/* * top - a top users display for Unix * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) * * AUTHOR: Christos Zoulas * Steven Wallace * Wolfram Schneider * Thomas Moestl * Eitan Adler * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "top.h" #include "display.h" #include "machine.h" #include "loadavg.h" #include "screen.h" #include "utils.h" #include "layout.h" #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) extern struct timeval timeout; static int smpmode; enum displaymodes displaymode; static const int namelength = 10; /* TOP_JID_LEN based on max of 999999 */ #define TOP_JID_LEN 6 #define TOP_SWAP_LEN 5 /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \ ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) ((pp)->ki_size / 1024) #define RU(pp) (&(pp)->ki_rusage) #define PCTCPU(pp) (pcpu[pp - pbase]) /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ static const char *state_abbrev[] = { "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK" }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static load_avg ccpu; /* these are used in the get_ functions */ static int lastpid; /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ static const char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", " waiting, ", " lock, ", NULL }; static int process_states[nitems(procstatenames)]; /* these are for detailing the cpu states */ static int cpu_states[CPUSTATES]; static const char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ static const char *memorynames[] = { "K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ", "K Free", NULL }; static int memory_stats[nitems(memorynames)]; static const char *arcnames[] = { "K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other", NULL }; static int arc_stats[nitems(arcnames)]; static const char *carcnames[] = { "K Compressed, ", "K Uncompressed, ", ":1 Ratio, ", NULL }; static int carc_stats[nitems(carcnames)]; static const char *swapnames[] = { "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; static int swap_stats[nitems(swapnames)]; static int has_swap; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; static struct kinfo_proc *previous_procs; static struct kinfo_proc **previous_pref; static int previous_proc_count = 0; static int previous_proc_count_max = 0; static int previous_thread; /* data used for recalculating pctcpu */ static double *pcpu; static struct timespec proc_uptime; static struct timeval proc_wall_time; static struct timeval previous_wall_time; static uint64_t previous_interval = 0; /* total number of io operations */ static long total_inblock; static long total_oublock; static long total_majflt; /* these are for getting the memory statistics */ static int arc_enabled; static int carc_enabled; static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* swap usage */ #define ki_swap(kip) \ ((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0) /* * Sorting orders. The first element is the default. */ static const char *ordernames[] = { "cpu", "size", "res", "time", "pri", "threads", "total", "read", "write", "fault", "vcsw", "ivcsw", "jid", "swap", "pid", NULL }; /* Per-cpu time states */ static int maxcpu; static int maxid; static int ncpus; static unsigned long cpumask; static long *times; static long *pcpu_cp_time; static long *pcpu_cp_old; static long *pcpu_cp_diff; static int *pcpu_cpu_states; /* Battery units and states */ static int battery_units; static int battery_life; static int compare_swap(const void *a, const void *b); static int compare_jid(const void *a, const void *b); static int compare_pid(const void *a, const void *b); static int compare_tid(const void *a, const void *b); static const char *format_nice(const struct kinfo_proc *pp); static void getsysctl(const char *name, void *ptr, size_t len); static int swapmode(int *retavail, int *retfree); static void update_layout(void); static int find_uid(uid_t needle, int *haystack); static int cmd_matches(struct kinfo_proc *, const char *); static int find_uid(uid_t needle, int *haystack) { size_t i = 0; for (; i < TOP_MAX_UIDS; ++i) if ((uid_t)haystack[i] == needle) return 1; return (0); } void toggle_pcpustats(void) { if (ncpus == 1) return; update_layout(); } /* Adjust display based on ncpus and the ARC state. */ static void update_layout(void) { y_mem = 3; y_arc = 4; y_carc = 5; y_swap = 3 + arc_enabled + carc_enabled + has_swap; y_idlecursor = 4 + arc_enabled + carc_enabled + has_swap; y_message = 4 + arc_enabled + carc_enabled + has_swap; y_header = 5 + arc_enabled + carc_enabled + has_swap; y_procs = 6 + arc_enabled + carc_enabled + has_swap; Header_lines = 6 + arc_enabled + carc_enabled + has_swap; if (pcpu_stats) { y_mem += ncpus - 1; y_arc += ncpus - 1; y_carc += ncpus - 1; y_swap += ncpus - 1; y_idlecursor += ncpus - 1; y_message += ncpus - 1; y_header += ncpus - 1; y_procs += ncpus - 1; Header_lines += ncpus - 1; } } int machine_init(struct statics *statics) { int i, j, empty, pagesize; uint64_t arc_size; int carc_en, nswapdev; size_t size; size = sizeof(smpmode); if (sysctlbyname("kern.smp.active", &smpmode, &size, NULL, 0) != 0 || size != sizeof(smpmode)) smpmode = 0; size = sizeof(arc_size); if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size, NULL, 0) == 0 && arc_size != 0) arc_enabled = 1; size = sizeof(carc_en); if (arc_enabled && sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size, NULL, 0) == 0 && carc_en == 1) carc_enabled = 1; kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open"); if (kd == NULL) return (-1); size = sizeof(nswapdev); if (sysctlbyname("vm.nswapdev", &nswapdev, &size, NULL, 0) == 0 && nswapdev != 0) has_swap = 1; GETSYSCTL("kern.ccpu", ccpu); /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; pcpu = NULL; nproc = 0; onproc = -1; /* get the page size and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; if (arc_enabled) statics->arc_names = arcnames; else statics->arc_names = NULL; if (carc_enabled) statics->carc_names = carcnames; else statics->carc_names = NULL; if (has_swap) statics->swap_names = swapnames; else statics->swap_names = NULL; statics->order_names = ordernames; /* Allocate state for per-CPU stats. */ cpumask = 0; ncpus = 0; GETSYSCTL("kern.smp.maxcpus", maxcpu); times = calloc(maxcpu * CPUSTATES, sizeof(long)); if (times == NULL) err(1, "calloc for kern.smp.maxcpus"); size = sizeof(long) * maxcpu * CPUSTATES; if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); pcpu_cp_time = calloc(1, size); maxid = (size / CPUSTATES / sizeof(long)) - 1; for (i = 0; i <= maxid; i++) { empty = 1; for (j = 0; empty && j < CPUSTATES; j++) { if (times[i * CPUSTATES + j] != 0) empty = 0; } if (!empty) { cpumask |= (1ul << i); ncpus++; } } assert(ncpus > 0); pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long)); pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long)); pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int)); statics->ncpus = ncpus; /* Allocate state of battery units reported via ACPI. */ battery_units = 0; size = sizeof(int); sysctlbyname("hw.acpi.battery.units", &battery_units, &size, NULL, 0); statics->nbatteries = battery_units; update_layout(); /* all done! */ return (0); } char * format_header(const char *uname_field) { static struct sbuf* header = NULL; /* clean up from last time. */ if (header != NULL) { sbuf_clear(header); } else { header = sbuf_new_auto(); } switch (displaymode) { case DISP_CPU: { sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID"); sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : ""); sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field); if (!ps.thread) { sbuf_cat(header, "THR "); } sbuf_cat(header, "PRI NICE SIZE RES "); if (ps.swap) { sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP"); } sbuf_cat(header, "STATE "); if (smpmode) { sbuf_cat(header, "C "); } sbuf_cat(header, "TIME "); sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU"); sbuf_cat(header, "COMMAND"); sbuf_finish(header); break; } case DISP_IO: { sbuf_printf(header, " %s%*s %-*.*s", ps.thread_id ? " THR" : "PID", ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "", namelength, namelength, uname_field); sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND"); sbuf_finish(header); break; } case DISP_MAX: assert("displaymode must not be set to DISP_MAX"); } return sbuf_data(header); } static int swappgsin = -1; static int swappgsout = -1; void get_system_info(struct system_info *si) { struct loadavg sysload; int mib[2]; struct timeval boottime; uint64_t arc_stat, arc_stat2; int i, j; size_t size; /* get the CPU stats */ size = (maxid + 1) * CPUSTATES * sizeof(long); if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1) err(1, "sysctlbyname kern.cp_times"); GETSYSCTL("kern.cp_time", cp_time); GETSYSCTL("vm.loadavg", sysload); GETSYSCTL("kern.lastpid", lastpid); /* convert load averages to doubles */ for (i = 0; i < 3; i++) si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale; /* convert cp_time counts to percentages */ for (i = j = 0; i <= maxid; i++) { if ((cpumask & (1ul << i)) == 0) continue; percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES], &pcpu_cp_time[j * CPUSTATES], &pcpu_cp_old[j * CPUSTATES], &pcpu_cp_diff[j * CPUSTATES]); j++; } percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory & swap statistics */ { static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static