/*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Resident memory system definitions. */ #ifndef _VM_PAGE_ #define _VM_PAGE_ #include #include /* * Management of resident (logical) pages. * * A small structure is kept for each resident * page, indexed by page number. Each structure * is an element of several collections: * * A radix tree used to quickly * perform object/offset lookups * * A list of all pages for a given object, * so they can be quickly deactivated at * time of deallocation. * * An ordered list of pages due for pageout. * * In addition, the structure contains the object * and offset to which this page belongs (for pageout), * and sundry status bits. * * In general, operations on this structure's mutable fields are * synchronized using either one of or a combination of locks. If a * field is annotated with two of these locks then holding either is * sufficient for read access but both are required for write access. * The queue lock for a page depends on the value of its queue field and is * described in detail below. * * The following annotations are possible: * (A) the field must be accessed using atomic(9) and may require * additional synchronization. * (B) the page busy lock. * (C) the field is immutable. * (F) the per-domain lock for the free queues. * (M) Machine dependent, defined by pmap layer. * (O) the object that the page belongs to. * (Q) the page's queue lock. * * The busy lock is an embedded reader-writer lock that protects the * page's contents and identity (i.e., its tuple) as * well as certain valid/dirty modifications. To avoid bloating the * the page structure, the busy lock lacks some of the features available * the kernel's general-purpose synchronization primitives. As a result, * busy lock ordering rules are not verified, lock recursion is not * detected, and an attempt to xbusy a busy page or sbusy an xbusy page * results will trigger a panic rather than causing the thread to block. * vm_page_sleep_if_busy() can be used to sleep until the page's busy * state changes, after which the caller must re-lookup the page and * re-evaluate its state. vm_page_busy_acquire() will block until * the lock is acquired. * * The valid field is protected by the page busy lock (B) and object * lock (O). Transitions from invalid to valid are generally done * via I/O or zero filling and do not require the object lock. * These must be protected with the busy lock to prevent page-in or * creation races. Page invalidation generally happens as a result * of truncate or msync. When invalidated, pages must not be present * in pmap and must hold the object lock to prevent concurrent * speculative read-only mappings that do not require busy. I/O * routines may check for validity without a lock if they are prepared * to handle invalidation races with higher level locks (vnode) or are * unconcerned with races so long as they hold a reference to prevent * recycling. When a valid bit is set while holding a shared busy * lock (A) atomic operations are used to protect against concurrent * modification. * * In contrast, the synchronization of accesses to the page's * dirty field is a mix of machine dependent (M) and busy (B). In * the machine-independent layer, the page busy must be held to * operate on the field. However, the pmap layer is permitted to * set all bits within the field without holding that lock. If the * underlying architecture does not support atomic read-modify-write * operations on the field's type, then the machine-independent * layer uses a 32-bit atomic on the aligned 32-bit word that * contains the dirty field. In the machine-independent layer, * the implementation of read-modify-write operations on the * field is encapsulated in vm_page_clear_dirty_mask(). An * exclusive busy lock combined with pmap_remove_{write/all}() is the * only way to ensure a page can not become dirty. I/O generally * removes the page from pmap to ensure exclusive access and atomic * writes. * * The ref_count field tracks references to the page. References that * prevent the page from being reclaimable are called wirings and are * counted in the low bits of ref_count. The containing object's * reference, if