } if (memchr(buf + offset, '\0', size) != NULL) return (buf); offset += size; if (totalsize < MAXSIZE && max == 0) { size = MAXSIZE - totalsize; if (size > PAGE_SIZE) size = PAGE_SIZE; nbuf = realloc(buf, totalsize + size); if (nbuf == NULL) { buf[totalsize - 1] = '\0'; return (buf); } buf = nbuf; totalsize += size; } else { buf[totalsize - 1] = '\0'; return (buf); } } } static char * strsig2(int sig) { static char tmp[sizeof(int) * 3 + 1]; char *ret; ret = strsig(sig); if (ret == NULL) { snprintf(tmp, sizeof(tmp), "%d", sig); ret = tmp; } return (ret); } static void print_kevent(FILE *fp, struct kevent *ke, int input) { switch (ke->filter) { case EVFILT_READ: case EVFILT_WRITE: case EVFILT_VNODE: case EVFILT_PROC: case EVFILT_TIMER: case EVFILT_PROCDESC: fprintf(fp, "%ju", (uintmax_t)ke->ident); break; case EVFILT_SIGNAL: fputs(strsig2(ke->ident), fp); break; default: fprintf(fp, "%p", (void *)ke->ident); } fprintf(fp, ",%s,%s,", xlookup(kevent_filters, ke->filter), xlookup_bits(kevent_flags, ke->flags)); switch (ke->filter) { case EVFILT_READ: case EVFILT_WRITE: fputs(xlookup_bits(kevent_rdwr_fflags, ke->fflags), fp); break; case EVFILT_VNODE: fputs(xlookup_bits(kevent_vnode_fflags, ke->fflags), fp); break; case EVFILT_PROC: case EVFILT_PROCDESC: fputs(xlookup_bits(kevent_proc_fflags, ke->fflags), fp); break; case EVFILT_TIMER: fputs(xlookup_bits(kevent_timer_fflags, ke->fflags), fp); break; case EVFILT_USER: { int ctrl, data; ctrl = ke->fflags & NOTE_FFCTRLMASK; data = ke->fflags & NOTE_FFLAGSMASK; if (input) { fputs(xlookup(kevent_user_ffctrl, ctrl), fp); if (ke->fflags & NOTE_TRIGGER) fputs("|NOTE_TRIGGER", fp); if (data != 0) fprintf(fp, "|%#x", data); } else { fprintf(fp, "%#x", data); } break; } default: fprintf(fp, "%#x", ke->fflags); } fprintf(fp, ",%p,%p", (void *)ke->data, (void *)ke->udata); } static void print_utrace(FILE *fp, void *utrace_addr, size_t len) { unsigned char *utrace_buffer; fprintf(fp, "{ "); if (kdump_print_utrace(fp, utrace_addr, len, 0)) { fprintf(fp, " }"); return; } utrace_buffer = utrace_addr; fprintf(fp, "%zu:", len); while (len--) fprintf(fp, " %02x", *utrace_buffer++); fprintf(fp, " }"); } /* * Converts a syscall argument into a string. Said string is * allocated via malloc(), so needs to be free()'d. sc is * a pointer to the syscall description (see above); args is * an array of all of the system call arguments. */ char * print_arg(struct syscall_args *sc, unsigned long *args, long *retval, struct trussinfo *trussinfo) { FILE *fp; char *tmp; size_t tmplen; pid_t pid; fp = open_memstream(&tmp, &tmplen); pid = trussinfo->curthread->proc->pid; switch (sc->type & ARG_MASK) { case Hex: fprintf(fp, "0x%x", (int)args[sc->offset]); break; case Octal: fprintf(fp, "0%o", (int)args[sc->offset]); break; case Int: fprintf(fp, "%d", (int)args[sc->offset]); break; case UInt: fprintf(fp, "%u", (unsigned int)args[sc->offset]); break; case LongHex: fprintf(fp, "0x%lx", args[sc->offset]); break; case Long: fprintf(fp, "%ld", args[sc->offset]); break; case Name: { /* NULL-terminated string. */ char *tmp2; tmp2 = get_string(pid, (void*)args[sc->offset], 0); fprintf(fp, "\"%s\"", tmp2); free(tmp2); break; } case BinString: { /* * Binary block of data that might have printable characters. * XXX If type|OUT, assume that the length is the syscall's * return value. Otherwise, assume that the length of the block * is in the next syscall argument. */ int max_string = trussinfo->strsize; char tmp2[max_string + 1], *tmp3; int len; int truncated = 0; if (sc->type & OUT) len = retval[0]; else len = args[sc->offset + 1]; /* * Don't print more than max_string characters, to avoid word * wrap. If we have to truncate put some ... after the string. */ if (len > max_string) { len = max_string; truncated = 1; } if (len && get_struct(pid, (void*)args[sc->offset], &tmp2, len) != -1) { tmp3 = malloc(len * 4 + 1); while (len) { if (strvisx(tmp3, tmp2, len, VIS_CSTYLE|VIS_TAB|VIS_NL) <= max_string) break; len--; truncated = 1; }; fprintf(fp, "\"%s\"%s", tmp3, truncated ? "..." : ""); free(tmp3); } else { fprintf(fp, "0x%lx", args[sc->offset]); } break; } case ExecArgs: case ExecEnv: case StringArray: { uintptr_t addr; union { char *strarray[0]; char buf[PAGE_SIZE]; } u; char *string; size_t len; u_int first, i; /* * Only parse argv[] and environment arrays from exec calls * if requested. */ if (((sc->type & ARG_MASK) == ExecArgs && (trussinfo->flags & EXECVEARGS) == 0) || ((sc->type & ARG_MASK) == ExecEnv && (trussinfo->flags & EXECVEENVS) == 0)) { fprintf(fp, "0x%lx", args[sc->offset]); break; } /* * Read a page of pointers at a time. Punt if the top-level * pointer is not aligned. Note that the first read is of * a partial page. */ addr = args[sc->offset]; if (addr % sizeof(char *) != 0) { fprintf(fp, "0x%lx", args[sc->offset]); break; } len = PAGE_SIZE - (addr & PAGE_MASK); if (get_struct(pid, (void *)addr, u.buf, len) == -1) { fprintf(fp, "0x%lx", args[sc->offset]); break; } fputc('[', fp); first = 1; i = 0; while (u.strarray[i] != NULL) { string = get_string(pid, u.strarray[i], 0); fprintf(fp, "%s \"%s\"", first ? "" : ",", string); free(string); first = 0; i++; if (i == len / sizeof(char *)) { addr += len; len = PAGE_SIZE; if (get_struct(pid, (void *)addr, u.buf, len) == -1) { fprintf(fp, ", "); break; } i = 0; } } fputs(" ]", fp); break; } #ifdef __LP64__ case Quad: fprintf(fp, "%ld", args[sc->offset]); break; case QuadHex: fprintf(fp, "0x%lx", args[sc->offset]); break; #else case Quad: case QuadHex: { unsigned long long ll; #if _BYTE_ORDER == _LITTLE_ENDIAN ll = (unsigned long long)args[sc->offset + 1] << 32 | args[sc->offset]; #else ll = (unsigned long long)args[sc->offset] << 32 | args[sc->offset + 1]; #endif if ((sc->type & ARG_MASK) == Quad) fprintf(fp, "%lld", ll); else fprintf(fp, "0x%llx", ll); break; } #endif case Ptr: fprintf(fp, "0x%lx", args[sc->offset]); break; case Readlinkres: { char *tmp2; if (retval[0] == -1) break; tmp2 = get_string(pid, (void*)args[sc->offset], retval[0]); fprintf(fp, "\"%s\"", tmp2); free(tmp2); break; } case Ioctl: { const char *temp; unsigned long cmd; cmd = args[sc->offset]; temp = ioctlname(cmd); if (temp) fputs(temp, fp); else { fprintf(fp, "0x%lx { IO%s%s 0x%lx('%c'), %lu, %lu }", cmd, cmd & IOC_OUT ? "R" : "", cmd & IOC_IN ? "W" : "", IOCGROUP(cmd), isprint(IOCGROUP(cmd)) ? (char)IOCGROUP(cmd) : '?', cmd & 0xFF, IOCPARM_LEN(cmd)); } break; } case Timespec: { struct timespec ts; if (get_struct(pid, (void *)args[sc->offset], &ts, sizeof(ts)) != -1) fprintf(fp, "{ %jd.