/*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 */ /*- * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Resident memory management module. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct vm_domain vm_dom[MAXMEMDOM]; DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]); struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT]; struct mtx_padalign __exclusive_cache_line vm_domainset_lock; /* The following fields are protected by the domainset lock. */ domainset_t __exclusive_cache_line vm_min_domains; domainset_t __exclusive_cache_line vm_severe_domains; static int vm_min_waiters; static int vm_severe_waiters; static int vm_pageproc_waiters; static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "VM page statistics"); static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries); SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries, CTLFLAG_RD, &pqstate_commit_retries, "Number of failed per-page atomic queue state updates"); static COUNTER_U64_DEFINE_EARLY(queue_ops); SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops, CTLFLAG_RD, &queue_ops, "Number of batched queue operations"); static COUNTER_U64_DEFINE_EARLY(queue_nops); SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops, CTLFLAG_RD, &queue_nops, "Number of batched queue operations with no effects"); /* * bogus page -- for I/O to/from partially complete buffers, * or for paging into sparsely invalid regions. */ vm_page_t bogus_page; vm_page_t vm_page_array; long vm_page_array_size; long first_page; struct bitset *vm_page_dump; long vm_page_dump_pages; static TAILQ_HEAD(, vm_page) blacklist_head; static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); static uma_zone_t fakepg_zone; static void vm_page_alloc_check(vm_page_t m); static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked); static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); static void vm_page_enqueue(vm_page_t m, uint8_t queue); static bool vm_page_free_prep(vm_page_t m); static void vm_page_free_toq(vm_page_t m); static void vm_page_init(void *dummy); static int vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, vm_page_t mpred); static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred); static void vm_page_mvqueue(vm_page_t m, const uint8_t queue, const uint16_t nflag); static int vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, vm_paddr_t high); static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse); static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req); static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags); static void vm_page_zone_release(void *arg, void **store, int cnt); SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL); static void vm_page_init(void *dummy) { fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED); } /* * The cache page zone is initialized later since we need to be able to allocate * pages before UMA is fully initialized. */ static void vm_page_init_cache_zones(void *dummy __unused) { struct vm_domain *vmd; struct vm_pgcache *pgcache; int cache, domain, maxcache, pool; maxcache = 0; TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &maxcache); maxcache *= mp_ncpus; for (domain = 0; domain < vm_ndomains; domain++) { vmd = VM_DOMAIN(domain); for (pool = 0; pool < VM_NFREEPOOL; pool++) { pgcache = &vmd->vmd_pgcache[pool]; pgcache->domain = domain; pgcache->pool = pool; pgcache->zone = uma_zcache_create("vm pgcache", PAGE_SIZE, NULL, NULL, NULL, NULL, vm_page_zone_import, vm_page_zone_release, pgcache, UMA_ZONE_VM); /* * Limit each pool's zone to 0.1% of the pages in the * domain. */ cache = maxcache != 0 ? maxcache : vmd->vmd_page_count / 1000; uma_zone_set_maxcache(pgcache->zone, cache); } } } SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL); /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ #if PAGE_SIZE == 32768 #ifdef CTASSERT CTASSERT(sizeof(u_long) >= 8); #endif #endif /* * vm_set_page_size: * * Sets the page size, perhaps based upon the memory * size. Must be called before any use of page-size * dependent functions. */ void vm_set_page_size(void) { if (vm_cnt.v_page_size == 0) vm_cnt.v_page_size = PAGE_SIZE; if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) panic("vm_set_page_size: page size not a power of two"); } /* * vm_page_blacklist_next: * * Find the next entry in the provided string of blacklist * addresses. Entries are separated by space, comma, or newline. * If an invalid integer is encountered then the rest of the * string is skipped. Updates the list pointer to the next * character, or NULL if the string is exhausted or invalid. */ static vm_paddr_t vm_page_blacklist_next(char **list, char *end) { vm_paddr_t bad; char *cp, *pos; if (list == NULL || *list == NULL) return (0); if (**list =='\0') { *list = NULL; return (0); } /* * If there's no end pointer then the buffer is coming from * the kenv and we know it's null-terminated. */ if (end == NULL) end = *list + strlen(*list); /* Ensure that strtoq() won't walk off the end */ if (*end != '\0') { if (*end == '\n' || *end == ' ' || *end == ',') *end = '\0'; else { printf("Blacklist not terminated, skipping\n"); *list = NULL; return (0); } } for (pos = *list; *pos != '\0'; pos = cp) { bad = strtoq(pos, &cp, 0); if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { if (bad == 0) { if (++cp < end) continue; else break; } } else break; if (*cp == '\0' || ++cp >= end) *list = NULL; else *list = cp; return (trunc_page(bad)); } printf("Garbage in RAM blacklist, skipping\n"); *list = NULL; return (0); } bool vm_page_blacklist_add(vm_paddr_t pa, bool verbose) { struct vm_domain *vmd; vm_page_t m; int ret; m = vm_phys_paddr_to_vm_page(pa); if (m == NULL) return (true); /* page does not exist, no failure */ vmd = vm_pagequeue_domain(m); vm_domain_free_lock(vmd); ret = vm_phys_unfree_page(m); vm_domain_free_unlock(vmd); if (ret != 0) { vm_domain_freecnt_inc(vmd, -1); TAILQ_INSERT_TAIL(&blacklist_head, m, listq); if (verbose) printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); } return (ret); } /* * vm_page_blacklist_check: * * Iterate through the provided string of blacklist addresses, pulling * each entry out of the physical allocator free list and putting it * onto a list for reporting via the vm.page_blacklist sysctl. */ static void vm_page_blacklist_check(char *list, char *end) { vm_paddr_t pa; char *next; next = list; while (next != NULL) { if ((pa = vm_page_blacklist_next(&next, end)) == 0) continue; vm_page_blacklist_add(pa, bootverbose); } } /* * vm_page_blacklist_load: * * Search for a special module named "ram_blacklist". It'll be a * plain text file provided by the user via the loader directive * of the same name. */ static void vm_page_blacklist_load(char **list, char **end) { void *mod; u_char *ptr; u_int len; mod = NULL; ptr = NULL; mod = preload_search_by_type("ram_blacklist"); if (mod != NULL) { ptr = preload_fetch_addr(mod); len = preload_fetch_size(mod); } *list = ptr; if (ptr != NULL) *end = ptr + len; else *end = NULL; return; } static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) { vm_page_t m; struct sbuf sbuf; int error, first; first = 1; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); TAILQ_FOREACH(m, &blacklist_head, listq) { sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", (uintmax_t)m->phys_addr); first = 0; } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } /* * Initialize a dummy page for use in scans of the specified paging queue. * In principle, this function only needs to set the flag PG_MARKER. * Nonetheless, it write busies the page as a safety precaution. */ void vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags) { bzero(marker, sizeof(*marker)); marker->flags = PG_MARKER; marker->a.flags = aflags; marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE; marker->a.queue = queue; } static void vm_page_domain_init(int domain) { struct vm_domain *vmd; struct vm_pagequeue *pq; int i; vmd = VM_DOMAIN(domain); bzero(vmd, sizeof(*vmd)); *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = "vm inactive pagequeue"; *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = "vm active pagequeue"; *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = "vm laundry pagequeue"; *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) = "vm unswappable pagequeue"; vmd->vmd_domain = domain; vmd->vmd_page_count = 0; vmd->vmd_free_count = 0; vmd->vmd_segs = 0; vmd->vmd_oom = FALSE; for (i = 0; i < PQ_COUNT; i++) { pq = &vmd->vmd_pagequeues[i]; TAILQ_INIT(&pq->pq_pl); mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", MTX_DEF | MTX_DUPOK); pq->pq_pdpages = 0; vm_page_init_marker(&vmd->vmd_markers[i], i, 0); } mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF); mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF); snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain); /* * inacthead is used to provide FIFO ordering for LRU-bypassing * insertions. */ vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED); TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl, &vmd->vmd_inacthead, plinks.q); /* * The clock pages are used to implement active queue scanning without * requeues. Scans start at clock[0], which is advanced after the scan * ends. When the two clock hands meet, they are reset and scanning * resumes from the head of the queue. */ vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED); vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED); TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, &vmd->vmd_clock[0], plinks.q); TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl, &vmd->vmd_clock[1], plinks.q); } /* * Initialize a physical page in preparation for adding it to the free * lists. */ void vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind) { m->object = NULL; m->ref_count = 0; m->busy_lock = VPB_FREED; m->flags = m->a.flags = 0; m->phys_addr = pa; m->a.queue = PQ_NONE; m->psind = 0; m->segind = segind; m->order = VM_NFREEORDER; m->pool = VM_FREEPOOL_DEFAULT; m->valid = m->dirty = 0; pmap_page_init(m); } #ifndef PMAP_HAS_PAGE_ARRAY static vm_paddr_t vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range) { vm_paddr_t new_end; /* * Reserve an unmapped guard page to trap access to vm_page_array[-1]. * However, because this page is allocated from KVM, out-of-bounds * accesses using the direct map will not be trapped. */ *vaddr += PAGE_SIZE; /* * Allocate physical memory for the page structures, and map it. */ new_end = trunc_page(end - page_range * sizeof(struct vm_page)); vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); vm_page_array_size = page_range; return (new_end); } #endif /* * vm_page_startup: * * Initializes the resident memory module. Allocates physical memory for * bootstrapping UMA and some data structures that are used to manage * physical pages. Initializes these structures, and populates the free * page queues. */ vm_offset_t vm_page_startup(vm_offset_t vaddr) { struct vm_phys_seg *seg; vm_page_t m; char *list, *listend; vm_paddr_t end, high_avail, low_avail, new_end, size; vm_paddr_t page_range __unused; vm_paddr_t last_pa, pa; u_long pagecount; #if MINIDUMP_PAGE_TRACKING u_long vm_page_dump_size; #endif int biggestone, i, segind; #ifdef WITNESS vm_offset_t mapped; int witness_size; #endif #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) long ii; #endif vaddr = round_page(vaddr); vm_phys_early_startup(); biggestone = vm_phys_avail_largest(); end = phys_avail[biggestone+1]; /* * Initialize the page and queue locks. */ mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF); for (i = 0; i < PA_LOCK_COUNT; i++) mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); for (i = 0; i < vm_ndomains; i++) vm_page_domain_init(i); new_end = end; #ifdef WITNESS witness_size = round_page(witness_startup_count()); new_end -= witness_size; mapped = pmap_map(&vaddr, new_end, new_end + witness_size, VM_PROT_READ | VM_PROT_WRITE); bzero((void *)mapped, witness_size); witness_startup((void *)mapped); #endif #if MINIDUMP_PAGE_TRACKING /* * Allocate a bitmap to indicate that a random physical page * needs to be included in a minidump. * * The amd64 port needs this to indicate which direct map pages * need to be dumped, via calls to dump_add_page()/dump_drop_page(). * * However, i386 still needs this workspace internally within the * minidump code. In theory, they are not needed on i386, but are * included should the sf_buf code decide to use them. */ last_pa = 0; vm_page_dump_pages = 0; for (i = 0; dump_avail[i + 1] != 0; i += 2) { vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) - dump_avail[i] / PAGE_SIZE; if (dump_avail[i + 1] > last_pa) last_pa = dump_avail[i + 1]; } vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages)); new_end -= vm_page_dump_size; vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); bzero((void *)vm_page_dump, vm_page_dump_size); #else (void)last_pa; #endif #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ defined(__riscv) || defined(__powerpc64__) /* * Include the UMA bootstrap pages, witness pages and vm_page_dump * in a crash dump. When pmap_map() uses the direct map, they are * not automatically included. */ for (pa = new_end; pa < end; pa += PAGE_SIZE) dump_add_page(pa); #endif phys_avail[biggestone + 1] = new_end; #ifdef __amd64__ /* * Request that the physical pages underlying the message buffer be * included in a crash dump. Since the message buffer is accessed * through the direct map, they are not automatically included. */ pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); last_pa = pa + round_page(msgbufsize); while (pa < last_pa) { dump_add_page(pa); pa += PAGE_SIZE; } #endif /* * Compute the number of pages of memory that will be available for * use, taking into account the overhead of a page structure per page. * In other words, solve * "available physical memory" - round_page(page_range * * sizeof(struct vm_page)) = page_range * PAGE_SIZE * for page_range. */ low_avail = phys_avail[0]; high_avail = phys_avail[1]; for (i = 0; i < vm_phys_nsegs; i++) { if (vm_phys_segs[i].start < low_avail) low_avail = vm_phys_segs[i].start; if (vm_phys_segs[i].end > high_avail) high_avail = vm_phys_segs[i].end; } /* Skip the first chunk. It is already accounted for. */ for (i = 2; phys_avail[i + 1] != 0; i += 2) { if (phys_avail[i] < low_avail) low_avail = phys_avail[i]; if (phys_avail[i + 1] > high_avail) high_avail = phys_avail[i + 1]; } first_page = low_avail / PAGE_SIZE; #ifdef VM_PHYSSEG_SPARSE size = 0; for (i = 0; i < vm_phys_nsegs; i++) size += vm_phys_segs[i].end - vm_phys_segs[i].start; for (i = 0; phys_avail[i + 1] != 0; i += 2) size += phys_avail[i + 1] - phys_avail[i]; #elif defined(VM_PHYSSEG_DENSE) size = high_avail - low_avail; #else #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." #endif #ifdef PMAP_HAS_PAGE_ARRAY pmap_page_array_startup(size / PAGE_SIZE); biggestone = vm_phys_avail_largest(); end = new_end = phys_avail[biggestone + 1]; #else #ifdef VM_PHYSSEG_DENSE /* * In the VM_PHYSSEG_DENSE case, the number of pages can account for * the overhead of a page structure per page only if vm_page_array is * allocated from the last physical memory chunk. Otherwise, we must * allocate page structures representing the physical memory * underlying vm_page_array, even though they will not be used. */ if (new_end != high_avail) page_range = size / PAGE_SIZE; else #endif { page_range = size / (PAGE_SIZE + sizeof(struct vm_page)); /* * If the partial bytes remaining are large enough for * a page (PAGE_SIZE) without a corresponding * 'struct vm_page', then new_end will contain an * extra page after subtracting the length of the VM * page array. Compensate by subtracting an extra * page from new_end. */ if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) { if (new_end == high_avail) high_avail -= PAGE_SIZE; new_end -= PAGE_SIZE; } } end = new_end; new_end = vm_page_array_alloc(&vaddr, end, page_range); #endif #if VM_NRESERVLEVEL > 0 /* * Allocate physical memory for the reservation management system's * data structures, and map it. */ new_end = vm_reserv_startup(&vaddr, new_end); #endif #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ defined(__riscv) || defined(__powerpc64__) /* * Include vm_page_array and vm_reserv_array in a crash dump. */ for (pa = new_end; pa < end; pa += PAGE_SIZE) dump_add_page(pa); #endif phys_avail[biggestone + 1] = new_end; /* * Add physical memory segments corresponding to the available * physical pages. */ for (i = 0; phys_avail[i + 1] != 0; i += 2) if (vm_phys_avail_size(i) != 0) vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); /* * Initialize the physical memory allocator. */ vm_phys_init(); /* * Initialize the page structures and add every available page to the * physical memory allocator's free lists. */ #if defined(__i386__) && defined(VM_PHYSSEG_DENSE) for (ii = 0; ii < vm_page_array_size; ii++) { m = &vm_page_array[ii]; vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0); m->flags = PG_FICTITIOUS; } #endif vm_cnt.v_page_count = 0; for (segind = 0; segind < vm_phys_nsegs; segind++) { seg = &vm_phys_segs[segind]; for (m = seg->first_page, pa = seg->start; pa < seg->end; m++, pa += PAGE_SIZE) vm_page_init_page(m, pa, segind); /* * Add the segment to the free lists only if it is covered by * one of the ranges in phys_avail. Because we've added the * ranges to the vm_phys_segs array, we can assume that each * segment is either entirely contained in one of the ranges, * or doesn't overlap any of them. */ for (i = 0; phys_avail[i + 1] != 0; i += 2) { struct vm_domain *vmd; if (seg->start < phys_avail[i] || seg->end > phys_avail[i + 1]) continue; m = seg->first_page; pagecount = (u_long)atop(seg->end - seg->start); vmd = VM_DOMAIN(seg->domain); vm_domain_free_lock(vmd); vm_phys_enqueue_contig(m, pagecount); vm_domain_free_unlock(vmd); vm_domain_freecnt_inc(vmd, pagecount); vm_cnt.v_page_count += (u_int)pagecount; vmd = VM_DOMAIN(seg->domain); vmd->vmd_page_count += (u_int)pagecount; vmd->vmd_segs |= 1UL << m->segind; break; } } /* * Remove blacklisted pages from the physical memory allocator. */ TAILQ_INIT(&blacklist_head); vm_page_blacklist_load(&list, &listend); vm_page_blacklist_check(list, listend); list = kern_getenv("vm.blacklist"); vm_page_blacklist_check(list, NULL); freeenv(list); #if VM_NRESERVLEVEL > 0 /* * Initialize the reservation management system. */ vm_reserv_init(); #endif return (vaddr); } void vm_page_reference(vm_page_t m) { vm_page_aflag_set(m, PGA_REFERENCED); } /* * vm_page_trybusy * * Helper routine for grab functions to trylock busy. * * Returns true on success and false on failure. */ static bool vm_page_trybusy(vm_page_t m, int allocflags) { if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0) return (vm_page_trysbusy(m)); else return (vm_page_tryxbusy(m)); } /* * vm_page_tryacquire * * Helper routine for grab functions to trylock busy and wire. * * Returns true on success and false on failure. */ static inline bool vm_page_tryacquire(vm_page_t m, int allocflags) { bool locked; locked = vm_page_trybusy(m, allocflags); if (locked && (allocflags & VM_ALLOC_WIRED) != 0) vm_page_wire(m); return (locked); } /* * vm_page_busy_acquire: * * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop * and drop the object lock if necessary. */ bool vm_page_busy_acquire(vm_page_t m, int allocflags) { vm_object_t obj; bool locked; /* * The page-specific object must be cached because page * identity can change during the sleep, causing the * re-lock of a different object. * It is assumed that a reference to the object is already * held by the callers. */ obj = atomic_load_ptr(&m->object); for (;;) { if (vm_page_tryacquire(m, allocflags)) return (true); if ((allocflags & VM_ALLOC_NOWAIT) != 0) return (false); if (obj != NULL) locked = VM_OBJECT_WOWNED(obj); else locked = false; MPASS(locked || vm_page_wired(m)); if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags, locked) && locked) VM_OBJECT_WLOCK(obj); if ((allocflags & VM_ALLOC_WAITFAIL) != 0) return (false); KASSERT(m->object == obj || m->object == NULL, ("vm_page_busy_acquire: page %p does not belong to %p", m, obj)); } } /* * vm_page_busy_downgrade: * * Downgrade an exclusive busy page into a single shared busy page. */ void vm_page_busy_downgrade(vm_page_t m) { u_int x; vm_page_assert_xbusied(m); x = vm_page_busy_fetch(m); for (;;) { if (atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_SHARERS_WORD(1))) break; } if ((x & VPB_BIT_WAITERS) != 0) wakeup(m); } /* * * vm_page_busy_tryupgrade: * * Attempt to upgrade a single shared busy into an exclusive busy. */ int vm_page_busy_tryupgrade(vm_page_t m) { u_int ce, x; vm_page_assert_sbusied(m); x = vm_page_busy_fetch(m); ce = VPB_CURTHREAD_EXCLUSIVE; for (;;) { if (VPB_SHARERS(x) > 1) return (0); KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), ("vm_page_busy_tryupgrade: invalid lock state")); if (!atomic_fcmpset_acq_int(&m->busy_lock, &x, ce | (x & VPB_BIT_WAITERS))) continue; return (1); } } /* * vm_page_sbusied: * * Return a positive value if the page is shared busied, 0 otherwise. */ int vm_page_sbusied(vm_page_t m) { u_int x; x = vm_page_busy_fetch(m); return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); } /* * vm_page_sunbusy: * * Shared unbusy a page. */ void vm_page_sunbusy(vm_page_t m) { u_int x; vm_page_assert_sbusied(m); x = vm_page_busy_fetch(m); for (;;) { KASSERT(x != VPB_FREED, ("vm_page_sunbusy: Unlocking freed page.")); if (VPB_SHARERS(x) > 1) { if (atomic_fcmpset_int(&m->busy_lock, &x, x - VPB_ONE_SHARER)) break; continue; } KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1), ("vm_page_sunbusy: invalid lock state")); if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) continue; if ((x & VPB_BIT_WAITERS) == 0) break; wakeup(m); break; } } /* * vm_page_busy_sleep: * * Sleep if the page is busy, using the page pointer as wchan. * This is used to implement the hard-path of busying mechanism. * * If nonshared is true, sleep only if the page is xbusy. * * The object lock must be held on entry and will be released on exit. */ void vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) { vm_object_t obj; obj = m->object; VM_OBJECT_ASSERT_LOCKED(obj); vm_page_lock_assert(m, MA_NOTOWNED); if (!