one exists, is counted using the VPRC_OBJREF bit in the * ref_count field. Additionally, the VPRC_BLOCKED bit is used to * atomically check for wirings and prevent new wirings via * pmap_extract_and_hold(). When a page belongs to an object, it may be * wired only when the object is locked, or the page is busy, or by * pmap_extract_and_hold(). As a result, if the object is locked and the * page is not busy (or is exclusively busied by the current thread), and * the page is unmapped, its wire count will not increase. The ref_count * field is updated using atomic operations in most cases, except when it * is known that no other references to the page exist, such as in the page * allocator. A page may be present in the page queues, or even actively * scanned by the page daemon, without an explicitly counted referenced. * The page daemon must therefore handle the possibility of a concurrent * free of the page. * * The queue state of a page consists of the queue and act_count fields of * its atomically updated state, and the subset of atomic flags specified * by PGA_QUEUE_STATE_MASK. The queue field contains the page's page queue * index, or PQ_NONE if it does not belong to a page queue. To modify the * queue field, the page queue lock corresponding to the old value must be * held, unless that value is PQ_NONE, in which case the queue index must * be updated using an atomic RMW operation. There is one exception to * this rule: the page daemon may transition the queue field from * PQ_INACTIVE to PQ_NONE immediately prior to freeing the page during an * inactive queue scan. At that point the page is already dequeued and no * other references to that vm_page structure can exist. The PGA_ENQUEUED * flag, when set, indicates that the page structure is physically inserted * into the queue corresponding to the page's queue index, and may only be * set or cleared with the corresponding page queue lock held. * * To avoid contention on page queue locks, page queue operations (enqueue, * dequeue, requeue) are batched using fixed-size per-CPU queues. A * deferred operation is requested by setting one of the flags in * PGA_QUEUE_OP_MASK and inserting an entry into a batch queue. When a * queue is full, an attempt to insert a new entry will lock the page * queues and trigger processing of the pending entries. The * type-stability of vm_page structures is crucial to this scheme since the * processing of entries in a given batch queue may be deferred * indefinitely. In particular, a page may be freed with pending batch * queue entries. The page queue operation flags must be set using atomic * RWM operations. */ #if PAGE_SIZE == 4096 #define VM_PAGE_BITS_ALL 0xffu typedef uint8_t vm_page_bits_t; #elif PAGE_SIZE == 8192 #define VM_PAGE_BITS_ALL 0xffffu typedef uint16_t vm_page_bits_t; #elif PAGE_SIZE == 16384 #define VM_PAGE_BITS_ALL 0xffffffffu typedef uint32_t vm_page_bits_t; #elif PAGE_SIZE == 32768 #define VM_PAGE_BITS_ALL 0xfffffffffffffffflu typedef uint64_t vm_page_bits_t; #endif typedef union vm_page_astate { struct { uint16_t flags; uint8_t queue; uint8_t act_count; }; uint32_t _bits; } vm_page_astate_t; struct vm_page { union { TAILQ_ENTRY(vm_page) q; /* page queue or free list (Q) */ struct { SLIST_ENTRY(vm_page) ss; /* private slists */ } s; struct { u_long p; u_long v; } memguard; struct { void *slab; void *zone; } uma; } plinks; TAILQ_ENTRY(vm_page) listq; /* pages in same object (O) */ vm_object_t object; /* which object am I in (O) */ vm_pindex_t pindex; /* offset into object (O,P) */ vm_paddr_t phys_addr; /* physical address of page (C) */ struct md_page md; /* machine dependent stuff */ u_int ref_count; /* page references (A) */ u_int busy_lock; /* busy owners lock (A) */ union vm_page_astate a; /* state accessed atomically (A) */ uint8_t order; /* index of the buddy queue (F) */ uint8_t pool; /* vm_phys freepool index (F) */ uint8_t flags; /* page PG_* flags (P) */ uint8_t oflags; /* page VPO_* flags (O) */ int8_t psind; /* pagesizes[] index (O) */ int8_t segind; /* vm_phys segment index (C) */ /* NOTE that these must support one bit per DEV_BSIZE in a page */ /* so, on normal X86 kernels, they must be at least 8 bits