/*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright 1997 Sean Eric Fagan * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Sean Eric Fagan * 4. Neither the name of the author may be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Various setup functions for truss. Not the cleanest-written code, * I'm afraid. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "truss.h" #include "syscall.h" #include "extern.h" struct procabi_table { const char *name; struct procabi *abi; }; static sig_atomic_t detaching; static void enter_syscall(struct trussinfo *, struct threadinfo *, struct ptrace_lwpinfo *); static void new_proc(struct trussinfo *, pid_t, lwpid_t); static struct procabi freebsd = { .type = "FreeBSD", .abi = SYSDECODE_ABI_FREEBSD, .pointer_size = sizeof(void *), .extra_syscalls = STAILQ_HEAD_INITIALIZER(freebsd.extra_syscalls), .syscalls = { NULL } }; #if !defined(__SIZEOF_POINTER__) #error "Use a modern compiler." #endif #if __SIZEOF_POINTER__ > 4 static struct procabi freebsd32 = { .type = "FreeBSD32", .abi = SYSDECODE_ABI_FREEBSD32, .pointer_size = sizeof(uint32_t), .compat_prefix = "freebsd32_", .extra_syscalls = STAILQ_HEAD_INITIALIZER(freebsd32.extra_syscalls), .syscalls = { NULL } }; #endif static struct procabi linux = { .type = "Linux", .abi = SYSDECODE_ABI_LINUX, .pointer_size = sizeof(void *), .extra_syscalls = STAILQ_HEAD_INITIALIZER(linux.extra_syscalls), .syscalls = { NULL } }; #if __SIZEOF_POINTER__ > 4 static struct procabi linux32 = { .type = "Linux32", .abi = SYSDECODE_ABI_LINUX32, .pointer_size = sizeof(uint32_t), .extra_syscalls = STAILQ_HEAD_INITIALIZER(linux32.extra_syscalls), .syscalls = { NULL } }; #endif static struct procabi_table abis[] = { #if __SIZEOF_POINTER__ == 4 { "FreeBSD ELF32", &freebsd }, #elif __SIZEOF_POINTER__ == 8 { "FreeBSD ELF64", &freebsd }, { "FreeBSD ELF32", &freebsd32 }, #else #error "Unsupported pointer size" #endif #if defined(__powerpc64__) { "FreeBSD ELF64 V2", &freebsd }, #endif #if defined(__amd64__) { "FreeBSD a.out", &freebsd32 }, #endif #if defined(__i386__) { "FreeBSD a.out", &freebsd }, #endif #if __SIZEOF_POINTER__ >= 8 { "Linux ELF64", &linux }, { "Linux ELF32", &linux32 }, #else { "Linux ELF32", &linux }, #endif }; /* * setup_and_wait() is called to start a process. All it really does * is fork(), enable tracing in the child, and then exec the given * command. At that point, the child process stops, and the parent * can wake up and deal with it. */ void setup_and_wait(struct trussinfo *info, char *command[]) { pid_t pid; pid = vfork(); if (pid == -1) err(1, "fork failed"); if (pid == 0) { /* Child */ ptrace(PT_TRACE_ME, 0, 0, 0); execvp(command[0], command); err(1, "execvp %s", command[0]); } /* Only in the parent here */ if (waitpid(pid, NULL, 0) < 0) err(1, "unexpect stop in waitpid"); new_proc(info, pid, 0); } /* * start_tracing is called to attach to an existing process. */ void start_tracing(struct trussinfo *info, pid_t pid) { int ret, retry; retry = 10; do { ret = ptrace(PT_ATTACH, pid, NULL, 0); usleep(200); } while (ret && retry-- > 0); if (ret) err(1, "can not attach to target process"); if (waitpid(pid, NULL, 0) < 0) err(1, "Unexpect stop in waitpid"); new_proc(info, pid, 0); } /* * Restore a process back to it's pre-truss state. * Called for SIGINT, SIGTERM, SIGQUIT. This only * applies if truss was told to monitor an already-existing * process. */ void