long bufspace = 0; static uint64_t nspgsin, nspgsout; GETSYSCTL("vfs.bufspace", bufspace); GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]); GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]); GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]); GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]); GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]); GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin); GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(memory_stats[0]); memory_stats[1] = pagetok(memory_stats[1]); memory_stats[2] = pagetok(memory_stats[2]); memory_stats[3] = pagetok(memory_stats[3]); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(memory_stats[5]); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((nspgsin - swappgsin))); swap_stats[5] = pagetok(((nspgsout - swappgsout))); } swappgsin = nspgsin; swappgsout = nspgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } if (arc_enabled) { GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat); arc_stats[0] = arc_stat >> 10; GETSYSCTL("vfs.zfs.mfu_size", arc_stat); arc_stats[1] = arc_stat >> 10; GETSYSCTL("vfs.zfs.mru_size", arc_stat); arc_stats[2] = arc_stat >> 10; GETSYSCTL("vfs.zfs.anon_size", arc_stat); arc_stats[3] = arc_stat >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat); GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2); arc_stats[4] = (arc_stat + arc_stat2) >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat); arc_stats[5] = arc_stat >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat); arc_stats[5] += arc_stat >> 10; GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat); arc_stats[5] += arc_stat >> 10; si->arc = arc_stats; } if (carc_enabled) { GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat); carc_stats[0] = arc_stat >> 10; carc_stats[2] = arc_stat >> 10; /* For ratio */ GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat); carc_stats[1] = arc_stat >> 10; si->carc = carc_stats; } /* set arrays and strings */ if (pcpu_stats) { si->cpustates = pcpu_cpu_states; si->ncpus = ncpus; } else { si->cpustates = cpu_states; si->ncpus = 1; } si->memory = memory_stats; si->swap = swap_stats; if (lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } /* * Print how long system has been up. * (Found by looking getting "boottime" from the kernel) */ mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; size = sizeof(boottime); if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 && boottime.tv_sec != 0) { si->boottime = boottime; } else { si->boottime.tv_sec = -1; } battery_life = 0; if (battery_units > 0) { GETSYSCTL("hw.acpi.battery.life", battery_life); } si->battery = battery_life; } #define NOPROC ((void *)-1) /* * We need to compare data from the old process entry with the new * process entry. * To facilitate doing this quickly we stash a pointer in the kinfo_proc * structure to cache the mapping. We also use a negative cache pointer * of NOPROC to avoid duplicate lookups. * XXX: this could be done when the actual processes are fetched, we do * it here out of laziness. */ static const struct kinfo_proc * get_old_proc(struct kinfo_proc *pp) { const struct kinfo_proc * const *oldpp, *oldp; /* * If this is the first fetch of the kinfo_procs then we don't have * any previous entries. */ if (previous_proc_count == 0) return (NULL); /* negative cache? */ if (pp->ki_udata == NOPROC) return (NULL); /* cached? */ if (pp->ki_udata != NULL) return (pp->ki_udata); /* * Not cached, * 1) look up based on pid. * 2) compare process start. * If we fail here, then setup a negative cache entry, otherwise * cache it. */ oldpp = bsearch(&pp, previous_pref, previous_proc_count, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); if (oldpp == NULL) { pp->ki_udata = NOPROC; return (NULL); } oldp = *oldpp; if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) { pp->ki_udata = NOPROC; return (NULL); } pp->ki_udata = __DECONST(void *, oldp); return (oldp); } /* * Return the total amount of IO done in blocks in/out and faults. * store the values individually in the pointers passed in. */ static long get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp, long *vcsw, long *ivcsw) { const struct kinfo_proc *oldp; static struct kinfo_proc dummy; long ret; oldp = get_old_proc(__DECONST(struct kinfo_proc *, pp)); if (oldp == NULL) { memset(&dummy, 0, sizeof(dummy)); oldp = &dummy; } *inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; *oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; *flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; *vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; *ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; ret = (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) + (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) + (RU(pp)->ru_majflt - RU(oldp)->ru_majflt); return (ret); } /* * If there was a previous update, use the delta in ki_runtime over * the previous interval to calculate pctcpu. Otherwise, fall back * to using the kernel's ki_pctcpu. */ static double proc_calc_pctcpu(struct kinfo_proc *pp) { const struct kinfo_proc *oldp; if (previous_interval != 0) { oldp = get_old_proc(pp); if (oldp != NULL) return ((double)(pp->ki_runtime - oldp->ki_runtime) / previous_interval); /* * If this process/thread was created during the previous * interval, charge it's total runtime to the previous * interval. */ else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec || (pp->ki_start.tv_sec == previous_wall_time.tv_sec && pp->ki_start.tv_usec >= previous_wall_time.tv_usec)) return ((double)pp->ki_runtime / previous_interval); } return (pctdouble(pp->ki_pctcpu)); } /* * Return true if this process has used any CPU time since the * previous update. */ static int proc_used_cpu(struct kinfo_proc *pp) { const struct kinfo_proc *oldp; oldp = get_old_proc(pp); if (oldp == NULL) return (PCTCPU(pp) != 0); return (pp->ki_runtime != oldp->ki_runtime || RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw || RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw); } /* * Return the total number of block in/out and faults by a process. */ static long get_io_total(const struct kinfo_proc *pp) { long dummy; return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy)); } static struct handle handle; void * get_process_info(struct system_info *si, struct process_select *sel, int (*compare)(const void *, const void *)) { int i; int total_procs; long p_io; long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw; long nsec; int active_procs; struct kinfo_proc **prefp; struct kinfo_proc *pp; struct timespec previous_proc_uptime; /* * If thread state was toggled, don't cache the previous processes. */ if (previous_thread != sel->thread) nproc = 0; previous_thread = sel->thread; /* * Save the previous process info. */ if (previous_proc_count_max < nproc) { free(previous_procs); previous_procs = calloc(nproc, sizeof(*previous_procs)); free(previous_pref); previous_pref = calloc(nproc, sizeof(*previous_pref)); if (previous_procs == NULL || previous_pref == NULL) { fprintf(stderr, "top: Out of memory.\n"); quit(TOP_EX_SYS_ERROR); } previous_proc_count_max = nproc; } if (nproc) { for (i = 0; i < nproc; i++) previous_pref[i] = &previous_procs[i]; memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs)); qsort(previous_pref, nproc, sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid); } previous_proc_count = nproc; previous_proc_uptime = proc_uptime; previous_wall_time = proc_wall_time; previous_interval = 0; pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC, 0, &nproc); gettimeofday(&proc_wall_time, NULL); if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0) memset(&proc_uptime, 0, sizeof(proc_uptime)); else if (previous_proc_uptime.tv_sec != 0 && previous_proc_uptime.tv_nsec != 0) { previous_interval = (proc_uptime.tv_sec - previous_proc_uptime.tv_sec) * 1000000; nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec; if (nsec < 0) { previous_interval -= 1000000; nsec += 1000000000; } previous_interval += nsec / 1000; } if (nproc > onproc) { pref = realloc(pref, sizeof(*pref) * nproc); pcpu = realloc(pcpu, sizeof(*pcpu) * nproc); onproc = nproc; } if (pref == NULL || pbase == NULL || pcpu == NULL) { fprintf(stderr, "top: Out of memory.\n"); quit(TOP_EX_SYS_ERROR); } /* get a pointer to the states summary array */ si->procstates = process_states; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; total_inblock = 0; total_oublock = 0; total_majflt = 0; memset(process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { if (pp->ki_stat == 0) /* not in use */ continue; if (!sel->self && pp->ki_pid == mypid && sel->pid == -1) /* skip self */ continue; if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1) /* skip system process */ continue; p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, &p_vcsw, &p_ivcsw); total_inblock += p_inblock; total_oublock += p_oublock; total_majflt += p_majflt; total_procs++; process_states[(unsigned char)pp->ki_stat]++; if (pp->ki_stat == SZOMB) /* skip zombies */ continue; if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1) /* skip kernel idle process */ continue; PCTCPU(pp) = proc_calc_pctcpu(pp); if (sel->thread && PCTCPU(pp) > 1.0) PCTCPU(pp) = 1.0; if (displaymode == DISP_CPU && !sel->idle && (!proc_used_cpu(pp) || pp->ki_stat == SSTOP || pp->ki_stat == SIDL)) /* skip idle or non-running processes */ continue; if (displaymode == DISP_IO && !sel->idle && p_io == 0) /* skip processes that aren't doing I/O */ continue; if (sel->jid != -1 && pp->ki_jid != sel->jid) /* skip proc. that don't belong to the selected JID */ continue; if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid)) /* skip proc. that don't belong to the selected UID */ continue; if (sel->pid != -1 && pp->ki_pid != sel->pid) continue; if (!cmd_matches(pp, sel->command)) /* skip proc. that doesn't match grep string */ continue; *prefp++ = pp; active_procs++; } /* if requested, sort the "interesting" processes */ if (compare != NULL) qsort(pref, active_procs, sizeof(*pref), compare); /* remember active and total counts */ si->p_total = total_procs; si->p_pactive = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return (&handle); } static int cmd_matches(struct kinfo_proc *proc, const char *term) { extern int show_args; char **args = NULL; if (!term) { /* No command filter set */ return 1; } else { /* Filter set, does process name contain term? */ if (strstr(proc->ki_comm, term)) return 1; /* Search arguments only if arguments are displayed */ if (show_args) { args = kvm_getargv(kd, proc, 1024); if (args == NULL) { /* Failed to get arguments so can't search them */ return 0; } while (*args != NULL) { if (strstr(*args, term)) return 1; args++; } } } return 0; } char * format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags) { struct kinfo_proc *pp; const struct kinfo_proc *oldp; long cputime; char status[22]; size_t state; struct rusage ru, *rup; long p_tot, s_tot; char *cmdbuf = NULL; char **args; static struct sbuf* procbuf = NULL; /* clean up from last time. */ if (procbuf != NULL) { sbuf_clear(procbuf); } else { procbuf = sbuf_new_auto(); } /* find and remember the next proc structure */ pp = *(xhandle->next_proc++); xhandle->remaining--; /* get the process's command name */ if ((pp->ki_flag & P_INMEM) == 0) { /* * Print swapped processes as */ size_t len; len = strlen(pp->ki_comm); if (len > sizeof(pp->ki_comm) - 3) len = sizeof(pp->ki_comm) - 3; memmove(pp->ki_comm + 1, pp->ki_comm, len); pp->ki_comm[0] = '<'; pp->ki_comm[len + 1] = '>'; pp->ki_comm[len + 2] = '\0'; } /* * Convert the process's runtime from microseconds to seconds. This * time includes the interrupt time although that is not wanted here. * ps(1) is similarly sloppy. */ cputime = (pp->ki_runtime + 500000) / 1000000; /* generate "STATE" field */ switch (state = pp->ki_stat) { case SRUN: if (smpmode && pp->ki_oncpu != NOCPU) sprintf(status, "CPU%d", pp->ki_oncpu); else strcpy(status, "RUN"); break; case SLOCK: if (pp->ki_kiflag & KI_LOCKBLOCK) { sprintf(status, "*%.6s", pp->ki_lockname); break; } /* fall through */ case SSLEEP: sprintf(status, "%.6s", pp->ki_wmesg); break; default: if (state < nitems(state_abbrev)) { sprintf(status, "%.6s", state_abbrev[state]); } else { sprintf(status, "?%5zu", state); } break; } cmdbuf = calloc(screen_width + 1, 1); if (cmdbuf == NULL) { warn("calloc(%d)", screen_width + 1); return NULL; } if (!(flags & FMT_SHOWARGS)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm, pp->ki_tdname, pp->ki_moretdname); } else { snprintf(cmdbuf, screen_width, "%s", pp->ki_comm); } } else { if (pp->ki_flag & P_SYSTEM || (args = kvm_getargv(kd, pp, screen_width)) == NULL || !(*args)) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) { snprintf(cmdbuf, screen_width, "[%s{%s%s}]", pp->ki_comm, pp->ki_tdname, pp->ki_moretdname); } else { snprintf(cmdbuf, screen_width, "[%s]", pp->ki_comm); } } else { const char *src; char *dst, *argbuf; const char *cmd; size_t argbuflen; size_t len; argbuflen = screen_width * 4; argbuf = calloc(argbuflen + 1, 1); if (argbuf == NULL) { warn("calloc(%zu)", argbuflen + 1); free(cmdbuf); return NULL; } dst = argbuf; /* Extract cmd name from argv */ cmd = basename(*args); for (; (src = *args++) != NULL; ) { if (*src == '\0') continue; len = (argbuflen - (dst - argbuf) - 1) / 4; strvisx(dst, src, MIN(strlen(src), len), VIS_NL | VIS_TAB | VIS_CSTYLE | VIS_OCTAL); while (*dst != '\0') dst++; if ((argbuflen - (dst - argbuf) - 1) / 4 > 0) *dst++ = ' '; /* add delimiting space */ } if (dst != argbuf && dst[-1] == ' ') dst--; *dst = '\0'; if (strcmp(cmd, pp->ki_comm) != 0) { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, screen_width, "%s (%s){%s%s}", argbuf, pp->ki_comm, pp->ki_tdname, pp->ki_moretdname); else snprintf(cmdbuf, screen_width, "%s (%s)", argbuf, pp->ki_comm); } else { if (ps.thread && pp->ki_flag & P_HADTHREADS && pp->ki_tdname[0]) snprintf(cmdbuf, screen_width, "%s{%s%s}", argbuf, pp->ki_tdname, pp->ki_moretdname); else