%09ld }", (intmax_t)ts.tv_sec, ts.tv_nsec); else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Timespec2: { struct timespec ts[2]; const char *sep; unsigned int i; if (get_struct(pid, (void *)args[sc->offset], &ts, sizeof(ts)) != -1) { fputs("{ ", fp); sep = ""; for (i = 0; i < nitems(ts); i++) { fputs(sep, fp); sep = ", "; switch (ts[i].tv_nsec) { case UTIME_NOW: fprintf(fp, "UTIME_NOW"); break; case UTIME_OMIT: fprintf(fp, "UTIME_OMIT"); break; default: fprintf(fp, "%jd.%09ld", (intmax_t)ts[i].tv_sec, ts[i].tv_nsec); break; } } fputs(" }", fp); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Timeval: { struct timeval tv; if (get_struct(pid, (void *)args[sc->offset], &tv, sizeof(tv)) != -1) fprintf(fp, "{ %jd.%06ld }", (intmax_t)tv.tv_sec, tv.tv_usec); else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Timeval2: { struct timeval tv[2]; if (get_struct(pid, (void *)args[sc->offset], &tv, sizeof(tv)) != -1) fprintf(fp, "{ %jd.%06ld, %jd.%06ld }", (intmax_t)tv[0].tv_sec, tv[0].tv_usec, (intmax_t)tv[1].tv_sec, tv[1].tv_usec); else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Itimerval: { struct itimerval itv; if (get_struct(pid, (void *)args[sc->offset], &itv, sizeof(itv)) != -1) fprintf(fp, "{ %jd.%06ld, %jd.%06ld }", (intmax_t)itv.it_interval.tv_sec, itv.it_interval.tv_usec, (intmax_t)itv.it_value.tv_sec, itv.it_value.tv_usec); else fprintf(fp, "0x%lx", args[sc->offset]); break; } case LinuxSockArgs: { struct linux_socketcall_args largs; if (get_struct(pid, (void *)args[sc->offset], (void *)&largs, sizeof(largs)) != -1) fprintf(fp, "{ %s, 0x%lx }", lookup(linux_socketcall_ops, largs.what, 10), (long unsigned int)largs.args); else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Pollfd: { /* * XXX: A Pollfd argument expects the /next/ syscall argument * to be the number of fds in the array. This matches the poll * syscall. */ struct pollfd *pfd; int numfds = args[sc->offset + 1]; size_t bytes = sizeof(struct pollfd) * numfds; int i; if ((pfd = malloc(bytes)) == NULL) err(1, "Cannot malloc %zu bytes for pollfd array", bytes); if (get_struct(pid, (void *)args[sc->offset], pfd, bytes) != -1) { fputs("{", fp); for (i = 0; i < numfds; i++) { fprintf(fp, " %d/%s", pfd[i].fd, xlookup_bits(poll_flags, pfd[i].events)); } fputs(" }", fp); } else { fprintf(fp, "0x%lx", args[sc->offset]); } free(pfd); break; } case Fd_set: { /* * XXX: A Fd_set argument expects the /first/ syscall argument * to be the number of fds in the array. This matches the * select syscall. */ fd_set *fds; int numfds = args[0]; size_t bytes = _howmany(numfds, _NFDBITS) * _NFDBITS; int i; if ((fds = malloc(bytes)) == NULL) err(1, "Cannot malloc %zu bytes for fd_set array", bytes); if (get_struct(pid, (void *)args[sc->offset], fds, bytes) != -1) { fputs("{", fp); for (i = 0; i < numfds; i++) { if (FD_ISSET(i, fds)) fprintf(fp, " %d", i); } fputs(" }", fp); } else fprintf(fp, "0x%lx", args[sc->offset]); free(fds); break; } case Signal: fputs(strsig2(args[sc->offset]), fp); break; case Sigset: { long sig; sigset_t ss; int i, first; sig = args[sc->offset]; if (get_struct(pid, (void *)args[sc->offset], (void *)&ss, sizeof(ss)) == -1) { fprintf(fp, "0x%lx", args[sc->offset]); break; } fputs("{ ", fp); first = 1; for (i = 1; i < sys_nsig; i++) { if (sigismember(&ss, i)) { fprintf(fp, "%s%s", !first ? "|" : "", strsig(i)); first = 0; } } if (!first) fputc(' ', fp); fputc('}', fp); break; } case Sigprocmask: { fputs(xlookup(sigprocmask_ops, args[sc->offset]), fp); break; } case Fcntlflag: { /* XXX: Output depends on the value of the previous argument. */ switch (args[sc->offset - 1]) { case F_SETFD: fputs(xlookup_bits(fcntlfd_arg, args[sc->offset]), fp); break; case F_SETFL: fputs(xlookup_bits(fcntlfl_arg, args[sc->offset]), fp); break; case F_GETFD: case F_GETFL: case F_GETOWN: break; default: fprintf(fp, "0x%lx", args[sc->offset]); break; } break; } case Open: fputs(xlookup_bits(open_flags, args[sc->offset]), fp); break; case Fcntl: fputs(xlookup(fcntl_arg, args[sc->offset]), fp); break; case Mprot: fputs(xlookup_bits(mprot_flags, args[sc->offset]), fp); break; case Mmapflags: { int align, flags; /* * MAP_ALIGNED can't be handled by xlookup_bits(), so * generate that string manually and prepend it to the * string from xlookup_bits(). Have to be careful to * avoid outputting MAP_ALIGNED|0 if MAP_ALIGNED is * the only flag. */ flags = args[sc->offset] & ~MAP_ALIGNMENT_MASK; align = args[sc->offset] & MAP_ALIGNMENT_MASK; if (align != 0) { if (align == MAP_ALIGNED_SUPER) fputs("MAP_ALIGNED_SUPER", fp); else fprintf(fp, "MAP_ALIGNED(%d)", align >> MAP_ALIGNMENT_SHIFT); if (flags == 0) break; fputc('|', fp); } fputs(xlookup_bits(mmap_flags, flags), fp); break; } case Whence: fputs(xlookup(whence_arg, args[sc->offset]), fp); break; case Sockdomain: fputs(xlookup(sockdomain_arg, args[sc->offset]), fp); break; case Socktype: { int type, flags; flags = args[sc->offset] & (SOCK_CLOEXEC | SOCK_NONBLOCK); type = args[sc->offset] & ~flags; fputs(xlookup(socktype_arg, type), fp); if (flags & SOCK_CLOEXEC) fprintf(fp, "|SOCK_CLOEXEC"); if (flags & SOCK_NONBLOCK) fprintf(fp, "|SOCK_NONBLOCK"); break; } case Shutdown: fputs(xlookup(shutdown_arg, args[sc->offset]), fp); break; case Resource: fputs(xlookup(resource_arg, args[sc->offset]), fp); break; case Pathconf: fputs(xlookup(pathconf_arg, args[sc->offset]), fp); break; case Rforkflags: fputs(xlookup_bits(rfork_flags, args[sc->offset]), fp); break; case Sockaddr: { char addr[64]; struct sockaddr_in *lsin; struct sockaddr_in6 *lsin6; struct sockaddr_un *sun; struct sockaddr *sa; socklen_t len; u_char *q; if (args[sc->offset] == 0) { fputs("NULL", fp); break; } /* * Extract the address length from the next argument. If * this is an output sockaddr (OUT is set), then the * next argument is a pointer to a socklen_t. Otherwise * the next argument contains a socklen_t by