/*- * Copyright (c) 2004 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Regression test to do some very basic AIO exercising on several types of * file descriptors. Currently, the tests consist of initializing a fixed * size buffer with pseudo-random data, writing it to one fd using AIO, then * reading it from a second descriptor using AIO. For some targets, the same * fd is used for write and read (i.e., file, md device), but for others the * operation is performed on a peer (pty, socket, fifo, etc). A timeout is * initiated to detect undue blocking. This test does not attempt to exercise * error cases or more subtle asynchronous behavior, just make sure that the * basic operations work on some basic object types. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "freebsd_test_suite/macros.h" #include "local.h" /* * GLOBAL_MAX sets the largest usable buffer size to be read and written, as * it sizes ac_buffer in the aio_context structure. It is also the default * size for file I/O. For other types, we use smaller blocks or we risk * blocking (and we run in a single process/thread so that would be bad). */ #define GLOBAL_MAX 16384 #define BUFFER_MAX GLOBAL_MAX /* * A completion function will block until the aio has completed, then return * the result of the aio. errno will be set appropriately. */ typedef ssize_t (*completion)(struct aiocb*); struct aio_context { int ac_read_fd, ac_write_fd; long ac_seed; char ac_buffer[GLOBAL_MAX]; int ac_buflen; int ac_seconds; void (*ac_cleanup)(void *arg); void *ac_cleanup_arg; }; static int aio_timedout; /* * Each test run specifies a timeout in seconds. Use the somewhat obsoleted * signal(3) and alarm(3) APIs to set this up. */ static void aio_timeout_signal(int sig __unused) { aio_timedout = 1; } static void aio_timeout_start(int seconds) { aio_timedout = 0; ATF_REQUIRE_MSG(signal(SIGALRM, aio_timeout_signal) != SIG_ERR, "failed to set SIGALRM handler: %s", strerror(errno)); alarm(seconds); } static void aio_timeout_stop(void) { ATF_REQUIRE_MSG(signal(SIGALRM, NULL) != SIG_ERR, "failed to reset SIGALRM handler to default: %s", strerror(errno)); alarm(0); } /* * Fill a buffer given a seed that can be fed into srandom() to initialize * the PRNG in a repeatable manner. */ static void aio_fill_buffer(char *buffer, int len, long seed) { char ch; int i; srandom(seed); for (i = 0; i < len; i++) { ch = random() & 0xff; buffer[i] = ch; } } /* * Test that a buffer matches a given seed. See aio_fill_buffer(). Return * (1) on a match, (0) on a mismatch. */ static int aio_test_buffer(char *buffer, int len, long seed) { char ch; int i; srandom(seed); for (i = 0; i < len; i++) { ch = random() & 0xff; if (buffer[i] != ch) return (0); } return (1); } /* * Initialize a testing context given the file descriptors provided by the * test setup. */ static void aio_context_init(struct aio_context *ac, int read_fd, int write_fd, int buflen, int seconds, void (*cleanup)(void *), void *cleanup_arg) { ATF_REQUIRE_MSG(buflen <= BUFFER_MAX, "aio_context_init: buffer