/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013-2015 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef __X86_IOMMU_INTEL_DMAR_H #define __X86_IOMMU_INTEL_DMAR_H #include struct dmar_unit; /* * Locking annotations: * (u) - Protected by iommu unit lock * (d) - Protected by domain lock * (c) - Immutable after initialization */ /* * The domain abstraction. Most non-constant members of the domain * are protected by owning dmar unit lock, not by the domain lock. * Most important, the dmar lock protects the contexts list. * * The domain lock protects the address map for the domain, and list * of unload entries delayed. * * Page tables pages and pages content is protected by the vm object * lock pgtbl_obj, which contains the page tables pages. */ struct dmar_domain { struct iommu_domain iodom; int domain; /* (c) DID, written in context entry */ int mgaw; /* (c) Real max address width */ int agaw; /* (c) Adjusted guest address width */ int pglvl; /* (c) The pagelevel */ int awlvl; /* (c) The pagelevel as the bitmask, to set in context entry */ u_int ctx_cnt; /* (u) Number of contexts owned */ u_int refs; /* (u) Refs, including ctx */ struct dmar_unit *dmar; /* (c) */ LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */ LIST_HEAD(, dmar_ctx) contexts; /* (u) */ vm_object_t pgtbl_obj; /* (c) Page table pages */ u_int batch_no; }; struct dmar_ctx { struct iommu_ctx context; uint64_t last_fault_rec[2]; /* Last fault reported */ LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */ u_int refs; /* (u) References from tags */ }; #define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \ VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj) #define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->iodom.lock) #define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->iodom.lock) #define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED) #define DMAR2IOMMU(dmar) &((dmar)->iommu) #define IOMMU2DMAR(dmar) \ __containerof((dmar), struct dmar_unit, iommu) #define DOM2IODOM(domain) &((domain)->iodom) #define IODOM2DOM(domain) \ __containerof((domain), struct dmar_domain, iodom) #define CTX2IOCTX(ctx) &((ctx)->context) #define IOCTX2CTX(ctx) \ __containerof((ctx), struct dmar_ctx, context) #define CTX2DOM(ctx) IODOM2DOM((ctx)->context.domain) #define CTX2DMAR(ctx) (CTX2DOM(ctx)->dmar) #define DOM2DMAR(domain) ((domain)->dmar) struct dmar_msi_data { int irq; int irq_rid; struct resource *irq_res; void *intr_handle; int (*handler)(void *); int msi_data_reg; int msi_addr_reg; int msi_uaddr_reg; void (*enable_intr)(struct dmar_unit *); void (*disable_intr)(struct dmar_unit *); const char *name; }; #define DMAR_INTR_FAULT 0 #define DMAR_INTR_QI 1 #define DMAR_INTR_TOTAL 2 struct dmar_unit { struct iommu_unit iommu; device_t dev; uint16_t segment; uint64_t base; /* Resources */ int reg_rid; struct resource *regs; struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; /* Hardware registers cache */ uint32_t hw_ver; uint64_t hw_cap; uint64_t hw_ecap; uint32_t hw_gcmd; /* Data for being a dmar */ LIST_HEAD(, dmar_domain) domains; struct unrhdr *domids; vm_object_t ctx_obj; u_int barrier_flags; /* Fault handler data */ struct mtx fault_lock; uint64_t *fault_log; int fault_log_head; int fault_log_tail; int fault_log_size; struct task fault_task; struct taskqueue *fault_taskqueue; /* QI */ int qi_enabled; char *inv_queue; vm_size_t inv_queue_size; uint32_t inv_queue_avail; uint32_t inv_queue_tail; volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait descr completion */ uint64_t inv_waitd_seq_hw_phys; uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ u_int inv_seq_waiters; /* count of waiters for seq */ u_int inv_queue_full; /* informational counter */ /* IR */ int ir_enabled; vm_paddr_t irt_phys; dmar_irte_t *irt; u_int irte_cnt; vmem_t *irtids; /* * Delayed freeing of map entries queue processing: * * tlb_flush_head and tlb_flush_tail are used to implement a FIFO * queue that supports concurrent dequeues and enqueues. However, * there can only be a single dequeuer (accessing tlb_flush_head) and * a single enqueuer (accessing tlb_flush_tail) at a time. Since the * unit's qi_task is the only dequeuer, it can access tlb_flush_head * without any locking. In contrast, there