value. */ if (sc->type & OUT) { if (get_struct(pid, (void *)args[sc->offset + 1], &len, sizeof(len)) == -1) { fprintf(fp, "0x%lx", args[sc->offset]); break; } } else len = args[sc->offset + 1]; /* If the length is too small, just bail. */ if (len < sizeof(*sa)) { fprintf(fp, "0x%lx", args[sc->offset]); break; } sa = calloc(1, len); if (get_struct(pid, (void *)args[sc->offset], sa, len) == -1) { free(sa); fprintf(fp, "0x%lx", args[sc->offset]); break; } switch (sa->sa_family) { case AF_INET: if (len < sizeof(*lsin)) goto sockaddr_short; lsin = (struct sockaddr_in *)(void *)sa; inet_ntop(AF_INET, &lsin->sin_addr, addr, sizeof(addr)); fprintf(fp, "{ AF_INET %s:%d }", addr, htons(lsin->sin_port)); break; case AF_INET6: if (len < sizeof(*lsin6)) goto sockaddr_short; lsin6 = (struct sockaddr_in6 *)(void *)sa; inet_ntop(AF_INET6, &lsin6->sin6_addr, addr, sizeof(addr)); fprintf(fp, "{ AF_INET6 [%s]:%d }", addr, htons(lsin6->sin6_port)); break; case AF_UNIX: sun = (struct sockaddr_un *)sa; fprintf(fp, "{ AF_UNIX \"%.*s\" }", (int)(len - offsetof(struct sockaddr_un, sun_path)), sun->sun_path); break; default: sockaddr_short: fprintf(fp, "{ sa_len = %d, sa_family = %d, sa_data = {", (int)sa->sa_len, (int)sa->sa_family); for (q = (u_char *)sa->sa_data; q < (u_char *)sa + len; q++) fprintf(fp, "%s 0x%02x", q == (u_char *)sa->sa_data ? "" : ",", *q); fputs(" } }", fp); } free(sa); break; } case Sigaction: { struct sigaction sa; if (get_struct(pid, (void *)args[sc->offset], &sa, sizeof(sa)) != -1) { fputs("{ ", fp); if (sa.sa_handler == SIG_DFL) fputs("SIG_DFL", fp); else if (sa.sa_handler == SIG_IGN) fputs("SIG_IGN", fp); else fprintf(fp, "%p", sa.sa_handler); fprintf(fp, " %s ss_t }", xlookup_bits(sigaction_flags, sa.sa_flags)); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Kevent: { /* * XXX XXX: The size of the array is determined by either the * next syscall argument, or by the syscall return value, * depending on which argument number we are. This matches the * kevent syscall, but luckily that's the only syscall that uses * them. */ struct kevent *ke; int numevents = -1; size_t bytes; int i; if (sc->offset == 1) numevents = args[sc->offset+1]; else if (sc->offset == 3 && retval[0] != -1) numevents = retval[0]; if (numevents >= 0) { bytes = sizeof(struct kevent) * numevents; if ((ke = malloc(bytes)) == NULL) err(1, "Cannot malloc %zu bytes for kevent array", bytes); } else ke = NULL; if (numevents >= 0 && get_struct(pid, (void *)args[sc->offset], ke, bytes) != -1) { fputc('{', fp); for (i = 0; i < numevents; i++) { fputc(' ', fp); print_kevent(fp, &ke[i], sc->offset == 1); } fputs(" }", fp); } else { fprintf(fp, "0x%lx", args[sc->offset]); } free(ke); break; } case Stat: { struct stat st; if (get_struct(pid, (void *)args[sc->offset], &st, sizeof(st)) != -1) { char mode[12]; strmode(st.st_mode, mode); fprintf(fp, "{ mode=%s,inode=%ju,size=%jd,blksize=%ld }", mode, (uintmax_t)st.st_ino, (intmax_t)st.st_size, (long)st.st_blksize); } else { fprintf(fp, "0x%lx", args[sc->offset]); } break; } case StatFs: { unsigned int i; struct statfs buf; if (get_struct(pid, (void *)args[sc->offset], &buf, sizeof(buf)) != -1) { char fsid[17]; bzero(fsid, sizeof(fsid)); if (buf.f_fsid.val[0] != 0 || buf.f_fsid.val[1] != 0) { for (i = 0; i < sizeof(buf.f_fsid); i++) snprintf(&fsid[i*2], sizeof(fsid) - (i*2), "%02x", ((u_char *)&buf.f_fsid)[i]); } fprintf(fp, "{ fstypename=%s,mntonname=%s,mntfromname=%s," "fsid=%s }", buf.f_fstypename, buf.f_mntonname, buf.f_mntfromname, fsid); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Rusage: { struct rusage ru; if (get_struct(pid, (void *)args[sc->offset], &ru, sizeof(ru)) != -1) { fprintf(fp, "{ u=%jd.%06ld,s=%jd.%06ld,in=%ld,out=%ld }", (intmax_t)ru.ru_utime.tv_sec, ru.ru_utime.tv_usec, (intmax_t)ru.ru_stime.tv_sec, ru.ru_stime.tv_usec, ru.ru_inblock, ru.ru_oublock); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Rlimit: { struct rlimit rl; if (get_struct(pid, (void *)args[sc->offset], &rl, sizeof(rl)) != -1) { fprintf(fp, "{ cur=%ju,max=%ju }", rl.rlim_cur, rl.rlim_max); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case ExitStatus: { int status; if (get_struct(pid, (void *)args[sc->offset], &status, sizeof(status)) != -1) { fputs("{ ", fp); if (WIFCONTINUED(status)) fputs("CONTINUED", fp); else if (WIFEXITED(status)) fprintf(fp, "EXITED,val=%d", WEXITSTATUS(status)); else if (WIFSIGNALED(status)) fprintf(fp, "SIGNALED,sig=%s%s", strsig2(WTERMSIG(status)), WCOREDUMP(status) ? ",cored" : ""); else fprintf(fp, "STOPPED,sig=%s", strsig2(WTERMSIG(status))); fputs(" }", fp); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case Waitoptions: fputs(xlookup_bits(wait_options, args[sc->offset]), fp); break; case Idtype: fputs(xlookup(idtype_arg, args[sc->offset]), fp); break; case Procctl: fputs(xlookup(procctl_arg, args[sc->offset]), fp); break; case Umtxop: fputs(xlookup(umtx_ops, args[sc->offset]), fp); break; case Atfd: if ((int)args[sc->offset] == AT_FDCWD) fputs("AT_FDCWD", fp); else fprintf(fp, "%d", (int)args[sc->offset]); break; case Atflags: fputs(xlookup_bits(at_flags, args[sc->offset]), fp); break; case Accessmode: if (args[sc->offset] == F_OK) fputs("F_OK", fp); else fputs(xlookup_bits(access_modes, args[sc->offset]), fp); break; case Sysarch: fputs(xlookup(sysarch_ops, args[sc->offset]), fp); break; case PipeFds: /* * The pipe() system call in the kernel returns its * two file descriptors via return values. However, * the interface exposed by libc is that pipe() * accepts a pointer to an array of descriptors. * Format the output to match the libc API by printing * the returned file descriptors as a fake argument. * * Overwrite the first retval to signal a successful * return as well. */ fprintf(fp, "{ %ld, %ld }", retval[0], retval[1]); retval[0] = 0; break; case Utrace: { size_t len; void *utrace_addr; len = args[sc->offset + 1]; utrace_addr = calloc(1, len); if (get_struct(pid, (void *)args[sc->offset], (void *)utrace_addr, len) != -1) print_utrace(fp, utrace_addr, len); else fprintf(fp, "0x%lx", args[sc->offset]); free(utrace_addr); break; } case IntArray: { int descriptors[16]; unsigned long i, ndescriptors; bool truncated; ndescriptors = args[sc->offset + 1]; truncated = false; if (ndescriptors > nitems(descriptors)) { ndescriptors = nitems(descriptors); truncated = true; } if (get_struct(pid, (void *)args[sc->offset], descriptors, ndescriptors * sizeof(descriptors[0])) != -1) { fprintf(fp, "{"); for (i = 0; i < ndescriptors; i++) fprintf(fp, i == 0 ? " %d" : ", %d", descriptors[i]); fprintf(fp, truncated ? ", ... }" : " }"); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case CloudABIAdvice: fputs(xlookup(cloudabi_advice, args[sc->offset]), fp); break; case CloudABIClockID: fputs(xlookup(cloudabi_clockid, args[sc->offset]), fp); break; case ClouduABIFDSFlags: fputs(xlookup_bits(cloudabi_fdsflags, args[sc->offset]), fp); break; case CloudABIFDStat: { cloudabi_fdstat_t fds; if (get_struct(pid, (void *)args[sc->offset], &fds, sizeof(fds)) != -1) { fprintf(fp, "{ %s, ", xlookup(cloudabi_filetype, fds.fs_filetype)); fprintf(fp, "%s, ... }", xlookup_bits(cloudabi_fdflags, fds.fs_flags)); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case CloudABIFileStat: { cloudabi_filestat_t fsb; if (get_struct(pid, (void *)args[sc->offset], &fsb, sizeof(fsb)) != -1) fprintf(fp, "{ %s, %lu }", xlookup(cloudabi_filetype, fsb.st_filetype), fsb.st_size); else fprintf(fp, "0x%lx", args[sc->offset]); break; } case CloudABIFileType: fputs(xlookup(cloudabi_filetype, args[sc->offset]), fp); break; case CloudABIFSFlags: fputs(xlookup_bits(cloudabi_fsflags, args[sc->offset]), fp); break; case CloudABILookup: if ((args[sc->offset] & CLOUDABI_LOOKUP_SYMLINK_FOLLOW) != 0) fprintf(fp, "%d|LOOKUP_SYMLINK_FOLLOW", (int)args[sc->offset]); else fprintf(fp, "%d", (int)args[sc->offset]); break; case CloudABIMFlags: fputs(xlookup_bits(cloudabi_mflags, args[sc->offset]), fp); break; case CloudABIMProt: fputs(xlookup_bits(cloudabi_mprot, args[sc->offset]), fp); break; case CloudABIMSFlags: fputs(xlookup_bits(cloudabi_msflags, args[sc->offset]), fp); break; case CloudABIOFlags: fputs(xlookup_bits(cloudabi_oflags, args[sc->offset]), fp); break; case CloudABISDFlags: fputs(xlookup_bits(cloudabi_sdflags, args[sc->offset]), fp); break; case CloudABISignal: fputs(xlookup(cloudabi_signal, args[sc->offset]), fp); break; case CloudABISockStat: { cloudabi_sockstat_t ss; if (get_struct(pid, (void *)args[sc->offset], &ss, sizeof(ss)) != -1) { fprintf(fp, "{ %s, ", xlookup( cloudabi_sa_family, ss.ss_sockname.sa_family)); fprintf(fp, "%s, ", xlookup( cloudabi_sa_family, ss.ss_peername.sa_family)); fprintf(fp, "%s, ", xlookup( cloudabi_errno, ss.ss_error)); fprintf(fp, "%s }", xlookup_bits( cloudabi_ssstate, ss.ss_state)); } else fprintf(fp, "0x%lx", args[sc->offset]); break; } case CloudABISSFlags: fputs(xlookup_bits(cloudabi_ssflags, args[sc->offset]), fp); break; case CloudABITimestamp: fprintf(fp, "%lu.