_vm_page_busy_sleep(obj, m, m->pindex, wmesg, nonshared ? VM_ALLOC_SBUSY : 0 , true)) VM_OBJECT_DROP(obj); } /* * vm_page_busy_sleep_unlocked: * * Sleep if the page is busy, using the page pointer as wchan. * This is used to implement the hard-path of busying mechanism. * * If nonshared is true, sleep only if the page is xbusy. * * The object lock must not be held on entry. The operation will * return if the page changes identity. */ void vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, const char *wmesg, bool nonshared) { VM_OBJECT_ASSERT_UNLOCKED(obj); vm_page_lock_assert(m, MA_NOTOWNED); _vm_page_busy_sleep(obj, m, pindex, wmesg, nonshared ? VM_ALLOC_SBUSY : 0, false); } /* * _vm_page_busy_sleep: * * Internal busy sleep function. Verifies the page identity and * lockstate against parameters. Returns true if it sleeps and * false otherwise. * * If locked is true the lock will be dropped for any true returns * and held for any false returns. */ static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked) { bool xsleep; u_int x; /* * If the object is busy we must wait for that to drain to zero * before trying the page again. */ if (obj != NULL && vm_object_busied(obj)) { if (locked) VM_OBJECT_DROP(obj); vm_object_busy_wait(obj, wmesg); return (true); } if (!vm_page_busied(m)) return (false); xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0; sleepq_lock(m); x = vm_page_busy_fetch(m); do { /* * If the page changes objects or becomes unlocked we can * simply return. */ if (x == VPB_UNBUSIED || (xsleep && (x & VPB_BIT_SHARED) != 0) || m->object != obj || m->pindex != pindex) { sleepq_release(m); return (false); } if ((x & VPB_BIT_WAITERS) != 0) break; } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS)); if (locked) VM_OBJECT_DROP(obj); DROP_GIANT(); sleepq_add(m, NULL, wmesg, 0, 0); sleepq_wait(m, PVM); PICKUP_GIANT(); return (true); } /* * vm_page_trysbusy: * * Try to shared busy a page. * If the operation succeeds 1 is returned otherwise 0. * The operation never sleeps. */ int vm_page_trysbusy(vm_page_t m) { vm_object_t obj; u_int x; obj = m->object; x = vm_page_busy_fetch(m); for (;;) { if ((x & VPB_BIT_SHARED) == 0) return (0); /* * Reduce the window for transient busies that will trigger * false negatives in vm_page_ps_test(). */ if (obj != NULL && vm_object_busied(obj)) return (0); if (atomic_fcmpset_acq_int(&m->busy_lock, &x, x + VPB_ONE_SHARER)) break; } /* Refetch the object now that we're guaranteed that it is stable. */ obj = m->object; if (obj != NULL && vm_object_busied(obj)) { vm_page_sunbusy(m); return (0); } return (1); } /* * vm_page_tryxbusy: * * Try to exclusive busy a page. * If the operation succeeds 1 is returned otherwise 0. * The operation never sleeps. */ int vm_page_tryxbusy(vm_page_t m) { vm_object_t obj; if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED, VPB_CURTHREAD_EXCLUSIVE) == 0) return (0); obj = m->object; if (obj != NULL && vm_object_busied(obj)) { vm_page_xunbusy(m); return (0); } return (1); } static void vm_page_xunbusy_hard_tail(vm_page_t m) { atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); /* Wake the waiter. */ wakeup(m); } /* * vm_page_xunbusy_hard: * * Called when unbusy has failed because there is a waiter. */ void vm_page_xunbusy_hard(vm_page_t m) { vm_page_assert_xbusied(m); vm_page_xunbusy_hard_tail(m); } void vm_page_xunbusy_hard_unchecked(vm_page_t m) { vm_page_assert_xbusied_unchecked(m); vm_page_xunbusy_hard_tail(m); } static void vm_page_busy_free(vm_page_t m) { u_int x; atomic_thread_fence_rel(); x = atomic_swap_int(&m->busy_lock, VPB_FREED); if ((x & VPB_BIT_WAITERS) != 0) wakeup(m); } /* * vm_page_unhold_pages: * * Unhold each of the pages that is referenced by the given array. */ void vm_page_unhold_pages(vm_page_t *ma, int count) { for (; count != 0; count--) { vm_page_unwire(*ma, PQ_ACTIVE); ma++; } } vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa) { vm_page_t m; #ifdef VM_PHYSSEG_SPARSE m = vm_phys_paddr_to_vm_page(pa); if (m == NULL) m = vm_phys_fictitious_to_vm_page(pa); return (m); #elif defined(VM_PHYSSEG_DENSE) long pi; pi = atop(pa); if (pi >= first_page && (pi - first_page) < vm_page_array_size) { m = &vm_page_array[pi - first_page]; return (m); } return (vm_phys_fictitious_to_vm_page(pa)); #else #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." #endif } /* * vm_page_getfake: * * Create a fictitious page with the specified physical address and * memory attribute. The memory attribute is the only the machine- * dependent aspect of a fictitious page that must be initialized. */ vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) { vm_page_t m; m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); vm_page_initfake(m, paddr, memattr); return (m); } void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) { if ((m->flags & PG_FICTITIOUS) != 0) { /* * The page's memattr might have changed since the * previous initialization. Update the pmap to the * new memattr. */ goto memattr; } m->phys_addr = paddr; m->a.queue = PQ_NONE; /* Fictitious pages don't use "segind". */ m->flags = PG_FICTITIOUS; /* Fictitious pages don't use "order" or "pool". */ m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; /* Fictitious pages are unevictable. */ m->ref_count = 1; pmap_page_init(m); memattr: pmap_page_set_memattr(m, memattr); } /* * vm_page_putfake: * * Release a fictitious page. */ void vm_page_putfake(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); KASSERT((m->flags & PG_FICTITIOUS) != 0, ("vm_page_putfake: bad page %p", m)); vm_page_assert_xbusied(m); vm_page_busy_free(m); uma_zfree(fakepg_zone, m); } /* * vm_page_updatefake: * * Update the given fictitious page to the specified physical address and * memory attribute. */ void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) { KASSERT((m->flags & PG_FICTITIOUS) != 0, ("vm_page_updatefake: bad page %p", m)); m->phys_addr = paddr; pmap_page_set_memattr(m, memattr); } /* * vm_page_free: * * Free a page. */ void vm_page_free(vm_page_t m) { m->flags &= ~PG_ZERO; vm_page_free_toq(m); } /* * vm_page_free_zero: * * Free a page to the zerod-pages queue */ void vm_page_free_zero(vm_page_t m) { m->flags |= PG_ZERO; vm_page_free_toq(m); } /* * Unbusy and handle the page queueing for a page from a getpages request that * was optionally read ahead or behind. */ void vm_page_readahead_finish(vm_page_t m) { /* We shouldn't put invalid pages on queues. */ KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m)); /* * Since the page is not the actually needed one, whether it should * be activated or deactivated is not obvious. Empirical results * have shown that deactivating the page is usually the best choice, * unless the page is wanted by another thread. */ if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0) vm_page_activate(m); else vm_page_deactivate(m); vm_page_xunbusy_unchecked(m); } /* * Destroy the identity of an invalid page and free it if possible. * This is intended to be used when reading a page from backing store fails. */ void vm_page_free_invalid(vm_page_t m) { KASSERT(vm_page_none_valid(m), ("page %p is valid", m)); KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m)); KASSERT(m->object != NULL, ("page %p has no object", m)); VM_OBJECT_ASSERT_WLOCKED(m->object); /* * We may be attempting to free the page as part of the handling for an * I/O error, in which case the page was xbusied by a different thread. */ vm_page_xbusy_claim(m); /* * If someone has wired this page while the object lock * was not held, then the thread that unwires is responsible * for freeing the page. Otherwise just free the page now. * The wire count of this unmapped page cannot change while * we have the page xbusy and the page's object wlocked. */ if (vm_page_remove(m)) vm_page_free(m); } /* * vm_page_sleep_if_busy: * * Sleep and release the object lock if the page is busied. * Returns TRUE if the thread slept. * * The given page must be unlocked and object containing it must * be locked. */ int vm_page_sleep_if_busy(vm_page_t m, const char *wmesg) { vm_object_t obj; vm_page_lock_assert(m, MA_NOTOWNED); VM_OBJECT_ASSERT_WLOCKED(m->object); /* * The page-specific object must be cached because page * identity can change during the sleep, causing the * re-lock of a different object. * It is assumed that a reference to the object is already * held by the callers. */ obj = m->object; if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, 0, true)) { VM_OBJECT_WLOCK(obj); return (TRUE); } return (FALSE); } /* * vm_page_sleep_if_xbusy: * * Sleep and release the object lock if the page is xbusied. * Returns TRUE if the thread slept. * * The given page must be unlocked and object containing it must * be locked. */ int vm_page_sleep_if_xbusy(vm_page_t m, const char *wmesg) { vm_object_t obj; vm_page_lock_assert(m, MA_NOTOWNED); VM_OBJECT_ASSERT_WLOCKED(m->object); /* * The page-specific object must be cached because page * identity can change during the sleep, causing the * re-lock of a different object. * It is assumed that a reference to the object is already * held by the callers. */ obj = m->object; if (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, VM_ALLOC_SBUSY, true)) { VM_OBJECT_WLOCK(obj); return (TRUE); } return (FALSE); } /* * vm_page_dirty_KBI: [ internal use only ] * * Set all bits in the page's dirty field. * * The object containing the specified page must be locked if the * call is made from the machine-independent layer. * * See vm_page_clear_dirty_mask(). * * This function should only be called by vm_page_dirty(). */ void vm_page_dirty_KBI(vm_page_t m) { /* Refer to this operation by its public name. */ KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!")); m->dirty = VM_PAGE_BITS_ALL; } /* * vm_page_insert: [ internal use only ] * * Inserts the given mem entry into the object and object list. * * The object must be locked. */ int vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) { vm_page_t mpred; VM_OBJECT_ASSERT_WLOCKED(object); mpred = vm_radix_lookup_le(&object->rtree, pindex); return (vm_page_insert_after(m, object, pindex, mpred)); } /* * vm_page_insert_after: * * Inserts the page "m" into the specified object at offset "pindex". * * The page "mpred" must immediately precede the offset "pindex" within * the specified object. * * The object must be locked. */ static int vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) { vm_page_t msucc; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(m->object == NULL, ("vm_page_insert_after: page already inserted")); if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_page_insert_after: object doesn't contain mpred")); KASSERT(mpred->pindex < pindex, ("vm_page_insert_after: mpred doesn't precede pindex")); msucc = TAILQ_NEXT(mpred, listq); } else msucc = TAILQ_FIRST(&object->memq); if (msucc != NULL) KASSERT(msucc->pindex > pindex, ("vm_page_insert_after: msucc doesn't succeed pindex")); /* * Record the object/offset pair in this page. */ m->object = object; m->pindex = pindex; m->ref_count |= VPRC_OBJREF; /* * Now link into the object's ordered list of backed pages. */ if (vm_radix_insert(&object->rtree, m)) { m->object = NULL; m->pindex = 0; m->ref_count &= ~VPRC_OBJREF; return (1); } vm_page_insert_radixdone(m, object, mpred); return (0); } /* * vm_page_insert_radixdone: * * Complete page "m" insertion into the specified object after the * radix trie hooking. * * The page "mpred" must precede the offset "m->pindex" within the * specified object. * * The object must be locked. */ static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object != NULL && m->object == object, ("vm_page_insert_radixdone: page %p has inconsistent object", m)); KASSERT((m->ref_count & VPRC_OBJREF) != 0, ("vm_page_insert_radixdone: page %p is missing object ref", m)); if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_page_insert_radixdone: object doesn't contain mpred")); KASSERT(mpred->pindex < m->pindex, ("vm_page_insert_radixdone: mpred doesn't precede pindex")); } if (mpred != NULL) TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); else TAILQ_INSERT_HEAD(&object->memq, m, listq); /* * Show that the object has one more resident page. */ object->resident_page_count++; /* * Hold the vnode until the last page is released. */ if (object->resident_page_count == 1 && object->type == OBJT_VNODE) vhold(object->handle); /* * Since we are inserting a new and possibly dirty page, * update the object's generation count. */ if (pmap_page_is_write_mapped(m)) vm_object_set_writeable_dirty(object); } /* * Do the work to remove a page from its object. The caller is responsible for * updating the page's fields to reflect this removal. */ static void vm_page_object_remove(vm_page_t m) { vm_object_t object; vm_page_t mrem; vm_page_assert_xbusied(m); object = m->object; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((m->ref_count & VPRC_OBJREF) != 0, ("page %p is missing its object ref", m)); /* Deferred free of swap space. */ if ((m->a.flags & PGA_SWAP_FREE) != 0) vm_pager_page_unswapped(m); m->object = NULL; mrem = vm_radix_remove(&object->rtree, m->pindex); KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m)); /* * Now remove from the object's list of backed pages. */ TAILQ_REMOVE(&object->memq, m, listq); /* * And show that the object has one fewer resident page. */ object->resident_page_count--; /* * The vnode may now be recycled. */ if (object->resident_page_count == 0 && object->type == OBJT_VNODE) vdrop(object->handle); } /* * vm_page_remove: * * Removes the specified page from its containing object, but does not * invalidate any backing storage. Returns true if the object's reference * was the last reference to the page, and false otherwise. * * The object must be locked and the page must be exclusively busied. * The exclusive busy will be released on return. If this is not the * final ref and the caller does not hold a wire reference it may not * continue to access the page. */ bool vm_page_remove(vm_page_t m) { bool dropped; dropped = vm_page_remove_xbusy(m); vm_page_xunbusy(m); return (dropped); } /* * vm_page_remove_xbusy * * Removes the page but leaves the xbusy held. Returns true if this * removed the final ref and false otherwise. */ bool vm_page_remove_xbusy(vm_page_t m) { vm_page_object_remove(m); return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF); } /* * vm_page_lookup: * * Returns the page associated with the object/offset * pair specified; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_lookup(vm_object_t object, vm_pindex_t pindex) { VM_OBJECT_ASSERT_LOCKED(object); return (vm_radix_lookup(&object->rtree, pindex)); } /* * vm_page_lookup_unlocked: * * Returns the page associated with the object/offset pair specified; * if none is found, NULL is returned. The page may be no longer be * present in the object at the time that this function returns. Only * useful for opportunistic checks such as inmem(). */ vm_page_t vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex) { return (vm_radix_lookup_unlocked(&object->rtree, pindex)); } /* * vm_page_relookup: * * Returns a page that must already have been busied by * the caller. Used for bogus page replacement. */ vm_page_t vm_page_relookup(vm_object_t object, vm_pindex_t pindex) { vm_page_t m; m = vm_radix_lookup_unlocked(&object->rtree, pindex); KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) && m->object == object && m->pindex == pindex, ("vm_page_relookup: Invalid page %p", m)); return (m); } /* * This should only be used by lockless functions for releasing transient * incorrect acquires. The page may have been freed after we acquired a * busy lock. In this case busy_lock == VPB_FREED and we have nothing * further to do. */ static void vm_page_busy_release(vm_page_t m) { u_int x; x = vm_page_busy_fetch(m); for (;;) { if (x == VPB_FREED) break; if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) { if (atomic_fcmpset_int(&m->busy_lock, &x, x - VPB_ONE_SHARER)) break; continue; } KASSERT((x & VPB_BIT_SHARED) != 0 || (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE, ("vm_page_busy_release: %p xbusy not owned.", m)); if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED)) continue; if ((x & VPB_BIT_WAITERS) != 0) wakeup(m); break; } } /* * vm_page_find_least: * * Returns the page associated with the object with least pindex * greater than or equal to the parameter pindex, or NULL. * * The object must be locked. */ vm_page_t vm_page_find_least(vm_object_t object, vm_pindex_t pindex) { vm_page_t m; VM_OBJECT_ASSERT_LOCKED(object); if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) m = vm_radix_lookup_ge(&object->rtree, pindex); return (m); } /* * Returns the given page's successor (by pindex) within the object if it is * resident; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_next(vm_page_t m) { vm_page_t next; VM_OBJECT_ASSERT_LOCKED(m->object); if ((next = TAILQ_NEXT(m, listq)) != NULL) { MPASS(next->object == m->object); if (next->pindex != m->pindex + 1) next = NULL; } return (next); } /* * Returns the given page's predecessor (by pindex) within the object if it is * resident; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_prev(vm_page_t m) { vm_page_t prev; VM_OBJECT_ASSERT_LOCKED(m->object); if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) { MPASS(prev->object == m->object); if (prev->pindex != m->pindex - 1) prev = NULL; } return (prev); } /* * Uses the page mnew as a replacement for an existing page at index * pindex which must be already present in the object. * * Both pages must be exclusively busied on enter. The old page is * unbusied on exit. * * A return value of true means mold is now free. If this is not the * final ref and the caller does not hold a wire reference it may not * continue to access the page. */ static bool vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, vm_page_t mold) { vm_page_t mret; bool dropped; VM_OBJECT_ASSERT_WLOCKED(object); vm_page_assert_xbusied(mold); KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0, ("vm_page_replace: page %p already in object", mnew)); /* * This function mostly follows vm_page_insert() and * vm_page_remove() without the radix, object count and vnode * dance. Double check such functions for more comments. */ mnew->object = object; mnew->pindex = pindex; atomic_set_int(&mnew->ref_count, VPRC_OBJREF); mret = vm_radix_replace(&object->rtree, mnew); KASSERT(mret == mold, ("invalid page replacement, mold=%p, mret=%p", mold, mret)); KASSERT((mold->oflags & VPO_UNMANAGED) == (mnew->oflags & VPO_UNMANAGED), ("vm_page_replace: mismatched VPO_UNMANAGED")); /* Keep the resident page list in sorted order. */ TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); TAILQ_REMOVE(&object->memq, mold, listq); mold->object = NULL; /* * The object's resident_page_count does not change because we have * swapped one page for another, but the generation count should * change if the page is dirty. */ if (pmap_page_is_write_mapped(mnew)) vm_object_set_writeable_dirty(object); dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF; vm_page_xunbusy(mold); return (dropped); } void vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex, vm_page_t mold) { vm_page_assert_xbusied(mnew); if (vm_page_replace_hold(mnew, object, pindex, mold)) vm_page_free(mold); } /* * vm_page_rename: * * Move the given memory entry from its * current object to the specified target object/offset. * * Note: swap associated with the page must be invalidated by the move. We * have to do this for several reasons: (1) we aren't freeing the * page, (2) we are dirtying the page, (3) the VM system is probably * moving the page from object A to B, and will then later move * the backing store from A to B and we can't have a conflict. * * Note: we *always* dirty the page. It is necessary both for the * fact that we moved it, and because we may be invalidating * swap. * * The objects must be locked. */ int vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) { vm_page_t mpred; vm_pindex_t opidx; VM_OBJECT_ASSERT_WLOCKED(new_object); KASSERT(m->ref_count != 0, ("vm_page_rename: page %p has no refs", m)); mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); KASSERT(mpred == NULL || mpred->pindex != new_pindex, ("vm_page_rename: pindex already renamed")); /* * Create a custom version of vm_page_insert() which does not depend * by m_prev and can cheat on the implementation aspects of the * function. */ opidx = m->pindex; m->pindex = new_pindex; if (vm_radix_insert(&new_object->rtree, m)) { m->pindex = opidx; return (1); } /* * The operation cannot fail anymore. The removal must happen before * the listq iterator is tainted. */ m->pindex = opidx; vm_page_object_remove(m); /* Return back to the new pindex to complete vm_page_insert(). */ m->pindex = new_pindex; m->object = new_object; vm_page_insert_radixdone(m, new_object, mpred); vm_page_dirty(m); return (0); } /* * vm_page_alloc: * * Allocate and return a page that is associated with the specified * object and offset pair. By default, this page is exclusive busied. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_COUNT(number) the number of additional pages that the caller * intends to allocate * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NODUMP do not include the page in a kernel core dump * VM_ALLOC_NOOBJ page is not associated with an object and * should not be exclusive busy * VM_ALLOC_SBUSY shared busy the allocated page * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page */ vm_page_t vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) { return (vm_page_alloc_after(object, pindex, req, object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : NULL)); } vm_page_t vm_page_alloc_domain(vm_object_t object, vm_pindex_t pindex, int domain, int req) { return (vm_page_alloc_domain_after(object, pindex, domain, req, object != NULL ? vm_radix_lookup_le(&object->rtree, pindex) : NULL)); } /* * Allocate a page in the specified object with the given page index. To * optimize insertion of the page into the object, the caller must also specifiy * the resident page in the object with largest index smaller than the given * page index, or NULL if no such page exists. */ vm_page_t vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req, vm_page_t mpred) { struct vm_domainset_iter di; vm_page_t m; int domain; vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); do { m = vm_page_alloc_domain_after(object, pindex, domain, req, mpred); if (m != NULL) break; } while (vm_domainset_iter_page(&di, object, &domain) == 0); return (m); } /* * Returns true if the number of free pages exceeds the minimum * for the request class and false otherwise. */ static int _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages) { u_int limit, old, new; if (req_class == VM_ALLOC_INTERRUPT) limit = 0; else if (req_class == VM_ALLOC_SYSTEM) limit = vmd->vmd_interrupt_free_min; else limit = vmd->vmd_free_reserved; /* * Attempt to reserve the pages. Fail if we're below the limit. */ limit += npages; old = vmd->vmd_free_count; do { if (old < limit) return (0); new = old - npages; } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0); /* Wake the page daemon if we've crossed the threshold. */ if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old)) pagedaemon_wakeup(vmd->vmd_domain); /* Only update bitsets on transitions. */ if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) || (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe)) vm_domain_set(vmd); return (1); } int vm_domain_allocate(struct vm_domain *vmd, int req, int npages) { int req_class; /* * The page daemon is allowed to dig deeper into the free page list. */ req_class = req & VM_ALLOC_CLASS_MASK; if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; return (_vm_domain_allocate(vmd, req_class, npages)); } vm_page_t vm_page_alloc_domain_after(vm_object_t