may be multiple enqueuers, * so the enqueuers acquire the iommu unit lock to serialize their * accesses to tlb_flush_tail. * * In this FIFO queue implementation, the key to enabling concurrent * dequeues and enqueues is that the dequeuer never needs to access * tlb_flush_tail and the enqueuer never needs to access * tlb_flush_head. In particular, tlb_flush_head and tlb_flush_tail * are never NULL, so neither a dequeuer nor an enqueuer ever needs to * update both. Instead, tlb_flush_head always points to a "zombie" * struct, which previously held the last dequeued item. Thus, the * zombie's next field actually points to the struct holding the first * item in the queue. When an item is dequeued, the current zombie is * finally freed, and the struct that held the just dequeued item * becomes the new zombie. When the queue is empty, tlb_flush_tail * also points to the zombie. */ struct iommu_map_entry *tlb_flush_head; struct iommu_map_entry *tlb_flush_tail; struct task qi_task; struct taskqueue *qi_taskqueue; }; #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->iommu.lock) #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->iommu.lock) #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED) #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) #define DMAR_X2APIC(dmar) \ (x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0) /* Barrier ids */ #define DMAR_BARRIER_RMRR 0 #define DMAR_BARRIER_USEQ 1 struct dmar_unit *dmar_find(device_t dev, bool verbose); struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid); struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid); u_int dmar_nd2mask(u_int nd); bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); int domain_set_agaw(struct dmar_domain *domain, int mgaw); int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less); vm_pindex_t pglvl_max_pages(int pglvl); int domain_is_sp_lvl(struct dmar_domain *domain, int lvl); iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl); iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl); int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, iommu_gaddr_t *isizep); struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags); void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags); void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, struct sf_buf **sf); void dmar_unmap_pgtbl(struct sf_buf *sf); int dmar_load_root_entry_ptr(struct dmar_unit *unit); int dmar_inv_ctx_glob(struct dmar_unit *unit); int dmar_inv_iotlb_glob(struct dmar_unit *unit); int dmar_flush_write_bufs(struct dmar_unit *unit); void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst); void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst); void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst); int dmar_disable_protected_regions(struct dmar_unit *unit); int dmar_enable_translation(struct dmar_unit *unit); int dmar_disable_translation(struct dmar_unit *unit); int dmar_load_irt_ptr(struct dmar_unit *unit); int dmar_enable_ir(struct dmar_unit *unit); int dmar_disable_ir(struct dmar_unit *unit); bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); uint64_t dmar_get_timeout(void); void dmar_update_timeout(uint64_t newval); int dmar_fault_intr(void *arg); void dmar_enable_fault_intr(struct dmar_unit *unit); void dmar_disable_fault_intr(struct dmar_unit *unit); int dmar_init_fault_log(struct dmar_unit *unit); void dmar_fini_fault_log(struct dmar_unit *unit); int dmar_qi_intr(void *arg); void dmar_enable_qi_intr(struct dmar_unit *unit); void dmar_disable_qi_intr(struct dmar_unit *unit); int dmar_init_qi(struct dmar_unit *unit); void dmar_fini_qi(struct dmar_unit *unit); void dmar_qi_invalidate_locked(struct dmar_domain *domain, struct iommu_map_entry *entry, bool emit_wait); void dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t start, iommu_gaddr_t size, bool cansleep); void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit); void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt); vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain, iommu_gaddr_t maxaddr); void put_idmap_pgtbl(vm_object_t obj); void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size); int domain_alloc_pgtbl(struct dmar_domain *domain); void domain_free_pgtbl(struct dmar_domain *domain); extern const struct iommu_domain_map_ops dmar_domain_map_ops; int dmar_dev_depth(device_t child); void dmar_dev_path(device_t child, int *busno, void *path1, int depth); struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, uint16_t rid, bool id_mapped, bool rmrr_init); struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, bool id_mapped, bool rmrr_init); int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx); void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); void dmar_free_ctx(struct dmar_ctx *ctx); struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid); void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free); void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, struct iommu_map_entries_tailq *rmrr_entries); int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar); void dmar_quirks_post_ident(struct dmar_unit *dmar); void dmar_quirks_pre_use(struct iommu_unit *dmar); int dmar_init_irt(struct dmar_unit *unit); void dmar_fini_irt(struct dmar_unit *unit); extern iommu_haddr_t dmar_high; extern int haw; extern int dmar_tbl_pagecnt; extern int dmar_batch_coalesce; static inline uint32_t dmar_read4(const struct dmar_unit *unit, int reg) { return (bus_read_4(unit->regs, reg)); } static inline uint64_t dmar_read8(const struct dmar_unit *unit, int reg) { #ifdef __i386__ uint32_t high, low; low = bus_read_4(unit->regs, reg); high = bus_read_4(unit->regs, reg + 4); return (low | ((uint64_t)high << 32)); #else return (bus_read_8(unit->regs, reg)); #endif } static inline void dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) { KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == (unit->hw_gcmd & DMAR_GCMD_TE), ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit, unit->hw_gcmd, val)); bus_write_4(unit->regs, reg, val); } static inline void dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) { KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); #ifdef __i386__ uint32_t high, low; low = val; high = val >> 32; bus_write_4(unit->regs, reg, low); bus_write_4(unit->regs, reg + 4, high); #else bus_write_8(unit->regs, reg, val); #endif } /* * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes * are issued in the correct order. For store, the lower word, * containing the P or R and W bits, is set only after the high word * is written. For clear, the P bit is cleared first, then the high * word is cleared. * * dmar_pte_update updates the pte. For amd64, the update is atomic. * For i386, it first disables the entry by clearing the word * containing the P bit, and then defer to dmar_pte_store. The locked * cmpxchg8b is probably available on any machine having DMAR support, * but interrupt translation table may be mapped uncached. */ static inline void dmar_pte_store1(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; uint32_t hi, lo; hi = val >> 32; lo = val; p = (volatile uint32_t *)dst; *(p + 1) = hi; *p = lo; #else *dst = val; #endif } static inline void dmar_pte_store(volatile uint64_t *dst, uint64_t val) { KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", dst, (uintmax_t)*dst, (uintmax_t)val)); dmar_pte_store1(dst, val); } static inline void dmar_pte_update(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; #endif dmar_pte_store1(dst, val); } static inline void dmar_pte_clear(volatile uint64_t *dst) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; *(p + 1) = 0; #else *dst = 0; #endif } extern struct timespec dmar_hw_timeout; #define DMAR_WAIT_UNTIL(cond) \ { \ struct timespec last, curr; \ bool forever; \ \ if (dmar_hw_timeout.tv_sec == 0 && \ dmar_hw_timeout.tv_nsec == 0) { \ forever = true; \ } else { \ forever = false; \ nanouptime(&curr); \ timespecadd(&curr, &dmar_hw_timeout, &last); \ } \ for (;;) { \ if (cond) { \ error = 0; \ break; \ } \ nanouptime(&curr); \ if (!forever && timespeccmp(&last, &curr, <)) { \ error = ETIMEDOUT; \ break; \ } \ cpu_spinwait(); \ } \ } #ifdef INVARIANTS #define TD_PREP_PINNED_ASSERT \ int old_td_pinned; \ old_td_pinned = curthread->td_pinned #define TD_PINNED_ASSERT \ KASSERT(curthread->td_pinned == old_td_pinned, \ ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ old_td_pinned, __FILE__, __LINE__)) #else #define TD_PREP_PINNED_ASSERT #define TD_PINNED_ASSERT #endif #endif