%09lus", args[sc->offset] / 1000000000, args[sc->offset] % 1000000000); break; case CloudABIULFlags: fputs(xlookup_bits(cloudabi_ulflags, args[sc->offset]), fp); break; case CloudABIWhence: fputs(xlookup(cloudabi_whence, args[sc->offset]), fp); break; default: errx(1, "Invalid argument type %d\n", sc->type & ARG_MASK); } fclose(fp); return (tmp); } /* * Print (to outfile) the system call and its arguments. Note that * nargs is the number of arguments (not the number of words; this is * potentially confusing, I know). */ void print_syscall(struct trussinfo *trussinfo, const char *name, int nargs, char **s_args) { struct timespec timediff; int i, len; len = 0; if (trussinfo->flags & FOLLOWFORKS) len += fprintf(trussinfo->outfile, "%5d: ", trussinfo->curthread->proc->pid); if (name != NULL && (strcmp(name, "execve") == 0 || strcmp(name, "exit") == 0)) { clock_gettime(CLOCK_REALTIME, &trussinfo->curthread->after); } if (trussinfo->flags & ABSOLUTETIMESTAMPS) { timespecsubt(&trussinfo->curthread->after, &trussinfo->start_time, &timediff); len += fprintf(trussinfo->outfile, "%jd.%09ld ", (intmax_t)timediff.tv_sec, timediff.tv_nsec); } if (trussinfo->flags & RELATIVETIMESTAMPS) { timespecsubt(&trussinfo->curthread->after, &trussinfo->curthread->before, &timediff); len += fprintf(trussinfo->outfile, "%jd.%09ld ", (intmax_t)timediff.tv_sec, timediff.tv_nsec); } len += fprintf(trussinfo->outfile, "%s(", name); for (i = 0; i < nargs; i++) { if (s_args[i]) len += fprintf(trussinfo->outfile, "%s", s_args[i]); else len += fprintf(trussinfo->outfile, ""); len += fprintf(trussinfo->outfile, "%s", i < (nargs - 1) ? "," : ""); } len += fprintf(trussinfo->outfile, ")"); for (i = 0; i < 6 - (len / 8); i++) fprintf(trussinfo->outfile, "\t"); } void print_syscall_ret(struct trussinfo *trussinfo, const char *name, int nargs, char **s_args, int errorp, long *retval, struct syscall *sc) { struct timespec timediff; if (trussinfo->flags & COUNTONLY) { clock_gettime(CLOCK_REALTIME, &trussinfo->curthread->after); timespecsubt(&trussinfo->curthread->after, &trussinfo->curthread->before, &timediff); timespecadd(&sc->time, &timediff, &sc->time); sc->ncalls++; if (errorp) sc->nerror++; return; } print_syscall(trussinfo, name, nargs, s_args); fflush(trussinfo->outfile); if (errorp) fprintf(trussinfo->outfile, " ERR#%ld '%s'\n", retval[0], strerror(retval[0])); #ifndef __LP64__ else if (sc->ret_type == 2) { off_t off; #if _BYTE_ORDER == _LITTLE_ENDIAN off = (off_t)retval[1] << 32 | retval[0]; #else off = (off_t)retval[0] << 32 | retval[1]; #endif fprintf(trussinfo->outfile, " = %jd (0x%jx)\n", (intmax_t)off, (intmax_t)off); } #endif else fprintf(trussinfo->outfile, " = %ld (0x%lx)\n", retval[0], retval[0]); } void print_summary(struct trussinfo *trussinfo) { struct timespec total = {0, 0}; struct syscall *sc; int ncall, nerror; fprintf(trussinfo->outfile, "%-20s%15s%8s%8s\n", "syscall", "seconds", "calls", "errors"); ncall = nerror = 0; STAILQ_FOREACH(sc, &syscalls, entries) if (sc->ncalls) { fprintf(trussinfo->outfile, "%-20s%5jd.%09ld%8d%8d\n", sc->name, (intmax_t)sc->time.tv_sec, sc->time.tv_nsec, sc->ncalls, sc->nerror); timespecadd(&total, &sc->time, &total); ncall += sc->ncalls; nerror += sc->nerror; } fprintf(trussinfo->outfile, "%20s%15s%8s%8s\n", "", "-------------", "-------", "-------"); fprintf(trussinfo->outfile, "%-20s%5jd.%09ld%8d%8d\n", "", (intmax_t)total.tv_sec, total.tv_nsec, ncall, nerror); }