wide */ vm_page_bits_t valid; /* valid DEV_BSIZE chunk map (O,B) */ vm_page_bits_t dirty; /* dirty DEV_BSIZE chunk map (M,B) */ }; /* * Special bits used in the ref_count field. * * ref_count is normally used to count wirings that prevent the page from being * reclaimed, but also supports several special types of references that do not * prevent reclamation. Accesses to the ref_count field must be atomic unless * the page is unallocated. * * VPRC_OBJREF is the reference held by the containing object. It can set or * cleared only when the corresponding object's write lock is held. * * VPRC_BLOCKED is used to atomically block wirings via pmap lookups while * attempting to tear down all mappings of a given page. The page busy lock and * object write lock must both be held in order to set or clear this bit. */ #define VPRC_BLOCKED 0x40000000u /* mappings are being removed */ #define VPRC_OBJREF 0x80000000u /* object reference, cleared with (O) */ #define VPRC_WIRE_COUNT(c) ((c) & ~(VPRC_BLOCKED | VPRC_OBJREF)) #define VPRC_WIRE_COUNT_MAX (~(VPRC_BLOCKED | VPRC_OBJREF)) /* * Page flags stored in oflags: * * Access to these page flags is synchronized by the lock on the object * containing the page (O). * * Note: VPO_UNMANAGED (used by OBJT_DEVICE, OBJT_PHYS and OBJT_SG) * indicates that the page is not under PV management but * otherwise should be treated as a normal page. Pages not * under PV management cannot be paged out via the * object/vm_page_t because there is no knowledge of their pte * mappings, and such pages are also not on any PQ queue. * */ #define VPO_KMEM_EXEC 0x01 /* kmem mapping allows execution */ #define VPO_SWAPSLEEP 0x02 /* waiting for swap to finish */ #define VPO_UNMANAGED 0x04 /* no PV management for page */ #define VPO_SWAPINPROG 0x08 /* swap I/O in progress on page */ /* * Busy page implementation details. * The algorithm is taken mostly by rwlock(9) and sx(9) locks implementation, * even if the support for owner identity is removed because of size * constraints. Checks on lock recursion are then not possible, while the * lock assertions effectiveness is someway reduced. */ #define VPB_BIT_SHARED 0x01 #define VPB_BIT_EXCLUSIVE 0x02 #define VPB_BIT_WAITERS 0x04 #define VPB_BIT_FLAGMASK \ (VPB_BIT_SHARED | VPB_BIT_EXCLUSIVE | VPB_BIT_WAITERS) #define VPB_SHARERS_SHIFT 3 #define VPB_SHARERS(x) \ (((x) & ~VPB_BIT_FLAGMASK) >> VPB_SHARERS_SHIFT) #define VPB_SHARERS_WORD(x) ((x) << VPB_SHARERS_SHIFT | VPB_BIT_SHARED) #define VPB_ONE_SHARER (1 << VPB_SHARERS_SHIFT) #define VPB_SINGLE_EXCLUSIVE VPB_BIT_EXCLUSIVE #ifdef INVARIANTS #define VPB_CURTHREAD_EXCLUSIVE \ (VPB_BIT_EXCLUSIVE | ((u_int)(uintptr_t)curthread & ~VPB_BIT_FLAGMASK)) #else #define VPB_CURTHREAD_EXCLUSIVE VPB_SINGLE_EXCLUSIVE #endif #define VPB_UNBUSIED VPB_SHARERS_WORD(0) /* Freed lock blocks both shared and exclusive. */ #define VPB_FREED (0xffffffff - VPB_BIT_SHARED) #define PQ_NONE 255 #define PQ_INACTIVE 0 #define PQ_ACTIVE 1 #define PQ_LAUNDRY 2 #define PQ_UNSWAPPABLE 3 #define PQ_COUNT 4 #ifndef VM_PAGE_HAVE_PGLIST TAILQ_HEAD(pglist, vm_page); #define VM_PAGE_HAVE_PGLIST #endif SLIST_HEAD(spglist, vm_page); #ifdef _KERNEL extern vm_page_t bogus_page; #endif /* _KERNEL */ extern struct mtx_padalign pa_lock[]; #if defined(__arm__) #define PDRSHIFT PDR_SHIFT #elif !defined(PDRSHIFT) #define PDRSHIFT 21 #endif #define pa_index(pa) ((pa) >> PDRSHIFT) #define PA_LOCKPTR(pa) ((struct mtx *)(&pa_lock[pa_index(pa) % PA_LOCK_COUNT])) #define PA_LOCKOBJPTR(pa) ((struct lock_object *)PA_LOCKPTR((pa))) #define PA_LOCK(pa) mtx_lock(PA_LOCKPTR(pa)) #define PA_TRYLOCK(pa) mtx_trylock(PA_LOCKPTR(pa)) #define PA_UNLOCK(pa) mtx_unlock(PA_LOCKPTR(pa)) #define PA_UNLOCK_COND(pa) \ do { \ if ((pa) != 0) { \ PA_UNLOCK((pa)); \ (pa) = 0; \ } \ } while (0) #define PA_LOCK_ASSERT(pa, a) mtx_assert(PA_LOCKPTR(pa), (a)) #if defined(KLD_MODULE) && !defined(KLD_TIED) #define vm_page_lock(m) vm_page_lock_KBI((m), LOCK_FILE, LOCK_LINE) #define vm_page_unlock(m) vm_page_unlock_KBI((m), LOCK_FILE, LOCK_LINE) #define vm_page_trylock(m) vm_page_trylock_KBI((m), LOCK_FILE, LOCK_LINE) #else /* !KLD_MODULE */ #define vm_page_lockptr(m) (PA_LOCKPTR(VM_PAGE_TO_PHYS((m)))) #define