too large (%d > %d)", buflen, BUFFER_MAX); bzero(ac, sizeof(*ac)); ac->ac_read_fd = read_fd; ac->ac_write_fd = write_fd; ac->ac_buflen = buflen; srandomdev(); ac->ac_seed = random(); aio_fill_buffer(ac->ac_buffer, buflen, ac->ac_seed); ATF_REQUIRE_MSG(aio_test_buffer(ac->ac_buffer, buflen, ac->ac_seed) != 0, "aio_test_buffer: internal error"); ac->ac_seconds = seconds; ac->ac_cleanup = cleanup; ac->ac_cleanup_arg = cleanup_arg; } static ssize_t poll(struct aiocb *aio) { int error; while ((error = aio_error(aio)) == EINPROGRESS && !aio_timedout) usleep(25000); switch (error) { case EINPROGRESS: errno = EINTR; return (-1); case 0: return (aio_return(aio)); default: return (error); } } static ssize_t suspend(struct aiocb *aio) { const struct aiocb *const iocbs[] = {aio}; int error; error = aio_suspend(iocbs, 1, NULL); if (error == 0) return (aio_return(aio)); else return (error); } static ssize_t waitcomplete(struct aiocb *aio) { struct aiocb *aiop; ssize_t ret; ret = aio_waitcomplete(&aiop, NULL); ATF_REQUIRE_EQ(aio, aiop); return (ret); } /* * Each tester can register a callback to clean up in the event the test * fails. Preserve the value of errno so that subsequent calls to errx() * work properly. */ static void aio_cleanup(struct aio_context *ac) { int error; if (ac->ac_cleanup == NULL) return; error = errno; (ac->ac_cleanup)(ac->ac_cleanup_arg); errno = error; } /* * Perform a simple write test of our initialized data buffer to the provided * file descriptor. */ static void aio_write_test(struct aio_context *ac, completion comp) { struct aiocb aio; ssize_t len; bzero(&aio, sizeof(aio)); aio.aio_buf = ac->ac_buffer; aio.aio_nbytes = ac->ac_buflen; aio.aio_fildes = ac->ac_write_fd; aio.aio_offset = 0; aio_timeout_start(ac->ac_seconds); if (aio_write(&aio) < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio_write timed out"); } } aio_cleanup(ac); atf_tc_fail("aio_write failed: %s", strerror(errno)); } len = comp(&aio); if (len < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio timed out"); } } aio_cleanup(ac); atf_tc_fail("aio failed: %s", strerror(errno)); } aio_timeout_stop(); if (len != ac->ac_buflen) { aio_cleanup(ac); atf_tc_fail("aio short write (%jd)", (intmax_t)len); } } /* * Perform a simple read test of our initialized data buffer from the * provided file descriptor. */ static void aio_read_test(struct aio_context *ac, completion comp) { struct aiocb aio; ssize_t len; bzero(ac->ac_buffer, ac->ac_buflen); bzero(&aio, sizeof(aio)); aio.aio_buf = ac->ac_buffer; aio.aio_nbytes = ac->ac_buflen; aio.aio_fildes = ac->ac_read_fd; aio.aio_offset = 0; aio_timeout_start(ac->ac_seconds); if (aio_read(&aio) < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio_read timed out"); } } aio_cleanup(ac); atf_tc_fail("aio_read failed: %s", strerror(errno)); } len = comp(&aio); if (len < 0) { if (errno == EINTR) { if (aio_timedout) { aio_cleanup(ac); atf_tc_fail("aio timed out"); } } aio_cleanup(ac); atf_tc_fail("aio failed: %s", strerror(errno)); } aio_timeout_stop(); if (len != ac->ac_buflen) { aio_cleanup(ac); atf_tc_fail("aio short read (%jd)", (intmax_t)len); } if (aio_test_buffer(ac->ac_buffer, ac->ac_buflen, ac->ac_seed) == 0) { aio_cleanup(ac); atf_tc_fail("buffer mismatched"); } } /* * Series of type-specific tests for AIO. For now, we just make sure we can * issue a write and then a read to each type. We assume that once a write * is issued, a read can follow. */ /* * Test with a classic file. Assumes we can create a moderate size temporary * file. */ #define FILE_LEN GLOBAL_MAX #define FILE_PATHNAME "testfile" #define FILE_TIMEOUT 30 struct aio_file_arg { int afa_fd; }; static void aio_file_cleanup(void *arg) { struct aio_file_arg *afa; afa = arg; close(afa->afa_fd); unlink(FILE_PATHNAME); } static void aio_file_test(completion comp) { struct aio_file_arg arg; struct aio_context ac; int fd; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_UNSAFE_AIO(); fd = open(FILE_PATHNAME, O_RDWR | O_CREAT); ATF_REQUIRE_MSG(fd != -1, "open failed: %s", strerror(errno)); arg.afa_fd = fd; aio_context_init(&ac, fd, fd, FILE_LEN, FILE_TIMEOUT, aio_file_cleanup, &arg); aio_write_test(&ac, comp); aio_read_test(&ac, comp); aio_file_cleanup(&arg); } ATF_TC_WITHOUT_HEAD(file_poll); ATF_TC_BODY(file_poll, tc) { aio_file_test(poll); } ATF_TC_WITHOUT_HEAD(file_suspend); ATF_TC_BODY(file_suspend, tc) { aio_file_test(suspend); } ATF_TC_WITHOUT_HEAD(file_waitcomplete); ATF_TC_BODY(file_waitcomplete, tc) { aio_file_test(waitcomplete); } #define FIFO_LEN 256 #define FIFO_PATHNAME "testfifo" #define FIFO_TIMEOUT 30 struct aio_fifo_arg { int afa_read_fd; int afa_write_fd; }; static void aio_fifo_cleanup(void *arg) { struct aio_fifo_arg *afa; afa = arg; if (afa->afa_read_fd != -1) close(afa->afa_read_fd); if (afa->afa_write_fd != -1) close(afa->afa_write_fd); unlink(FIFO_PATHNAME); } static void aio_fifo_test(completion comp) { int error, read_fd = -1, write_fd = -1; struct aio_fifo_arg arg; struct aio_context ac; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_UNSAFE_AIO(); ATF_REQUIRE_MSG(mkfifo(FIFO_PATHNAME, 0600) != -1, "mkfifo failed: %s", strerror(errno)); arg.afa_read_fd = -1; arg.afa_write_fd = -1; read_fd = open(FIFO_PATHNAME, O_RDONLY | O_NONBLOCK); if (read_fd == -1) { error = errno; aio_fifo_cleanup(&arg); errno = error; atf_tc_fail("read_fd open failed: %s", strerror(errno)); } arg.afa_read_fd = read_fd; write_fd = open(FIFO_PATHNAME, O_WRONLY); if (write_fd == -1) { error = errno; aio_fifo_cleanup(&arg); errno = error; atf_tc_fail("write_fd open failed: %s", strerror(errno)); } arg.afa_write_fd = write_fd; aio_context_init(&ac, read_fd, write_fd, FIFO_LEN, FIFO_TIMEOUT, aio_fifo_cleanup, &arg); aio_write_test(&ac, comp); aio_read_test(&ac, comp); aio_fifo_cleanup(&arg); } ATF_TC_WITHOUT_HEAD(fifo_poll); ATF_TC_BODY(fifo_poll, tc) { aio_fifo_test(poll); } ATF_TC_WITHOUT_HEAD(fifo_suspend); ATF_TC_BODY(fifo_suspend, tc) { aio_fifo_test(waitcomplete); } ATF_TC_WITHOUT_HEAD(fifo_waitcomplete); ATF_TC_BODY(fifo_waitcomplete, tc) { aio_fifo_test(waitcomplete); } struct