/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include u_int dmar_nd2mask(u_int nd) { static const u_int masks[] = { 0x000f, /* nd == 0 */ 0x002f, /* nd == 1 */ 0x00ff, /* nd == 2 */ 0x02ff, /* nd == 3 */ 0x0fff, /* nd == 4 */ 0x2fff, /* nd == 5 */ 0xffff, /* nd == 6 */ 0x0000, /* nd == 7 reserved */ }; KASSERT(nd <= 6, ("number of domains %d", nd)); return (masks[nd]); } static const struct sagaw_bits_tag { int agaw; int cap; int awlvl; int pglvl; } sagaw_bits[] = { {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL, .pglvl = 2}, {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL, .pglvl = 3}, {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL, .pglvl = 4}, {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL, .pglvl = 5} /* * 6-level paging (DMAR_CAP_SAGAW_6LVL) is not supported on any * current VT-d hardware and its SAGAW field value is listed as * reserved in the VT-d spec. If support is added in the future, * this structure and the logic in dmar_maxaddr2mgaw() will need * to change to avoid attempted comparison against 1ULL << 64. */ }; bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].pglvl != pglvl) continue; if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) return (true); } return (false); } int domain_set_agaw(struct dmar_domain *domain, int mgaw) { int sagaw, i; domain->mgaw = mgaw; sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap); for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].agaw >= mgaw) { domain->agaw = sagaw_bits[i].agaw; domain->pglvl = sagaw_bits[i].pglvl; domain->awlvl = sagaw_bits[i].awlvl; return (0); } } device_printf(domain->dmar->iommu.dev, "context request mgaw %d: no agaw found, sagaw %x\n", mgaw, sagaw); return (EINVAL); } /* * Find a best fit mgaw for the given maxaddr: * - if allow_less is false, must find sagaw which maps all requested * addresses (used by identity mappings); * - if allow_less is true, and no supported sagaw can map all requested * address space, accept the biggest sagaw, whatever is it. */ int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if ((1ULL << sagaw_bits[i].agaw) >= maxaddr && (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) break; } if (allow_less && i == nitems(sagaw_bits)) { do { i--; } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) == 0); } if (i < nitems(sagaw_bits)) return (sagaw_bits[i].agaw); KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d", (uintmax_t) maxaddr, allow_less)); return (-1); } /* * Return true if the page table level lvl supports the superpage for * the context ctx. */ int domain_is_sp_lvl(struct dmar_domain *domain, int lvl) { int alvl, cap_sps; static const int sagaw_sp[] = { DMAR_CAP_SPS_2M, DMAR_CAP_SPS_1G, DMAR_CAP_SPS_512G, DMAR_CAP_SPS_1T }; alvl = domain->pglvl - lvl - 1; cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap); return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0); } iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl) { return (pglvl_page_size(domain->pglvl, lvl)); } int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, iommu_gaddr_t *isizep) { iommu_gaddr_t isize; int am; for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) { isize = 1ULL << (am + IOMMU_PAGE_SHIFT); if ((base & (isize - 1)) == 0 && size >= isize) break; if (am == 0) break; } *isizep = isize; return (am); } int haw; int dmar_tbl_pagecnt; static void dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz) { if (DMAR_IS_COHERENT(unit)) return; /* * If DMAR does not snoop paging structures accesses, flush * CPU cache to memory. */ pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz); } void dmar_flush_pte_to_ram(struct dmar_unit *unit, iommu_pte_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } /* * Load the root entry pointer into the hardware, busily waiting for * the completion. */ int dmar_load_root_entry_ptr(struct dmar_unit *unit) { vm_page_t root_entry; int error; /* * Access to the GCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); VM_OBJECT_RLOCK(unit->ctx_obj); root_entry = vm_page_lookup(unit->ctx_obj, 0); VM_OBJECT_RUNLOCK(unit->ctx_obj); dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) != 0)); return (error); } /* * Globally invalidate the context entries cache, busily waiting for * the completion. */ int dmar_inv_ctx_glob(struct dmar_unit *unit) { int error; /* * Access to the CCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); /* * The DMAR_CCMD_ICC bit in the upper dword should be written * after the low dword write is completed. Amd64 * dmar_write8() does not have this issue, i386 