vm_page_lock(m) mtx_lock(vm_page_lockptr((m))) #define vm_page_unlock(m) mtx_unlock(vm_page_lockptr((m))) #define vm_page_trylock(m) mtx_trylock(vm_page_lockptr((m))) #endif #if defined(INVARIANTS) #define vm_page_assert_locked(m) \ vm_page_assert_locked_KBI((m), __FILE__, __LINE__) #define vm_page_lock_assert(m, a) \ vm_page_lock_assert_KBI((m), (a), __FILE__, __LINE__) #else #define vm_page_assert_locked(m) #define vm_page_lock_assert(m, a) #endif /* * The vm_page's aflags are updated using atomic operations. To set or clear * these flags, the functions vm_page_aflag_set() and vm_page_aflag_clear() * must be used. Neither these flags nor these functions are part of the KBI. * * PGA_REFERENCED may be cleared only if the page is locked. It is set by * both the MI and MD VM layers. However, kernel loadable modules should not * directly set this flag. They should call vm_page_reference() instead. * * PGA_WRITEABLE is set exclusively on managed pages by pmap_enter(). * When it does so, the object must be locked, or the page must be * exclusive busied. The MI VM layer must never access this flag * directly. Instead, it should call pmap_page_is_write_mapped(). * * PGA_EXECUTABLE may be set by pmap routines, and indicates that a page has * at least one executable mapping. It is not consumed by the MI VM layer. * * PGA_NOSYNC must be set and cleared with the page busy lock held. * * PGA_ENQUEUED is set and cleared when a page is inserted into or removed * from a page queue, respectively. It determines whether the plinks.q field * of the page is valid. To set or clear this flag, page's "queue" field must * be a valid queue index, and the corresponding page queue lock must be held. * * PGA_DEQUEUE is set when the page is scheduled to be dequeued from a page * queue, and cleared when the dequeue request is processed. A page may * have PGA_DEQUEUE set and PGA_ENQUEUED cleared, for instance if a dequeue * is requested after the page is scheduled to be enqueued but before it is * actually inserted into the page queue. * * PGA_REQUEUE is set when the page is scheduled to be enqueued or requeued * in its page queue. * * PGA_REQUEUE_HEAD is a special flag for enqueuing pages near the head of * the inactive queue, thus bypassing LRU. * * The PGA_DEQUEUE, PGA_REQUEUE and PGA_REQUEUE_HEAD flags must be set using an * atomic RMW operation to ensure that the "queue" field is a valid queue index, * and the corresponding page queue lock must be held when clearing any of the * flags. * * PGA_SWAP_FREE is used to defer freeing swap space to the pageout daemon * when the context that dirties the page does not have the object write lock * held. */ #define PGA_WRITEABLE 0x0001 /* page may be mapped writeable */ #define PGA_REFERENCED 0x0002 /* page has been referenced */ #define PGA_EXECUTABLE 0x0004 /* page may be mapped executable */ #define PGA_ENQUEUED 0x0008 /* page is enqueued in a page queue */ #define PGA_DEQUEUE 0x0010 /* page is due to be dequeued */ #define PGA_REQUEUE 0x0020 /* page is due to be requeued */ #define PGA_REQUEUE_HEAD 0x0040 /* page requeue should bypass LRU */ #define PGA_NOSYNC 0x0080 /* do not collect for syncer */ #define PGA_SWAP_FREE 0x0100 /* page with swap space was dirtied */ #define PGA_SWAP_SPACE 0x0200 /* page has allocated swap space */ #define PGA_QUEUE_OP_MASK (PGA_DEQUEUE | PGA_REQUEUE | PGA_REQUEUE_HEAD) #define PGA_QUEUE_STATE_MASK (PGA_ENQUEUED | PGA_QUEUE_OP_MASK) /* * Page flags. Updates to these flags are not synchronized, and thus they must * be set during page allocation or free to avoid races. * * The PG_PCPU_CACHE flag is set at allocation time if the page was * allocated from a per-CPU cache. It is cleared the next time that the * page is allocated from the physical memory allocator. */ #define PG_PCPU_CACHE 0x01 /* was allocated from per-CPU caches */ #define PG_FICTITIOUS 0x02 /* physical page doesn't exist */ #define PG_ZERO 0x04 /* page is zeroed */ #define PG_MARKER 0x08 /* special queue marker page */ #define PG_NODUMP 0x10 /* don't include this page in a dump */ #define PG_NOFREE 0x20 /* page should never be freed. */ /* * Misc constants. */ #define ACT_DECLINE 1 #define