restore_proc(int signo __unused) { detaching = 1; } static void detach_proc(pid_t pid) { /* stop the child so that we can detach */ kill(pid, SIGSTOP); if (waitpid(pid, NULL, 0) < 0) err(1, "Unexpected stop in waitpid"); if (ptrace(PT_DETACH, pid, (caddr_t)1, 0) < 0) err(1, "Can not detach the process"); kill(pid, SIGCONT); } /* * Determine the ABI. This is called after every exec, and when * a process is first monitored. */ static struct procabi * find_abi(pid_t pid) { size_t len; unsigned int i; int error; int mib[4]; char progt[32]; len = sizeof(progt); mib[0] = CTL_KERN; mib[1] = KERN_PROC; mib[2] = KERN_PROC_SV_NAME; mib[3] = pid; error = sysctl(mib, 4, progt, &len, NULL, 0); if (error != 0) err(2, "can not get sysvec name"); for (i = 0; i < nitems(abis); i++) { if (strcmp(abis[i].name, progt) == 0) return (abis[i].abi); } warnx("ABI %s for pid %ld is not supported", progt, (long)pid); return (NULL); } static struct threadinfo * new_thread(struct procinfo *p, lwpid_t lwpid) { struct threadinfo *nt; /* * If this happens it means there is a bug in truss. Unfortunately * this will kill any processes truss is attached to. */ LIST_FOREACH(nt, &p->threadlist, entries) { if (nt->tid == lwpid) errx(1, "Duplicate thread for LWP %ld", (long)lwpid); } nt = calloc(1, sizeof(struct threadinfo)); if (nt == NULL) err(1, "calloc() failed"); nt->proc = p; nt->tid = lwpid; LIST_INSERT_HEAD(&p->threadlist, nt, entries); return (nt); } static void free_thread(struct threadinfo *t) { LIST_REMOVE(t, entries); free(t); } static void add_threads(struct trussinfo *info, struct procinfo *p) { struct ptrace_lwpinfo pl; struct threadinfo *t; lwpid_t *lwps; int i, nlwps; nlwps = ptrace(PT_GETNUMLWPS, p->pid, NULL, 0); if (nlwps == -1) err(1, "Unable to fetch number of LWPs"); assert(nlwps > 0); lwps = calloc(nlwps, sizeof(*lwps)); nlwps = ptrace(PT_GETLWPLIST, p->pid, (caddr_t)lwps, nlwps); if (nlwps == -1) err(1, "Unable to fetch LWP list"); for (i = 0; i < nlwps; i++) { t = new_thread(p, lwps[i]); if (ptrace(PT_LWPINFO, lwps[i], (caddr_t)&pl, sizeof(pl)) == -1) err(1, "ptrace(PT_LWPINFO)"); if (pl.pl_flags & PL_FLAG_SCE) { info->curthread = t; enter_syscall(info, t, &pl); } } free(lwps); } static void new_proc(struct trussinfo *info, pid_t pid, lwpid_t lwpid) { struct procinfo *np; /* * If this happens it means there is a bug in truss. Unfortunately * this will kill any processes truss is attached to. */ LIST_FOREACH(np, &info->proclist, entries) { if (np->pid == pid) errx(1, "Duplicate process for pid %ld", (long)pid); } if (info->flags & FOLLOWFORKS) if (ptrace(PT_FOLLOW_FORK, pid, NULL, 1) == -1) err(1, "Unable to follow forks for pid %ld", (long)pid); if (ptrace(PT_LWP_EVENTS, pid, NULL, 1) == -1) err(1, "Unable to enable LWP events for pid %ld", (long)pid); np = calloc(1, sizeof(struct procinfo)); np->pid = pid; np->abi = find_abi(pid); LIST_INIT(&np->threadlist); LIST_INSERT_HEAD(&info->proclist, np, entries); if (lwpid != 0) new_thread(np, lwpid); else add_threads(info, np); } static void free_proc(struct procinfo *p) { struct threadinfo *t, *t2; LIST_FOREACH_SAFE(t, &p->threadlist, entries, t2) { free(t); } LIST_REMOVE(p, entries); free(p); } static void detach_all_procs(struct trussinfo *info) { struct procinfo *p, *p2; LIST_FOREACH_SAFE(p, &info->proclist, entries, p2) { detach_proc(p->pid); free_proc(p); } } static struct procinfo * find_proc(struct trussinfo *info, pid_t pid) { struct procinfo *np; LIST_FOREACH(np, &info->proclist, entries) { if (np->pid == pid) return (np); } return (NULL); } /* * Change curthread member based on (pid, lwpid). */ static void find_thread(struct trussinfo *info, pid_t pid, lwpid_t lwpid) { struct procinfo *np; struct threadinfo *nt; np = find_proc(info, pid); assert(np != NULL); LIST_FOREACH(nt, &np->threadlist, entries) { if (nt->tid == lwpid) { info->curthread = nt; return; } } errx(1, "could not find thread"); } /* * When a process exits, it should have exactly one thread left. * All of the other threads should have reported thread exit events. */ static void find_exit_thread(struct trussinfo *info, pid_t pid) { struct procinfo *p; p = find_proc(info, pid); assert(p != NULL); info->curthread = LIST_FIRST(&p->threadlist); assert(info->curthread != NULL); assert(LIST_NEXT(info->curthread, entries) == NULL); } static void alloc_syscall(struct threadinfo *t, struct ptrace_lwpinfo *pl) { u_int i; assert(t->in_syscall == 0); assert(t->cs.number == 0); assert(t->cs.sc == NULL); assert(t->cs.nargs == 0); for (i = 0; i < nitems(t->cs.s_args); i++) assert(t->cs.s_args[i] == NULL); memset(t->cs.args, 0, sizeof(t->cs.args)); t->cs.number = pl->pl_syscall_code; t->in_syscall = 1; } static void free_syscall(struct threadinfo *t) { u_int i; for (i = 0; i < t->cs.nargs; i++) free(t->cs.s_args[i]); memset(&t->cs, 0, sizeof(t->cs)); t->in_syscall = 0; } static void enter_syscall(struct trussinfo *info, struct threadinfo *t, struct ptrace_lwpinfo *pl) { struct syscall *sc; u_int i, narg; alloc_syscall(t, pl); narg = MIN(pl->pl_syscall_narg, nitems(t->cs.args)); if (narg != 0 && ptrace(PT_GET_SC_ARGS, t->tid, (caddr_t)t->cs.args, sizeof(t->cs.args)) != 0) { free_syscall(t); return; } sc = get_syscall(t, t->cs.number, narg); if (sc->unknown) fprintf(info->outfile, "-- UNKNOWN %s SYSCALL %d --\n", t->proc->abi->type, t->cs.number); t->cs.nargs = sc->decode.nargs; assert(sc->decode.nargs <= nitems(t->cs.s_args)); t->cs.sc = sc; /* * At this point, we set up the system call arguments. * We ignore any OUT ones, however -- those are arguments that * are set by the system call, and so are probably meaningless * now. This doesn't currently support arguments that are * passed in *and* out, however. */ #if DEBUG fprintf(stderr, "syscall %s(", sc->name); #endif for (i = 0; i < t->cs.nargs; i++) { #if DEBUG fprintf(stderr, "0x%lx%s", t->cs.args[sc->decode.args[i].offset], i < (t->cs.nargs - 1) ? "," : ""); #endif if (!(sc->decode.args[i].type & OUT)) { t->cs.s_args[i] = print_arg(&sc->decode.args[i], t->cs.args, NULL, info); } } #if DEBUG fprintf(stderr, ")\n"); #endif clock_gettime(CLOCK_REALTIME, &t->before); } /* * When a thread exits voluntarily (including when a thread calls * exit() to trigger a process exit), the thread's internal state * holds the arguments passed to the exit system call. When the * thread's exit is reported, log that system call without a return * value. */ static void thread_exit_syscall(struct trussinfo *info) { struct threadinfo *t; t = info->curthread; if (!t->in_syscall) return; clock_gettime(CLOCK_REALTIME, &t->after); print_syscall_ret(info, 0, NULL); free_syscall(t); } static void exit_syscall(struct trussinfo *info, struct ptrace_lwpinfo *pl) { struct threadinfo *t; struct procinfo *p; struct syscall *sc; struct ptrace_sc_ret psr; u_int i; t = info->curthread; if (!t->in_syscall) return; clock_gettime(CLOCK_REALTIME, &t->after); p = t->proc; if (ptrace(PT_GET_SC_RET, t->tid, (caddr_t)&psr, sizeof(psr)) != 0) { free_syscall(t); return; } sc = t->cs.sc; /* * Here, we only look for arguments that have OUT masked in -- * otherwise, they were handled in enter_syscall(). */ for (i = 0; i < sc->decode.nargs; i++) { char *temp; if (sc->decode.args[i].type & OUT) { /* * If an error occurred, then don't bother * getting the data; it may not be valid. */ if (psr.sr_error != 0) { asprintf(&temp, "0x%lx", t->cs.args[sc->decode.args[i].offset]); } else { temp = print_arg(&sc->decode.args[i], t->cs.args, psr.sr_retval, info); } t->cs.s_args[i] = temp; } } print_syscall_ret(info, psr.sr_error, psr.sr_retval); free_syscall(t); /* * If the process executed a new image, check the ABI. If the * new ABI isn't supported, stop tracing this process. */ if (pl->pl_flags & PL_FLAG_EXEC) { assert(LIST_NEXT(LIST_FIRST(&p->threadlist), entries) == NULL); p->abi = find_abi(p->pid); if (p->abi == NULL) { if (ptrace(PT_DETACH, p->pid, (caddr_t)1, 0) < 0) err(1, "Can not detach the process"); free_proc(p); } } } int print_line_prefix(struct trussinfo *info) { struct timespec timediff; struct threadinfo *t; int len; len = 0; t = info->curthread; if (info->flags & (FOLLOWFORKS | DISPLAYTIDS)) { if (info->flags & FOLLOWFORKS) len += fprintf(info->outfile, "%5d", t->proc->pid); if ((info->flags & (FOLLOWFORKS | DISPLAYTIDS)) == (FOLLOWFORKS | DISPLAYTIDS)) len += fprintf(info->outfile, " "); if (info->flags & DISPLAYTIDS) len += fprintf(info->outfile, "%6d", t->tid); len += fprintf(info->outfile, ": "); } if (info->flags & ABSOLUTETIMESTAMPS) { timespecsub(&t->after, &info->start_time, &timediff); len += fprintf(info->outfile, "%jd.%09ld ", (intmax_t)timediff.tv_sec, timediff.tv_nsec); } if (info->flags & RELATIVETIMESTAMPS) { timespecsub(&t->after, &t->before, &timediff); len += fprintf(info->outfile, "%jd.%09ld ", (intmax_t)timediff.tv_sec, timediff.tv_nsec); } return (len); } static void report_thread_death(struct trussinfo *info) { struct threadinfo *t; t = info->curthread; clock_gettime(CLOCK_REALTIME, &t->after); print_line_prefix(info); fprintf(info->outfile, "\n", (long)t->tid); } static void report_thread_birth(struct trussinfo *info) { struct threadinfo *t; t = info->curthread; clock_gettime(CLOCK_REALTIME, &t->after); t->before = t->after; print_line_prefix(info); fprintf(info->outfile, "\n", (long)t->tid); } static void report_exit(struct trussinfo *info, siginfo_t *si) { struct threadinfo *t; t = info->curthread; clock_gettime(CLOCK_REALTIME, &t->after); print_line_prefix(info); if (si->si_code == CLD_EXITED) fprintf(info->outfile, "process exit, rval = %u\n", si->si_status); else fprintf(info->outfile, "process killed, signal = %u%s\n", si->si_status, si->si_code == CLD_DUMPED ? " (core dumped)" : ""); } static void report_new_child(struct trussinfo *info) { struct threadinfo *t; t = info->curthread; clock_gettime(CLOCK_REALTIME, &t->after); t->before = t->after; print_line_prefix(info); fprintf(info->outfile, "\n"); } void decode_siginfo(FILE *fp, siginfo_t *si) { const char *str; fprintf(fp, " code="); str = sysdecode_sigcode(si->si_signo, si->si_code); if (str == NULL) fprintf(fp, "%d", si->si_code); else fprintf(fp, "%s", str); switch (si->si_code) { case SI_NOINFO: break; case SI_QUEUE: fprintf(fp, " value=%p", si->si_value.sival_ptr); /* FALLTHROUGH */ case SI_USER: case SI_LWP: fprintf(fp, " pid=%jd uid=%jd", (intmax_t)si->si_pid, (intmax_t)si->si_uid); break; case SI_TIMER: fprintf(fp, " value=%p", si->si_value.sival_ptr); fprintf(fp, " timerid=%d", si->si_timerid); fprintf(fp, " overrun=%d", si->si_overrun); if (si->si_errno != 0) fprintf(fp, " errno=%d", si->si_errno); break; case SI_ASYNCIO: fprintf(fp, " value=%p", si->si_value.sival_ptr); break; case SI_MESGQ: fprintf(fp, " value=%p", si->si_value.sival_ptr); fprintf(fp, " mqd=%d", si->si_mqd); break; default: switch (si->si_signo) { case SIGILL: case SIGFPE: case SIGSEGV: case SIGBUS: fprintf(fp, " trapno=%d", si->si_trapno); fprintf(fp, " addr=%p", si->si_addr); break; case SIGCHLD: fprintf(fp, " pid=%jd uid=%jd", (intmax_t)si->si_pid, (intmax_t)si->si_uid); fprintf(fp, " status=%d", si->si_status); break; } } } static void report_signal(struct trussinfo *info, siginfo_t *si, struct ptrace_lwpinfo *pl) { struct threadinfo *t; const char *signame; t = info->curthread; clock_gettime(CLOCK_REALTIME, &t->after); print_line_prefix(info); signame = sysdecode_signal(si->si_status); if (signame == NULL) signame = "?"; fprintf(info->outfile, "SIGNAL %u (%s)", si->si_status, signame); if (pl->pl_event == PL_EVENT_SIGNAL && pl->pl_flags & PL_FLAG_SI) decode_siginfo(info->outfile, &pl->pl_siginfo); fprintf(info->outfile, "\n"); } /* * Wait for events until all the processes have exited or truss has been * asked to stop. */ void eventloop(struct trussinfo *info) { struct ptrace_lwpinfo pl; siginfo_t si; int pending_signal; while (!LIST_EMPTY(&info->proclist)) { if (detaching) { detach_all_procs(info); return; } if (waitid(P_ALL, 0, &si, WTRAPPED | WEXITED) == -1) { if (errno == EINTR) continue; err(1, "Unexpected error from waitid"); } assert(si.si_signo == SIGCHLD); switch (si.si_code) { case CLD_EXITED: case CLD_KILLED: case CLD_DUMPED: find_exit_thread(info, si.si_pid); if ((info->flags & COUNTONLY) == 0) { if (si.si_code == CLD_EXITED) thread_exit_syscall(info); report_exit(info, &si); } free_proc(info->curthread->proc); info->curthread = NULL; break; case CLD_TRAPPED: if (ptrace(PT_LWPINFO, si.si_pid, (caddr_t)&pl, sizeof(pl)) == -1) err(1, "ptrace(PT_LWPINFO)"); if (pl.pl_flags & PL_FLAG_CHILD) { new_proc(info, si.si_pid, pl.pl_lwpid); assert(LIST_FIRST(&info->proclist)->abi != NULL); } else if (pl.pl_flags & PL_FLAG_BORN) new_thread(find_proc(info, si.si_pid), pl.pl_lwpid); find_thread(info, si.si_pid, pl.pl_lwpid); if (si.si_status == SIGTRAP && (pl.pl_flags & (PL_FLAG_BORN|PL_FLAG_EXITED| PL_FLAG_SCE|PL_FLAG_SCX)) != 0) { if (pl.pl_flags & PL_FLAG_BORN) { if ((info->flags & COUNTONLY) == 0) report_thread_birth(info); } else if (pl.pl_flags & PL_FLAG_EXITED) { if ((info->flags & COUNTONLY) == 0) report_thread_death(info); free_thread(info->curthread); info->curthread = NULL; } else if (pl.pl_flags & PL_FLAG_SCE) enter_syscall(info, info->curthread, &pl); else if (pl.pl_flags & PL_FLAG_SCX) exit_syscall(info, &pl); pending_signal = 0; } else if (pl.pl_flags & PL_FLAG_CHILD) { if ((info->flags & COUNTONLY) == 0) report_new_child(info); pending_signal = 0; } else { if ((info->flags & NOSIGS) == 0) report_signal(info, &si, &pl); pending_signal = si.si_status; } ptrace(PT_SYSCALL, si.si_pid, (caddr_t)1, pending_signal); break; case CLD_STOPPED: errx(1, "waitid reported CLD_STOPPED"); case CLD_CONTINUED: break; } } }