strlcpy(cmdbuf, argbuf, screen_width); } free(argbuf); } } if (displaymode == DISP_IO) { oldp = get_old_proc(pp); if (oldp != NULL) { ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock; ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock; ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt; ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw; ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw; rup = &ru; } else { rup = RU(pp); } p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt; s_tot = total_inblock + total_oublock + total_majflt; sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); if (ps.jail) { sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); } sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid)); sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw); sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw); sbuf_printf(procbuf, "%6ld ", rup->ru_inblock); sbuf_printf(procbuf, "%6ld ", rup->ru_oublock); sbuf_printf(procbuf, "%6ld ", rup->ru_majflt); sbuf_printf(procbuf, "%6ld ", p_tot); sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot)); } else { sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid); if (ps.jail) { sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid); } sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid)); if (!ps.thread) { sbuf_printf(procbuf, "%4d ", pp->ki_numthreads); } else { sbuf_printf(procbuf, " "); } sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO); sbuf_printf(procbuf, "%4s", format_nice(pp)); sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp))); sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize))); if (ps.swap) { sbuf_printf(procbuf, "%*s ", TOP_SWAP_LEN - 1, format_k(pagetok(ki_swap(pp)))); } sbuf_printf(procbuf, "%-6.6s ", status); if (smpmode) { int cpu; if (state == SRUN && pp->ki_oncpu != NOCPU) { cpu = pp->ki_oncpu; } else { cpu = pp->ki_lastcpu; } sbuf_printf(procbuf, "%3d ", cpu); } sbuf_printf(procbuf, "%6s ", format_time(cputime)); sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp)); } sbuf_printf(procbuf, "%s", cmdbuf); free(cmdbuf); return (sbuf_data(procbuf)); } static void getsysctl(const char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name, strerror(errno)); quit(TOP_EX_SYS_ERROR); } if (nlen != len) { fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name, (unsigned long)len, (unsigned long)nlen); quit(TOP_EX_SYS_ERROR); } } static const char * format_nice(const struct kinfo_proc *pp) { const char *fifo, *kproc; int rtpri; static char nicebuf[4 + 1]; fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F"; kproc = (pp->ki_flag & P_KPROC) ? "k" : ""; switch (PRI_BASE(pp->ki_pri.pri_class)) { case PRI_ITHD: return ("-"); case PRI_REALTIME: /* * XXX: the kernel doesn't tell us the original rtprio and * doesn't really know what it was, so to recover it we * must be more chummy with the implementation than the * implementation is with itself. pri_user gives a * constant "base" priority, but is only initialized * properly for user threads. pri_native gives what the * kernel calls the "base" priority, but it isn't constant * since it is changed by priority propagation. pri_native * also isn't properly initialized for all threads, but it * is properly initialized for kernel realtime and idletime * threads. Thus we use pri_user for the base priority of * user threads (it is always correct) and pri_native for * the base priority of kernel realtime and idletime threads * (there is nothing better, and it is usually correct). * * The field width and thus the buffer are too small for * values like "kr31F", but such values shouldn't occur, * and if they do then the tailing "F" is not displayed. */ rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_REALTIME; snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s", kproc, rtpri, fifo); break; case PRI_TIMESHARE: if (pp->ki_flag & P_KPROC) return ("-"); snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO); break; case PRI_IDLE: /* XXX: as above. */ rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native : pp->ki_pri.pri_user) - PRI_MIN_IDLE; snprintf(nicebuf, sizeof(nicebuf), "%si%d%s", kproc, rtpri, fifo); break; default: return ("?"); } return (nicebuf); } /* comparison routines for qsort */ static int compare_pid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0); return ((*pp1)->ki_pid - (*pp2)->ki_pid); } static int compare_tid(const void *p1, const void *p2) { const struct kinfo_proc * const *pp1 = p1; const struct kinfo_proc * const *pp2 = p2; assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0); return ((*pp1)->ki_tid - (*pp2)->ki_tid); } /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static int sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU(a, b) do { \ double diff; \ if (ps.wcpu) \ diff = weighted_cpu(PCTCPU((b)), (b)) - \ weighted_cpu(PCTCPU((a)), (a)); \ else \ diff = PCTCPU((b)) - PCTCPU((a)); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_CPTICKS(a, b) do { \ int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_STATE(a, b) do { \ int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_PRIO(a, b) do { \ int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_THREADS(a, b) do { \ int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_RSSIZE(a, b) do { \ long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_MEM(a, b) do { \ long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_JID(a, b) do { \ int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) #define ORDERKEY_SWAP(a, b) do { \ int diff = (int)ki_swap(b) - (int)ki_swap(a); \ if (diff != 0) \ return (diff > 0 ? 1 : -1); \ } while (0) /* compare_cpu - the comparison function for sorting by cpu percentage */ static int compare_cpu(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_size - the comparison function for sorting by total memory usage */ static int compare_size(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_MEM(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_res - the comparison function for sorting by resident set size */ static int compare_res(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); return (0); } /* compare_time - the comparison function for sorting by total cpu time */ static int compare_time(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2; ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_prio - the comparison function for sorting by priority */ static int compare_prio(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_PRIO(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_threads - the comparison function for sorting by threads */ static int compare_threads(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_THREADS(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_jid - the comparison function for sorting by jid */ static int compare_jid(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_JID(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* compare_swap - the comparison function for sorting by swap */ static int compare_swap(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; ORDERKEY_SWAP(p1, p2); ORDERKEY_PCTCPU(p1, p2); ORDERKEY_CPTICKS(p1, p2); ORDERKEY_STATE(p1, p2); ORDERKEY_PRIO(p1, p2); ORDERKEY_RSSIZE(p1, p2); ORDERKEY_MEM(p1, p2); return (0); } /* assorted comparison functions for sorting by i/o */ static int compare_iototal(const void *arg1, const void *arg2) { const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2; return (get_io_total(p2) - get_io_total(p1)); } static int compare_ioread(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, inp1, inp2; (void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy); return (inp2 - inp1); } static int compare_iowrite(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, oup1, oup2; (void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy); return (oup2 - oup1); } static int compare_iofault(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy); return (flp2 - flp1); } static int compare_vcsw(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy); return (flp2 - flp1); } static int compare_ivcsw(const void *arg1, const void *arg2) { const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1; const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2; long dummy, flp1, flp2; (void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1); (void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2); return (flp2 - flp1); } int (*compares[])(const void *arg1, const void *arg2) = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, compare_threads, compare_iototal, compare_ioread, compare_iowrite, compare_iofault, compare_vcsw, compare_ivcsw, compare_jid, compare_swap, NULL }; static int swapmode(int *retavail, int *retfree) { int n; struct kvm_swap swapary[1]; static int pagesize = 0; static unsigned long swap_maxpages = 0; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); if (pagesize == 0) pagesize = getpagesize(); if (swap_maxpages == 0) GETSYSCTL("vm.swap_maxpages", swap_maxpages); /* ksw_total contains the total size of swap all devices which may exceed the maximum swap size allocatable in the system */ if ( swapary[0].ksw_total > swap_maxpages ) swapary[0].ksw_total = swap_maxpages; *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); #undef CONVERT n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total); return (n); }