ACT_ADVANCE 3 #define ACT_INIT 5 #define ACT_MAX 64 #ifdef _KERNEL #include #include struct pctrie_iter; /* * Each pageable resident page falls into one of five lists: * * free * Available for allocation now. * * inactive * Low activity, candidates for reclamation. * This list is approximately LRU ordered. * * laundry * This is the list of pages that should be * paged out next. * * unswappable * Dirty anonymous pages that cannot be paged * out because no swap device is configured. * * active * Pages that are "active", i.e., they have been * recently referenced. * */ extern vm_page_t vm_page_array; /* First resident page in table */ extern long vm_page_array_size; /* number of vm_page_t's */ extern long first_page; /* first physical page number */ #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) /* * PHYS_TO_VM_PAGE() returns the vm_page_t object that represents a memory * page to which the given physical address belongs. The correct vm_page_t * object is returned for addresses that are not page-aligned. */ vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa); /* * Page allocation parameters for vm_page for the functions * vm_page_alloc(), vm_page_grab(), vm_page_alloc_contig() and * vm_page_alloc_freelist(). Some functions support only a subset * of the flags, and ignore others, see the flags legend. * * The meaning of VM_ALLOC_ZERO differs slightly between the vm_page_alloc*() * and the vm_page_grab*() functions. See these functions for details. * * Bits 0 - 1 define class. * Bits 2 - 15 dedicated for flags. * Legend: * (a) - vm_page_alloc() supports the flag. * (c) - vm_page_alloc_contig() supports the flag. * (g) - vm_page_grab() supports the flag. * (n) - vm_page_alloc_noobj() and vm_page_alloc_freelist() support the flag. * (p) - vm_page_grab_pages() supports the flag. * Bits above 15 define the count of additional pages that the caller * intends to allocate. */ #define VM_ALLOC_NORMAL 0 #define VM_ALLOC_INTERRUPT 1 #define VM_ALLOC_SYSTEM 2 #define VM_ALLOC_CLASS_MASK 3 #define VM_ALLOC_WAITOK 0x0008 /* (acn) Sleep and retry */ #define VM_ALLOC_WAITFAIL 0x0010 /* (acn) Sleep and return error */ #define VM_ALLOC_WIRED 0x0020 /* (acgnp) Allocate a wired page */ #define VM_ALLOC_ZERO 0x0040 /* (acgnp) Allocate a zeroed page */ #define VM_ALLOC_NORECLAIM 0x0080 /* (c) Do not reclaim after failure */ #define VM_ALLOC_NOFREE 0x0100 /* (an) Page will never be released */ #define VM_ALLOC_NOBUSY 0x0200 /* (acgp) Do not excl busy the page */ #define VM_ALLOC_NOCREAT 0x0400 /* (gp) Don't create a page */ #define VM_ALLOC_AVAIL1 0x0800 #define VM_ALLOC_IGN_SBUSY 0x1000 /* (gp) Ignore shared busy flag */ #define VM_ALLOC_NODUMP 0x2000 /* (ag) don't include in dump */ #define VM_ALLOC_SBUSY 0x4000 /* (acgp) Shared busy the page */ #define VM_ALLOC_NOWAIT 0x8000 /* (acgnp) Do not sleep */ #define VM_ALLOC_COUNT_MAX 0xffff #define VM_ALLOC_COUNT_SHIFT 16 #define VM_ALLOC_COUNT_MASK (VM_ALLOC_COUNT(VM_ALLOC_COUNT_MAX)) #define VM_ALLOC_COUNT(count) ({ \ KASSERT((count) <= VM_ALLOC_COUNT_MAX, \ ("%s: invalid VM_ALLOC_COUNT value", __func__)); \ (count) << VM_ALLOC_COUNT_SHIFT; \ }) #ifdef M_NOWAIT static inline int malloc2vm_flags(int malloc_flags) { int pflags; KASSERT((malloc_flags & M_USE_RESERVE) == 0 || (malloc_flags & M_NOWAIT) != 0, ("M_USE_RESERVE requires M_NOWAIT")); pflags = (malloc_flags & M_USE_RESERVE) != 0 ? VM_ALLOC_INTERRUPT : VM_ALLOC_SYSTEM; if ((malloc_flags & M_ZERO) != 0) pflags |= VM_ALLOC_ZERO; if ((malloc_flags & M_NODUMP) != 0) pflags |= VM_ALLOC_NODUMP; if ((malloc_flags & M_NOWAIT)) pflags |= VM_ALLOC_NOWAIT; if ((malloc_flags & M_WAITOK)) pflags |= VM_ALLOC_WAITOK; if ((malloc_flags & M_NORECLAIM)) pflags |= VM_ALLOC_NORECLAIM; if ((malloc_flags & M_NEVERFREED)) pflags |= VM_ALLOC_NOFREE; return (pflags); } #endif /* * Predicates supported by vm_page_ps_test(): * * PS_ALL_DIRTY is true only if the entire (super)page is dirty. * However, it can be spuriously false when the (super)page has become * dirty in the pmap but that information has not been propagated to the * machine-independent layer. */ #define PS_ALL_DIRTY 0x1 #define PS_ALL_VALID 0x2 #define PS_NONE_BUSY 0x4 bool