aio_unix_socketpair_arg { int asa_sockets[2]; }; static void aio_unix_socketpair_cleanup(void *arg) { struct aio_unix_socketpair_arg *asa; asa = arg; close(asa->asa_sockets[0]); close(asa->asa_sockets[1]); } #define UNIX_SOCKETPAIR_LEN 256 #define UNIX_SOCKETPAIR_TIMEOUT 30 static void aio_unix_socketpair_test(completion comp) { struct aio_unix_socketpair_arg arg; struct aio_context ac; struct rusage ru_before, ru_after; int sockets[2]; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_MSG(socketpair(PF_UNIX, SOCK_STREAM, 0, sockets) != -1, "socketpair failed: %s", strerror(errno)); arg.asa_sockets[0] = sockets[0]; arg.asa_sockets[1] = sockets[1]; aio_context_init(&ac, sockets[0], sockets[1], UNIX_SOCKETPAIR_LEN, UNIX_SOCKETPAIR_TIMEOUT, aio_unix_socketpair_cleanup, &arg); ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_before) != -1, "getrusage failed: %s", strerror(errno)); aio_write_test(&ac, comp); ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_after) != -1, "getrusage failed: %s", strerror(errno)); ATF_REQUIRE(ru_after.ru_msgsnd == ru_before.ru_msgsnd + 1); ru_before = ru_after; aio_read_test(&ac, comp); ATF_REQUIRE_MSG(getrusage(RUSAGE_SELF, &ru_after) != -1, "getrusage failed: %s", strerror(errno)); ATF_REQUIRE(ru_after.ru_msgrcv == ru_before.ru_msgrcv + 1); aio_unix_socketpair_cleanup(&arg); } ATF_TC_WITHOUT_HEAD(socket_poll); ATF_TC_BODY(socket_poll, tc) { aio_unix_socketpair_test(poll); } ATF_TC_WITHOUT_HEAD(socket_suspend); ATF_TC_BODY(socket_suspend, tc) { aio_unix_socketpair_test(suspend); } ATF_TC_WITHOUT_HEAD(socket_waitcomplete); ATF_TC_BODY(socket_waitcomplete, tc) { aio_unix_socketpair_test(waitcomplete); } struct aio_pty_arg { int apa_read_fd; int apa_write_fd; }; static void aio_pty_cleanup(void *arg) { struct aio_pty_arg *apa; apa = arg; close(apa->apa_read_fd); close(apa->apa_write_fd); }; #define PTY_LEN 256 #define PTY_TIMEOUT 30 static void aio_pty_test(completion comp) { struct aio_pty_arg arg; struct aio_context ac; int read_fd, write_fd; struct termios ts; int error; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_UNSAFE_AIO(); ATF_REQUIRE_MSG(openpty(&read_fd, &write_fd, NULL, NULL, NULL) == 0, "openpty failed: %s", strerror(errno)); arg.apa_read_fd = read_fd; arg.apa_write_fd = write_fd; if (tcgetattr(write_fd, &ts) < 0) { error = errno; aio_pty_cleanup(&arg); errno = error; atf_tc_fail("tcgetattr failed: %s", strerror(errno)); } cfmakeraw(&ts); if (tcsetattr(write_fd, TCSANOW, &ts) < 0) { error = errno; aio_pty_cleanup(&arg); errno = error; atf_tc_fail("tcsetattr failed: %s", strerror(errno)); } aio_context_init(&ac, read_fd, write_fd, PTY_LEN, PTY_TIMEOUT, aio_pty_cleanup, &arg); aio_write_test(&ac, comp); aio_read_test(&ac, comp); aio_pty_cleanup(&arg); } ATF_TC_WITHOUT_HEAD(pty_poll); ATF_TC_BODY(pty_poll, tc) { aio_pty_test(poll); } ATF_TC_WITHOUT_HEAD(pty_suspend); ATF_TC_BODY(pty_suspend, tc) { aio_pty_test(suspend); } ATF_TC_WITHOUT_HEAD(pty_waitcomplete); ATF_TC_BODY(pty_waitcomplete, tc) { aio_pty_test(waitcomplete); } static