dmar_write8() * writes the upper dword last. */ dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) == 0)); return (error); } /* * Globally invalidate the IOTLB, busily waiting for the completion. */ int dmar_inv_iotlb_glob(struct dmar_unit *unit) { int error, reg; DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap); /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */ dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW); DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & DMAR_IOTLB_IVT32) == 0)); return (error); } /* * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing" * in the architecture specification. */ int dmar_flush_write_bufs(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); /* * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported. */ KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0, ("dmar%d: no RWBF", unit->iommu.unit)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) != 0)); return (error); } /* * Some BIOSes protect memory region they reside in by using DMAR to * prevent devices from doing any DMA transactions to that part of RAM. * AMI refers to this as "DMA Control Guarantee". * We need to disable this when address translation is enabled. */ int dmar_disable_protected_regions(struct dmar_unit *unit) { uint32_t reg; int error; DMAR_ASSERT_LOCKED(unit); /* Check if we support the feature. */ if ((unit->hw_cap & (DMAR_CAP_PLMR | DMAR_CAP_PHMR)) == 0) return (0); reg = dmar_read4(unit, DMAR_PMEN_REG); if ((reg & DMAR_PMEN_EPM) == 0) return (0); reg &= ~DMAR_PMEN_EPM; dmar_write4(unit, DMAR_PMEN_REG, reg); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_PMEN_REG) & DMAR_PMEN_PRS) != 0)); return (error); } int dmar_enable_translation(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0)); return (error); } int dmar_disable_translation(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0)); return (error); } int dmar_load_irt_ptr(struct dmar_unit *unit) { uint64_t irta, s; int error; DMAR_ASSERT_LOCKED(unit); irta = unit->irt_phys; if (DMAR_X2APIC(unit)) irta |= DMAR_IRTA_EIME; s = fls(unit->irte_cnt) - 2; KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK && powerof2(unit->irte_cnt), ("IRTA_REG_S overflow %x", unit->irte_cnt)); irta |= s; dmar_write8(unit, DMAR_IRTA_REG, irta); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) != 0)); return (error); } int dmar_enable_ir(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_IRE; unit->hw_gcmd &= ~DMAR_GCMD_CFI; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0)); return (error); } int dmar_disable_ir(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_IRE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0)); return (error); } #define BARRIER_F \ u_int f_done, f_inproc, f_wakeup; \ \ f_done = 1 << (barrier_id * 3); \ f_inproc = 1 << (barrier_id * 3 + 1); \ f_wakeup = 1 << (barrier_id * 3 + 2) bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_LOCK(dmar); if ((dmar->barrier_flags & f_done) != 0) { DMAR_UNLOCK(dmar); return (false); } if ((dmar->barrier_flags & f_inproc) != 0) { while ((dmar->barrier_flags & f_inproc) != 0) { dmar->barrier_flags |= f_wakeup; msleep(&dmar->barrier_flags, &dmar->iommu.lock, 0, "dmarb", 0); } KASSERT((dmar->barrier_flags & f_done) != 0, ("dmar%d barrier %d missing done", dmar->iommu.unit, barrier_id)); DMAR_UNLOCK(dmar); return (false); } dmar->barrier_flags |= f_inproc; DMAR_UNLOCK(dmar); return (true); } void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_ASSERT_LOCKED(dmar); KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc, ("dmar%d barrier %d missed entry", dmar->iommu.unit, barrier_id)); dmar->barrier_flags |= f_done; if ((dmar->barrier_flags & f_wakeup) != 0) wakeup(&dmar->barrier_flags); dmar->barrier_flags &= ~(f_inproc | f_wakeup); DMAR_UNLOCK(dmar); } struct timespec dmar_hw_timeout = { .tv_sec = 0, .tv_nsec = 1000000 }; static const uint64_t d = 1000000000; void dmar_update_timeout(uint64_t newval) { /* XXXKIB not atomic */ dmar_hw_timeout.tv_sec = newval / d; dmar_hw_timeout.tv_nsec = newval % d; } uint64_t dmar_get_timeout(void) { return ((uint64_t)dmar_hw_timeout.tv_sec * d + dmar_hw_timeout.tv_nsec); } static int dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS) { uint64_t val; int error; val = dmar_get_timeout(); error = sysctl_handle_long(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); dmar_update_timeout(val); return (error); } SYSCTL_PROC(_hw_iommu_dmar, OID_AUTO, timeout, CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, dmar_timeout_sysctl, "QU", "Timeout for command wait, in nanoseconds");