vm_page_busy_acquire(vm_page_t m, int allocflags); void vm_page_busy_downgrade(vm_page_t m); int vm_page_busy_tryupgrade(vm_page_t m); bool vm_page_busy_sleep(vm_page_t m, const char *msg, int allocflags); void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, const char *wmesg, int allocflags); void vm_page_free(vm_page_t m); void vm_page_free_zero(vm_page_t m); void vm_page_activate (vm_page_t); void vm_page_advise(vm_page_t m, int advice); vm_page_t vm_page_mpred(vm_object_t, vm_pindex_t); vm_page_t vm_page_alloc(vm_object_t, vm_pindex_t, int); vm_page_t vm_page_alloc_domain_after(vm_object_t, vm_pindex_t, int, int, vm_page_t); vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr); vm_page_t vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr); vm_page_t vm_page_alloc_noobj(int); vm_page_t vm_page_alloc_noobj_domain(int, int); vm_page_t vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr); vm_page_t vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr); void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set); bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose); vm_page_t vm_page_grab(vm_object_t, vm_pindex_t, int); vm_page_t vm_page_grab_unlocked(vm_object_t, vm_pindex_t, int); int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, vm_page_t *ma, int count); int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags, vm_page_t *ma, int count); int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags); int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags); void vm_page_deactivate(vm_page_t); void vm_page_deactivate_noreuse(vm_page_t); void vm_page_dequeue(vm_page_t m); void vm_page_dequeue_deferred(vm_page_t m); vm_page_t vm_page_find_least(vm_object_t, vm_pindex_t); vm_page_t vm_page_iter_lookup_ge(struct pctrie_iter *, vm_pindex_t); void vm_page_free_invalid(vm_page_t); vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr); void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags); void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool); int vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t); void vm_page_invalid(vm_page_t m); void vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m); void vm_page_iter_init(struct pctrie_iter *, vm_object_t); void vm_page_iter_limit_init(struct pctrie_iter *, vm_object_t, vm_pindex_t); vm_page_t vm_page_iter_lookup(struct pctrie_iter *, vm_pindex_t); bool vm_page_iter_remove(struct pctrie_iter *pages); bool vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex); void vm_page_launder(vm_page_t m); vm_page_t vm_page_lookup(vm_object_t, vm_pindex_t); vm_page_t vm_page_lookup_unlocked(vm_object_t, vm_pindex_t); vm_page_t vm_page_next(vm_page_t m); void vm_page_pqbatch_drain(void); void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue); bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new); vm_page_t vm_page_prev(vm_page_t m); bool vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m); void vm_page_putfake(vm_page_t m); void vm_page_readahead_finish(vm_page_t m); int vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary); int vm_page_reclaim_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary); int vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, int desired_runs); void vm_page_reference(vm_page_t m); #define VPR_TRYFREE 0x01 #define VPR_NOREUSE 0x02 void vm_page_release(vm_page_t m, int flags); void vm_page_release_locked(vm_page_t m, int flags); vm_page_t vm_page_relookup(vm_object_t, vm_pindex_t); bool vm_page_remove(vm_page_t); bool vm_page_remove_xbusy(vm_page_t); void vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, vm_page_t mold); int vm_page_sbusied(vm_page_t m); vm_page_bits_t vm_page_set_dirty(vm_page_t m); void vm_page_set_valid_range(vm_page_t m, int base, int size); vm_offset_t vm_page_startup(vm_offset_t vaddr); void vm_page_sunbusy(vm_page_t m); bool vm_page_try_remove_all(vm_page_t m); bool vm_page_try_remove_write(vm_page_t m); int vm_page_trysbusy(vm_page_t m); int vm_page_tryxbusy(vm_page_t m); void vm_page_unhold_pages(vm_page_t *ma, int count); void vm_page_unswappable(vm_page_t m); void vm_page_unwire(vm_page_t m, uint8_t queue); bool vm_page_unwire_noq(vm_page_t