void aio_pipe_cleanup(void *arg) { int *pipes = arg; close(pipes[0]); close(pipes[1]); } #define PIPE_LEN 256 #define PIPE_TIMEOUT 30 static void aio_pipe_test(completion comp) { struct aio_context ac; int pipes[2]; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_UNSAFE_AIO(); ATF_REQUIRE_MSG(pipe(pipes) != -1, "pipe failed: %s", strerror(errno)); aio_context_init(&ac, pipes[0], pipes[1], PIPE_LEN, PIPE_TIMEOUT, aio_pipe_cleanup, pipes); aio_write_test(&ac, comp); aio_read_test(&ac, comp); aio_pipe_cleanup(pipes); } ATF_TC_WITHOUT_HEAD(pipe_poll); ATF_TC_BODY(pipe_poll, tc) { aio_pipe_test(poll); } ATF_TC_WITHOUT_HEAD(pipe_suspend); ATF_TC_BODY(pipe_suspend, tc) { aio_pipe_test(suspend); } ATF_TC_WITHOUT_HEAD(pipe_waitcomplete); ATF_TC_BODY(pipe_waitcomplete, tc) { aio_pipe_test(waitcomplete); } struct aio_md_arg { int ama_mdctl_fd; int ama_unit; int ama_fd; }; static void aio_md_cleanup(void *arg) { struct aio_md_arg *ama; struct md_ioctl mdio; int error; ama = arg; if (ama->ama_fd != -1) close(ama->ama_fd); if (ama->ama_unit != -1) { bzero(&mdio, sizeof(mdio)); mdio.md_version = MDIOVERSION; mdio.md_unit = ama->ama_unit; if (ioctl(ama->ama_mdctl_fd, MDIOCDETACH, &mdio) == -1) { error = errno; close(ama->ama_mdctl_fd); errno = error; atf_tc_fail("ioctl MDIOCDETACH failed: %s", strerror(errno)); } } close(ama->ama_mdctl_fd); } #define MD_LEN GLOBAL_MAX #define MD_TIMEOUT 30 static void aio_md_test(completion comp) { int error, fd, mdctl_fd, unit; char pathname[PATH_MAX]; struct aio_md_arg arg; struct aio_context ac; struct md_ioctl mdio; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_UNSAFE_AIO(); mdctl_fd = open("/dev/" MDCTL_NAME, O_RDWR, 0); ATF_REQUIRE_MSG(mdctl_fd != -1, "opening /dev/%s failed: %s", MDCTL_NAME, strerror(errno)); bzero(&mdio, sizeof(mdio)); mdio.md_version = MDIOVERSION; mdio.md_type = MD_MALLOC; mdio.md_options = MD_AUTOUNIT | MD_COMPRESS; mdio.md_mediasize = GLOBAL_MAX; mdio.md_sectorsize = 512; arg.ama_mdctl_fd = mdctl_fd; arg.ama_unit = -1; arg.ama_fd = -1; if (ioctl(mdctl_fd, MDIOCATTACH, &mdio) < 0) { error = errno; aio_md_cleanup(&arg); errno = error; atf_tc_fail("ioctl MDIOCATTACH failed: %s", strerror(errno)); } arg.ama_unit = unit = mdio.md_unit; snprintf(pathname, PATH_MAX, "/dev/md%d", unit); fd = open(pathname, O_RDWR); ATF_REQUIRE_MSG(fd != -1, "opening %s failed: %s", pathname, strerror(errno)); arg.ama_fd = fd; aio_context_init(&ac, fd, fd, MD_LEN, MD_TIMEOUT, aio_md_cleanup, &arg); aio_write_test(&ac, comp); aio_read_test(&ac, comp); aio_md_cleanup(&arg); } ATF_TC(md_poll); ATF_TC_HEAD(md_poll, tc) { atf_tc_set_md_var(tc, "require.user", "root"); } ATF_TC_BODY(md_poll, tc) { aio_md_test(poll); } ATF_TC(md_suspend); ATF_TC_HEAD(md_suspend, tc) { atf_tc_set_md_var(tc, "require.user", "root"); } ATF_TC_BODY(md_suspend, tc) { aio_md_test(suspend); } ATF_TC(md_waitcomplete); ATF_TC_HEAD(md_waitcomplete, tc) { atf_tc_set_md_var(tc, "require.user", "root"); } ATF_TC_BODY(md_waitcomplete, tc) { aio_md_test(waitcomplete); } ATF_TC_WITHOUT_HEAD(aio_large_read_test); ATF_TC_BODY(aio_large_read_test, tc) { struct aiocb cb, *cbp; ssize_t nread; size_t len; int fd; #ifdef __LP64__ int clamped; #endif ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_UNSAFE_AIO(); #ifdef __LP64__ len = sizeof(clamped); if (sysctlbyname("debug.iosize_max_clamp", &clamped, &len, NULL, 0) == -1) atf_libc_error(errno, "Failed to read debug.iosize_max_clamp"); #endif /* Determine the maximum supported read(2) size. */ len = SSIZE_MAX; #ifdef __LP64__ if (clamped) len = INT_MAX; #endif fd = open(FILE_PATHNAME, O_RDWR | O_CREAT); ATF_REQUIRE_MSG(fd != -1, "open failed: %s", strerror(errno)); unlink(FILE_PATHNAME); memset(&cb, 0, sizeof(cb)); cb.aio_nbytes = len; cb.aio_fildes = fd; cb.aio_buf = NULL; if (aio_read(&cb) == -1) atf_tc_fail("aio_read() of maximum read size failed: %s", strerror(errno)); nread = aio_waitcomplete(&cbp, NULL); if (nread == -1) atf_tc_fail("aio_waitcomplete() failed: %s", strerror(errno)); if (nread != 0) atf_tc_fail("aio_read() from empty file returned data: %zd", nread); memset(&cb, 0, sizeof(cb)); cb.aio_nbytes = len + 1; cb.aio_fildes = fd; cb.aio_buf = NULL; if (aio_read(&cb) == -1) { if (errno == EINVAL) goto finished; atf_tc_fail("aio_read() of too large read size failed: %s", strerror(errno)); } nread = aio_waitcomplete(&cbp, NULL); if (nread == -1) { if (errno == EINVAL) goto finished; atf_tc_fail("aio_waitcomplete() failed: %s", strerror(errno)); } atf_tc_fail("aio_read() of too large read size returned: %zd", nread); finished: close(fd); } /* * This tests for a bug where arriving socket data can wakeup multiple * AIO read requests resulting in an uncancellable request. */ ATF_TC_WITHOUT_HEAD(aio_socket_two_reads); ATF_TC_BODY(aio_socket_two_reads, tc) { struct ioreq { struct aiocb iocb; char buffer[1024]; } ioreq[2]; struct aiocb *iocb; unsigned i; int s[2]; char c; ATF_REQUIRE_KERNEL_MODULE("aio"); #if __FreeBSD_version < 1100101 aft_tc_skip("kernel version %d is too old (%d required)", __FreeBSD_version, 1100101); #endif ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1); /* Queue two read requests. */ memset(&ioreq, 0, sizeof(ioreq)); for (i = 0; i < nitems(ioreq); i++) { ioreq[i].iocb.aio_nbytes = sizeof(ioreq[i].buffer); ioreq[i].iocb.aio_fildes = s[0]; ioreq[i].iocb.aio_buf = ioreq[i].buffer; ATF_REQUIRE(aio_read(&ioreq[i].iocb) == 0); } /* Send a single byte. This should complete one request. */ c = 0xc3; ATF_REQUIRE(write(s[1], &c, sizeof(c)) == 1); ATF_REQUIRE(aio_waitcomplete(&iocb, NULL) == 1); /* Determine which request completed and verify the data was read. */ if (iocb == &ioreq[0].iocb) i = 0; else i = 1; ATF_REQUIRE(ioreq[i].buffer[0] == c); i ^= 1; /* * Try to cancel the other request. On broken systems this * will fail and the process will hang on exit. */ ATF_REQUIRE(aio_error(&ioreq[i].iocb) == EINPROGRESS); ATF_REQUIRE(aio_cancel(s[0], &ioreq[i].iocb) == AIO_CANCELED); close(s[1]); close(s[0]); } /* * This test ensures that aio_write() on a blocking socket of a "large" * buffer