m); void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr); void vm_page_wire(vm_page_t); bool vm_page_wire_mapped(vm_page_t m); void vm_page_xunbusy_hard(vm_page_t m); void vm_page_xunbusy_hard_unchecked(vm_page_t m); void vm_page_set_validclean (vm_page_t, int, int); void vm_page_clear_dirty(vm_page_t, int, int); void vm_page_set_invalid(vm_page_t, int, int); void vm_page_valid(vm_page_t m); int vm_page_is_valid(vm_page_t, int, int); void vm_page_test_dirty(vm_page_t); vm_page_bits_t vm_page_bits(int base, int size); void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid); int vm_page_free_pages_toq(struct spglist *free, bool update_wire_count); void vm_page_dirty_KBI(vm_page_t m); void vm_page_lock_KBI(vm_page_t m, const char *file, int line); void vm_page_unlock_KBI(vm_page_t m, const char *file, int line); int vm_page_trylock_KBI(vm_page_t m, const char *file, int line); #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line); void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line); #endif #define vm_page_busy_fetch(m) atomic_load_int(&(m)->busy_lock) #define vm_page_assert_busied(m) \ KASSERT(vm_page_busied(m), \ ("vm_page_assert_busied: page %p not busy @ %s:%d", \ (m), __FILE__, __LINE__)) #define vm_page_assert_sbusied(m) \ KASSERT(vm_page_sbusied(m), \ ("vm_page_assert_sbusied: page %p not shared busy @ %s:%d", \ (m), __FILE__, __LINE__)) #define vm_page_assert_unbusied(m) \ KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) != \ VPB_CURTHREAD_EXCLUSIVE, \ ("vm_page_assert_unbusied: page %p busy_lock %#x owned" \ " by me (%p) @ %s:%d", \ (m), (m)->busy_lock, curthread, __FILE__, __LINE__)); \ #define vm_page_assert_xbusied_unchecked(m) do { \ KASSERT(vm_page_xbusied(m), \ ("vm_page_assert_xbusied: page %p not exclusive busy @ %s:%d", \ (m), __FILE__, __LINE__)); \ } while (0) #define vm_page_assert_xbusied(m) do { \ vm_page_assert_xbusied_unchecked(m); \ KASSERT((vm_page_busy_fetch(m) & ~VPB_BIT_WAITERS) == \ VPB_CURTHREAD_EXCLUSIVE, \ ("vm_page_assert_xbusied: page %p busy_lock %#x not owned" \ " by me (%p) @ %s:%d", \ (m), (m)->busy_lock, curthread, __FILE__, __LINE__)); \ } while (0) #define vm_page_busied(m) \ (vm_page_busy_fetch(m) != VPB_UNBUSIED) #define vm_page_xbusied(m) \ ((vm_page_busy_fetch(m) & VPB_SINGLE_EXCLUSIVE) != 0) #define vm_page_busy_freed(m) \ (vm_page_busy_fetch(m) == VPB_FREED) /* Note: page m's lock must not be owned by the caller. */ #define vm_page_xunbusy(m) do { \ if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \ vm_page_xunbusy_hard(m); \ } while (0) #define vm_page_xunbusy_unchecked(m) do { \ if (!atomic_cmpset_rel_int(&(m)->busy_lock, \ VPB_CURTHREAD_EXCLUSIVE, VPB_UNBUSIED)) \ vm_page_xunbusy_hard_unchecked(m); \ } while (0) #ifdef INVARIANTS void vm_page_object_busy_assert(vm_page_t m); #define VM_PAGE_OBJECT_BUSY_ASSERT(m) vm_page_object_busy_assert(m) void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits); #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) \ vm_page_assert_pga_writeable(m, bits) /* * Claim ownership of a page's xbusy state. In non-INVARIANTS kernels this * operation is a no-op since ownership is not tracked. In particular * this macro does not provide any synchronization with the previous owner. */ #define vm_page_xbusy_claim(m) do { \ u_int _busy_lock; \ \ vm_page_assert_xbusied_unchecked((m)); \ do { \ _busy_lock = vm_page_busy_fetch(m); \ } while (!atomic_cmpset_int(&(m)->busy_lock, _busy_lock, \ (_busy_lock & VPB_BIT_FLAGMASK) | VPB_CURTHREAD_EXCLUSIVE)); \ } while (0) #else #define VM_PAGE_OBJECT_BUSY_ASSERT(m) (void)0 #define VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits) (void)0 #define vm_page_xbusy_claim(m) #endif #if BYTE_ORDER == BIG_ENDIAN #define VM_PAGE_AFLAG_SHIFT 16 #else #define VM_PAGE_AFLAG_SHIFT 0 #endif /* * Load a snapshot of a page's 32-bit atomic state. */ static inline vm_page_astate_t vm_page_astate_load(vm_page_t m) { vm_page_astate_t a; a._bits = atomic_load_32(&m->a._bits); return (a); } /* * Atomically compare and set a page's atomic state. */ static inline bool vm_page_astate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) { KASSERT(new.queue == PQ_INACTIVE || (new.flags & PGA_REQUEUE_HEAD) == 0, ("%s: invalid head requeue request for page %p", __func__, m)); KASSERT((new.flags & PGA_ENQUEUED) == 0 || new.queue != PQ_NONE, ("%s: setting PGA_ENQUEUED with PQ_NONE in page %p", __func__, m)); KASSERT(new._bits != old->_bits, ("%s: bits are unchanged", __func__)); return (atomic_fcmpset_32(&m->a._bits, &old->_bits, new._bits) != 0); } /* * Clear the given bits in the specified page. */ static inline void vm_page_aflag_clear(vm_page_t m, uint16_t bits) { uint32_t *addr, val; /* * Access the whole 32-bit word containing the aflags field with an * atomic update. Parallel non-atomic updates to the other fields * within this word are handled properly by the atomic update. */ addr = (void *)&m->a; val = bits << VM_PAGE_AFLAG_SHIFT; atomic_clear_32(addr, val); } /* * Set the given bits in the specified page. */ static inline void vm_page_aflag_set(vm_page_t m, uint16_t bits) { uint32_t *addr, val; VM_PAGE_ASSERT_PGA_WRITEABLE(m, bits); /* * Access the whole 32-bit word containing the aflags field with an * atomic update. Parallel non-atomic updates to the other fields * within this word are handled properly by the atomic update. */ addr = (void *)&m->a; val = bits << VM_PAGE_AFLAG_SHIFT; atomic_set_32(addr, val); } /* * vm_page_dirty: * * Set all bits in the page's dirty field. * * The object containing the specified page must be locked if the * call is made from the machine-independent layer. * * See vm_page_clear_dirty_mask(). */ static __inline void vm_page_dirty(vm_page_t m) { /* Use vm_page_dirty_KBI() under INVARIANTS to save memory. */ #if (defined(KLD_MODULE) && !defined(KLD_TIED)) || defined(INVARIANTS) vm_page_dirty_KBI(m); #else m->dirty = VM_PAGE_BITS_ALL; #endif } /* * vm_page_undirty: * * Set page to not be dirty. Note: does not clear pmap modify bits */ static __inline void vm_page_undirty(vm_page_t m) { VM_PAGE_OBJECT_BUSY_ASSERT(m); m->dirty = 0; } static inline uint8_t _vm_page_queue(vm_page_astate_t as) { if ((as.flags & PGA_DEQUEUE) != 0) return (PQ_NONE); return (as.queue); } /* * vm_page_queue: * * Return the index of the queue containing m. */ static inline uint8_t vm_page_queue(vm_page_t m) { return (_vm_page_queue(vm_page_astate_load(m))); } static inline bool vm_page_active(vm_page_t m) { return (vm_page_queue(m) == PQ_ACTIVE); } static inline bool vm_page_inactive(vm_page_t m) { return (vm_page_queue(m) == PQ_INACTIVE); } static inline bool vm_page_in_laundry(vm_page_t m) { uint8_t queue; queue = vm_page_queue(m); return (queue == PQ_LAUNDRY || queue == PQ_UNSWAPPABLE); } static inline void vm_page_clearref(vm_page_t m) { u_int r; r = m->ref_count; while (atomic_fcmpset_int(&m->ref_count, &r, r & (VPRC_BLOCKED | VPRC_OBJREF)) == 0) ; } /* * vm_page_drop: * * Release a reference to a page and return the old reference count. */ static inline u_int vm_page_drop(vm_page_t m, u_int val) { u_int old; /* * Synchronize with vm_page_free_prep(): ensure that all updates to the * page structure are visible before it is freed. */ atomic_thread_fence_rel(); old = atomic_fetchadd_int(&m->ref_count, -val); KASSERT(old != VPRC_BLOCKED, ("vm_page_drop: page %p has an invalid refcount value", m)); return (old); } /* * vm_page_wired: * * Perform a racy check to determine whether a reference prevents the page * from being reclaimable. If the page's object is locked, and the page is * unmapped and exclusively busied by the current thread, no new wirings * may be created. */ static inline bool vm_page_wired(vm_page_t m) { return (VPRC_WIRE_COUNT(m->ref_count) > 0); } static inline bool vm_page_all_valid(vm_page_t m) { return (m->valid == VM_PAGE_BITS_ALL); } static inline bool vm_page_any_valid(vm_page_t m) { return (m->valid != 0); } static inline bool vm_page_none_valid(vm_page_t m) { return (m->valid == 0); } static inline int vm_page_domain(vm_page_t m __numa_used) { #ifdef NUMA int domn, segind; segind = m->segind; KASSERT(segind < vm_phys_nsegs, ("segind %d m %p", segind, m)); domn = vm_phys_segs[segind].domain; KASSERT(domn >= 0 && domn < vm_ndomains, ("domain %d m %p", domn, m)); return (domn); #else return (0); #endif } #endif /* _KERNEL */ #endif /* !_VM_PAGE_ */