does not return a short completion. */ ATF_TC_WITHOUT_HEAD(aio_socket_blocking_short_write); ATF_TC_BODY(aio_socket_blocking_short_write, tc) { struct aiocb iocb, *iocbp; char *buffer[2]; ssize_t done; int buffer_size, sb_size; socklen_t len; int s[2]; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1); len = sizeof(sb_size); ATF_REQUIRE(getsockopt(s[0], SOL_SOCKET, SO_RCVBUF, &sb_size, &len) != -1); ATF_REQUIRE(len == sizeof(sb_size)); buffer_size = sb_size; ATF_REQUIRE(getsockopt(s[1], SOL_SOCKET, SO_SNDBUF, &sb_size, &len) != -1); ATF_REQUIRE(len == sizeof(sb_size)); if (sb_size > buffer_size) buffer_size = sb_size; /* * Use twice the size of the MAX(receive buffer, send buffer) * to ensure that the write is split up into multiple writes * internally. */ buffer_size *= 2; buffer[0] = malloc(buffer_size); ATF_REQUIRE(buffer[0] != NULL); buffer[1] = malloc(buffer_size); ATF_REQUIRE(buffer[1] != NULL); srandomdev(); aio_fill_buffer(buffer[1], buffer_size, random()); memset(&iocb, 0, sizeof(iocb)); iocb.aio_fildes = s[1]; iocb.aio_buf = buffer[1]; iocb.aio_nbytes = buffer_size; ATF_REQUIRE(aio_write(&iocb) == 0); done = recv(s[0], buffer[0], buffer_size, MSG_WAITALL); ATF_REQUIRE(done == buffer_size); done = aio_waitcomplete(&iocbp, NULL); ATF_REQUIRE(iocbp == &iocb); ATF_REQUIRE(done == buffer_size); ATF_REQUIRE(memcmp(buffer[0], buffer[1], buffer_size) == 0); close(s[1]); close(s[0]); } /* * This test verifies that cancelling a partially completed socket write * returns a short write rather than ECANCELED. */ ATF_TC_WITHOUT_HEAD(aio_socket_short_write_cancel); ATF_TC_BODY(aio_socket_short_write_cancel, tc) { struct aiocb iocb, *iocbp; char *buffer[2]; ssize_t done; int buffer_size, sb_size; socklen_t len; int s[2]; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE(socketpair(PF_UNIX, SOCK_STREAM, 0, s) != -1); len = sizeof(sb_size); ATF_REQUIRE(getsockopt(s[0], SOL_SOCKET, SO_RCVBUF, &sb_size, &len) != -1); ATF_REQUIRE(len == sizeof(sb_size)); buffer_size = sb_size; ATF_REQUIRE(getsockopt(s[1], SOL_SOCKET, SO_SNDBUF, &sb_size, &len) != -1); ATF_REQUIRE(len == sizeof(sb_size)); if (sb_size > buffer_size) buffer_size = sb_size; /* * Use three times the size of the MAX(receive buffer, send * buffer) for the write to ensure that the write is split up * into multiple writes internally. The recv() ensures that * the write has partially completed, but a remaining size of * two buffers should ensure that the write has not completed * fully when it is cancelled. */ buffer[0] = malloc(buffer_size); ATF_REQUIRE(buffer[0] != NULL); buffer[1] = malloc(buffer_size * 3); ATF_REQUIRE(buffer[1] != NULL); srandomdev(); aio_fill_buffer(buffer[1], buffer_size * 3, random()); memset(&iocb, 0, sizeof(iocb)); iocb.aio_fildes = s[1]; iocb.aio_buf = buffer[1]; iocb.aio_nbytes = buffer_size * 3; ATF_REQUIRE(aio_write(&iocb) == 0); done = recv(s[0], buffer[0], buffer_size, MSG_WAITALL); ATF_REQUIRE(done == buffer_size); ATF_REQUIRE(aio_error(&iocb) == EINPROGRESS); ATF_REQUIRE(aio_cancel(s[1], &iocb) == AIO_NOTCANCELED); done = aio_waitcomplete(&iocbp, NULL); ATF_REQUIRE(iocbp == &iocb); ATF_REQUIRE(done >= buffer_size && done <= buffer_size * 2); ATF_REQUIRE(memcmp(buffer[0], buffer[1], buffer_size) == 0); close(s[1]); close(s[0]); } /* * This test just performs a basic test of aio_fsync(). */ ATF_TC_WITHOUT_HEAD(aio_fsync_test); ATF_TC_BODY(aio_fsync_test, tc) { struct aiocb synccb, *iocbp; struct { struct aiocb iocb; bool done; char *buffer; } buffers[16]; struct stat sb; ssize_t rval; unsigned i; int fd; ATF_REQUIRE_KERNEL_MODULE("aio"); ATF_REQUIRE_UNSAFE_AIO(); fd = open(FILE_PATHNAME, O_RDWR | O_CREAT); ATF_REQUIRE_MSG(fd != -1, "open failed: %s", strerror(errno)); unlink(FILE_PATHNAME); ATF_REQUIRE(fstat(fd, &sb) == 0); ATF_REQUIRE(sb.st_blksize != 0); ATF_REQUIRE(ftruncate(fd, sb.st_blksize * nitems(buffers)) == 0); /* * Queue several asynchronous write requests. Hopefully this * forces the aio_fsync() request to be deferred. There is no * reliable way to guarantee that however. */ srandomdev(); for (i = 0; i < nitems(buffers); i++) { buffers[i].done = false; memset(&buffers[i].iocb, 0, sizeof(buffers[i].iocb)); buffers[i].buffer = malloc(sb.st_blksize); aio_fill_buffer(buffers[i].buffer, sb.st_blksize, random()); buffers[i].iocb.aio_fildes = fd; buffers[i].iocb.aio_buf = buffers[i].buffer; buffers[i].iocb.aio_nbytes = sb.st_blksize; buffers[i].iocb.aio_offset = sb.st_blksize * i; ATF_REQUIRE(aio_write(&buffers[i].iocb) == 0); } /* Queue the aio_fsync request. */ memset(&synccb, 0, sizeof(synccb)); synccb.aio_fildes = fd; ATF_REQUIRE(aio_fsync(O_SYNC, &synccb) == 0); /* Wait for requests to complete. */ for (;;) { next: rval = aio_waitcomplete(&iocbp, NULL); ATF_REQUIRE(iocbp != NULL); if (iocbp == &synccb) { ATF_REQUIRE(rval == 0); break; } for (i = 0; i < nitems(buffers); i++) { if (iocbp == &buffers[i].iocb) { ATF_REQUIRE(buffers[i].done == false); ATF_REQUIRE(rval == sb.st_blksize); buffers[i].done = true; goto next; } } ATF_REQUIRE_MSG(false, "unmatched AIO request"); } for (i = 0; i < nitems(buffers); i++) ATF_REQUIRE_MSG(buffers[i].done, "AIO request %u did not complete", i); close(fd); } ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, file_poll); ATF_TP_ADD_TC(tp, file_suspend); ATF_TP_ADD_TC(tp, file_waitcomplete); ATF_TP_ADD_TC(tp, fifo_poll); ATF_TP_ADD_TC(tp, fifo_suspend); ATF_TP_ADD_TC(tp, fifo_waitcomplete); ATF_TP_ADD_TC(tp, socket_poll); ATF_TP_ADD_TC(tp, socket_suspend); ATF_TP_ADD_TC(tp, socket_waitcomplete); ATF_TP_ADD_TC(tp, pty_poll); ATF_TP_ADD_TC(tp, pty_suspend); ATF_TP_ADD_TC(tp, pty_waitcomplete); ATF_TP_ADD_TC(tp, pipe_poll); ATF_TP_ADD_TC(tp, pipe_suspend); ATF_TP_ADD_TC(tp, pipe_waitcomplete); ATF_TP_ADD_TC(tp, md_poll); ATF_TP_ADD_TC(tp, md_suspend); ATF_TP_ADD_TC(tp, md_waitcomplete); ATF_TP_ADD_TC(tp, aio_large_read_test); ATF_TP_ADD_TC(tp, aio_socket_two_reads); ATF_TP_ADD_TC(tp, aio_socket_blocking_short_write); ATF_TP_ADD_TC(tp, aio_socket_short_write_cancel); ATF_TP_ADD_TC(tp, aio_fsync_test); return (atf_no_error()); }