object, vm_pindex_t pindex, int domain, int req, vm_page_t mpred) { struct vm_domain *vmd; vm_page_t m; int flags, pool; KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), ("inconsistent object(%p)/req(%x)", object, req)); KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, ("Can't sleep and retry object insertion.")); KASSERT(mpred == NULL || mpred->pindex < pindex, ("mpred %p doesn't precede pindex 0x%jx", mpred, (uintmax_t)pindex)); if (object != NULL) VM_OBJECT_ASSERT_WLOCKED(object); flags = 0; m = NULL; pool = object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT; again: #if VM_NRESERVLEVEL > 0 /* * Can we allocate the page from a reservation? */ if (vm_object_reserv(object) && (m = vm_reserv_alloc_page(object, pindex, domain, req, mpred)) != NULL) { goto found; } #endif vmd = VM_DOMAIN(domain); if (vmd->vmd_pgcache[pool].zone != NULL) { m = uma_zalloc(vmd->vmd_pgcache[pool].zone, M_NOWAIT | M_NOVM); if (m != NULL) { flags |= PG_PCPU_CACHE; goto found; } } if (vm_domain_allocate(vmd, req, 1)) { /* * If not, allocate it from the free page queues. */ vm_domain_free_lock(vmd); m = vm_phys_alloc_pages(domain, pool, 0); vm_domain_free_unlock(vmd); if (m == NULL) { vm_domain_freecnt_inc(vmd, 1); #if VM_NRESERVLEVEL > 0 if (vm_reserv_reclaim_inactive(domain)) goto again; #endif } } if (m == NULL) { /* * Not allocatable, give up. */ if (vm_domain_alloc_fail(vmd, object, req)) goto again; return (NULL); } /* * At this point we had better have found a good page. */ found: vm_page_dequeue(m); vm_page_alloc_check(m); /* * Initialize the page. Only the PG_ZERO flag is inherited. */ if ((req & VM_ALLOC_ZERO) != 0) flags |= (m->flags & PG_ZERO); if ((req & VM_ALLOC_NODUMP) != 0) flags |= PG_NODUMP; m->flags = flags; m->a.flags = 0; m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) m->busy_lock = VPB_CURTHREAD_EXCLUSIVE; else if ((req & VM_ALLOC_SBUSY) != 0) m->busy_lock = VPB_SHARERS_WORD(1); else m->busy_lock = VPB_UNBUSIED; if (req & VM_ALLOC_WIRED) { vm_wire_add(1); m->ref_count = 1; } m->a.act_count = 0; if (object != NULL) { if (vm_page_insert_after(m, object, pindex, mpred)) { if (req & VM_ALLOC_WIRED) { vm_wire_sub(1); m->ref_count = 0; } KASSERT(m->object == NULL, ("page %p has object", m)); m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_UNBUSIED; /* Don't change PG_ZERO. */ vm_page_free_toq(m); if (req & VM_ALLOC_WAITFAIL) { VM_OBJECT_WUNLOCK(object); vm_radix_wait(); VM_OBJECT_WLOCK(object); } return (NULL); } /* Ignore device objects; the pager sets "memattr" for them. */ if (object->memattr != VM_MEMATTR_DEFAULT && (object->flags & OBJ_FICTITIOUS) == 0) pmap_page_set_memattr(m, object->memattr); } else m->pindex = pindex; return (m); } /* * vm_page_alloc_contig: * * Allocate a contiguous set of physical pages of the given size "npages" * from the free lists. All of the physical pages must be at or above * the given physical address "low" and below the given physical address * "high". The given value "alignment" determines the alignment of the * first physical page in the set. If the given value "boundary" is * non-zero, then the set of physical pages cannot cross any physical * address boundary that is a multiple of that value. Both "alignment" * and "boundary" must be a power of two. * * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, * then the memory attribute setting for the physical pages is configured * to the object's memory attribute setting. Otherwise, the memory * attribute setting for the physical pages is configured to "memattr", * overriding the object's memory attribute setting. However, if the * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the * memory attribute setting for the physical pages cannot be configured * to VM_MEMATTR_DEFAULT. * * The specified object may not contain fictitious pages. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NODUMP do not include the page in a kernel core dump * VM_ALLOC_NOOBJ page is not associated with an object and * should not be exclusive busy * VM_ALLOC_SBUSY shared busy the allocated page * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page */ vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { struct vm_domainset_iter di; vm_page_t m; int domain; vm_domainset_iter_page_init(&di, object, pindex, &domain, &req); do { m = vm_page_alloc_contig_domain(object, pindex, domain, req, npages, low, high, alignment, boundary, memattr); if (m != NULL) break; } while (vm_domainset_iter_page(&di, object, &domain) == 0); return (m); } vm_page_t vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { struct vm_domain *vmd; vm_page_t m, m_ret, mpred; u_int busy_lock, flags, oflags; mpred = NULL; /* XXX: pacify gcc */ KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object, req)); KASSERT(object == NULL || (req & VM_ALLOC_WAITOK) == 0, ("Can't sleep and retry object insertion.")); if (object != NULL) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((object->flags & OBJ_FICTITIOUS) == 0, ("vm_page_alloc_contig: object %p has fictitious pages", object)); } KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); if (object != NULL) { mpred = vm_radix_lookup_le(&object->rtree, pindex); KASSERT(mpred == NULL || mpred->pindex != pindex, ("vm_page_alloc_contig: pindex already allocated")); } /* * Can we allocate the pages without the number of free pages falling * below the lower bound for the allocation class? */ m_ret = NULL; again: #if VM_NRESERVLEVEL > 0 /* * Can we allocate the pages from a reservation? */ if (vm_object_reserv(object) && (m_ret = vm_reserv_alloc_contig(object, pindex, domain, req, mpred, npages, low, high, alignment, boundary)) != NULL) { goto found; } #endif vmd = VM_DOMAIN(domain); if (vm_domain_allocate(vmd, req, npages)) { /* * allocate them from the free page queues. */ vm_domain_free_lock(vmd); m_ret = vm_phys_alloc_contig(domain, npages, low, high, alignment, boundary); vm_domain_free_unlock(vmd); if (m_ret == NULL) { vm_domain_freecnt_inc(vmd, npages); #if VM_NRESERVLEVEL > 0 if (vm_reserv_reclaim_contig(domain, npages, low, high, alignment, boundary)) goto again; #endif } } if (m_ret == NULL) { if (vm_domain_alloc_fail(vmd, object, req)) goto again; return (NULL); } #if VM_NRESERVLEVEL > 0 found: #endif for (m = m_ret; m < &m_ret[npages]; m++) { vm_page_dequeue(m); vm_page_alloc_check(m); } /* * Initialize the pages. Only the PG_ZERO flag is inherited. */ flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; if ((req & VM_ALLOC_NODUMP) != 0) flags |= PG_NODUMP; oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) busy_lock = VPB_CURTHREAD_EXCLUSIVE; else if ((req & VM_ALLOC_SBUSY) != 0) busy_lock = VPB_SHARERS_WORD(1); else busy_lock = VPB_UNBUSIED; if ((req & VM_ALLOC_WIRED) != 0) vm_wire_add(npages); if (object != NULL) { if (object->memattr != VM_MEMATTR_DEFAULT && memattr == VM_MEMATTR_DEFAULT) memattr = object->memattr; } for (m = m_ret; m < &m_ret[npages]; m++) { m->a.flags = 0; m->flags = (m->flags | PG_NODUMP) & flags; m->busy_lock = busy_lock; if ((req & VM_ALLOC_WIRED) != 0) m->ref_count = 1; m->a.act_count = 0; m->oflags = oflags; if (object != NULL) { if (vm_page_insert_after(m, object, pindex, mpred)) { if ((req & VM_ALLOC_WIRED) != 0) vm_wire_sub(npages); KASSERT(m->object == NULL, ("page %p has object", m)); mpred = m; for (m = m_ret; m < &m_ret[npages]; m++) { if (m <= mpred && (req & VM_ALLOC_WIRED) != 0) m->ref_count = 0; m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_UNBUSIED; /* Don't change PG_ZERO. */ vm_page_free_toq(m); } if (req & VM_ALLOC_WAITFAIL) { VM_OBJECT_WUNLOCK(object); vm_radix_wait(); VM_OBJECT_WLOCK(object); } return (NULL); } mpred = m; } else m->pindex = pindex; if (memattr != VM_MEMATTR_DEFAULT) pmap_page_set_memattr(m, memattr); pindex++; } return (m_ret); } /* * Check a page that has been freshly dequeued from a freelist. */ static void vm_page_alloc_check(vm_page_t m) { KASSERT(m->object == NULL, ("page %p has object", m)); KASSERT(m->a.queue == PQ_NONE && (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, ("page %p has unexpected queue %d, flags %#x", m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK))); KASSERT(m->ref_count == 0, ("page %p has references", m)); KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m)); KASSERT(m->dirty == 0, ("page %p is dirty", m)); KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has unexpected memattr %d", m, pmap_page_get_memattr(m))); KASSERT(m->valid == 0, ("free page %p is valid", m)); } /* * vm_page_alloc_freelist: * * Allocate a physical page from the specified free page list. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_COUNT(number) the number of additional pages that the caller * intends to allocate * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page */ vm_page_t vm_page_alloc_freelist(int freelist, int req) { struct vm_domainset_iter di; vm_page_t m; int domain; vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); do { m = vm_page_alloc_freelist_domain(domain, freelist, req); if (m != NULL) break; } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); return (m); } vm_page_t vm_page_alloc_freelist_domain(int domain, int freelist, int req) { struct vm_domain *vmd; vm_page_t m; u_int flags; m = NULL; vmd = VM_DOMAIN(domain); again: if (vm_domain_allocate(vmd, req, 1)) { vm_domain_free_lock(vmd); m = vm_phys_alloc_freelist_pages(domain, freelist, VM_FREEPOOL_DIRECT, 0); vm_domain_free_unlock(vmd); if (m == NULL) vm_domain_freecnt_inc(vmd, 1); } if (m == NULL) { if (vm_domain_alloc_fail(vmd, NULL, req)) goto again; return (NULL); } vm_page_dequeue(m); vm_page_alloc_check(m); /* * Initialize the page. Only the PG_ZERO flag is inherited. */ m->a.flags = 0; flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; m->flags &= flags; if ((req & VM_ALLOC_WIRED) != 0) { vm_wire_add(1); m->ref_count = 1; } /* Unmanaged pages don't use "act_count". */ m->oflags = VPO_UNMANAGED; return (m); } static int vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags) { struct vm_domain *vmd; struct vm_pgcache *pgcache; int i; pgcache = arg; vmd = VM_DOMAIN(pgcache->domain); /* * The page daemon should avoid creating extra memory pressure since its * main purpose is to replenish the store of free pages. */ if (vmd->vmd_severeset || curproc == pageproc || !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt)) return (0); domain = vmd->vmd_domain; vm_domain_free_lock(vmd); i = vm_phys_alloc_npages(domain, pgcache->pool, cnt, (vm_page_t *)store); vm_domain_free_unlock(vmd); if (cnt != i) vm_domain_freecnt_inc(vmd, cnt - i); return (i); } static void vm_page_zone_release(void *arg, void **store, int cnt) { struct vm_domain *vmd; struct vm_pgcache *pgcache; vm_page_t m; int i; pgcache = arg; vmd = VM_DOMAIN(pgcache->domain); vm_domain_free_lock(vmd); for (i = 0; i < cnt; i++) { m = (vm_page_t)store[i]; vm_phys_free_pages(m, 0); } vm_domain_free_unlock(vmd); vm_domain_freecnt_inc(vmd, cnt); } #define VPSC_ANY 0 /* No restrictions. */ #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ #define VPSC_NOSUPER 2 /* Skip superpages. */ /* * vm_page_scan_contig: * * Scan vm_page_array[] between the specified entries "m_start" and * "m_end" for a run of contiguous physical pages that satisfy the * specified conditions, and return the lowest page in the run. The * specified "alignment" determines the alignment of the lowest physical * page in the run. If the specified "boundary" is non-zero, then the * run of physical pages cannot span a physical address that is a * multiple of "boundary". * * "m_end" is never dereferenced, so it need not point to a vm_page * structure within vm_page_array[]. * * "npages" must be greater than zero. "m_start" and "m_end" must not * span a hole (or discontiguity) in the physical address space. Both * "alignment" and "boundary" must be a power of two. */ vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options) { vm_object_t object; vm_paddr_t pa; vm_page_t m, m_run; #if VM_NRESERVLEVEL > 0 int level; #endif int m_inc, order, run_ext, run_len; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); m_run = NULL; run_len = 0; for (m = m_start; m < m_end && run_len < npages; m += m_inc) { KASSERT((m->flags & PG_MARKER) == 0, ("page %p is PG_MARKER", m)); KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1, ("fictitious page %p has invalid ref count", m)); /* * If the current page would be the start of a run, check its * physical address against the end, alignment, and boundary * conditions. If it doesn't satisfy these conditions, either * terminate the scan or advance to the next page that * satisfies the failed condition. */ if (run_len == 0) { KASSERT(m_run == NULL, ("m_run != NULL")); if (m + npages > m_end) break; pa = VM_PAGE_TO_PHYS(m); if ((pa & (alignment - 1)) != 0) { m_inc = atop(roundup2(pa, alignment) - pa); continue; } if (rounddown2(pa ^ (pa + ptoa(npages) - 1), boundary) != 0) { m_inc = atop(roundup2(pa, boundary) - pa); continue; } } else KASSERT(m_run != NULL, ("m_run == NULL")); retry: m_inc = 1; if (vm_page_wired(m)) run_ext = 0; #if VM_NRESERVLEVEL > 0 else if ((level = vm_reserv_level(m)) >= 0 && (options & VPSC_NORESERV) != 0) { run_ext = 0; /* Advance to the end of the reservation. */ pa = VM_PAGE_TO_PHYS(m); m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - pa); } #endif else if ((object = atomic_load_ptr(&m->object)) != NULL) { /* * The page is considered eligible for relocation if * and only if it could be laundered or reclaimed by * the page daemon. */ VM_OBJECT_RLOCK(object); if (object != m->object) { VM_OBJECT_RUNLOCK(object); goto retry; } /* Don't care: PG_NODUMP, PG_ZERO. */ if (object->type != OBJT_DEFAULT && (object->flags & OBJ_SWAP) == 0 && object->type != OBJT_VNODE) { run_ext = 0; #if VM_NRESERVLEVEL > 0 } else if ((options & VPSC_NOSUPER) != 0 && (level = vm_reserv_level_iffullpop(m)) >= 0) { run_ext = 0; /* Advance to the end of the superpage. */ pa = VM_PAGE_TO_PHYS(m); m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - pa); #endif } else if (object->memattr == VM_MEMATTR_DEFAULT && vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) { /* * The page is allocated but eligible for * relocation. Extend the current run by one * page. */ KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has an unexpected memattr", m)); KASSERT((m->oflags & (VPO_SWAPINPROG | VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, ("page %p has unexpected oflags", m)); /* Don't care: PGA_NOSYNC. */ run_ext = 1; } else run_ext = 0; VM_OBJECT_RUNLOCK(object); #if VM_NRESERVLEVEL > 0 } else if (level >= 0) { /* * The page is reserved but not yet allocated. In * other words, it is still free. Extend the current * run by one page. */ run_ext = 1; #endif } else if ((order = m->order) < VM_NFREEORDER) { /* * The page is enqueued in the physical memory * allocator's free page queues. Moreover, it is the * first page in a power-of-two-sized run of * contiguous free pages. Add these pages to the end * of the current run, and jump ahead. */ run_ext = 1 << order; m_inc = 1 << order; } else { /* * Skip the page for one of the following reasons: (1) * It is enqueued in the physical memory allocator's * free page queues. However, it is not the first * page in a run of contiguous free pages. (This case * rarely occurs because the scan is performed in * ascending order.) (2) It is not reserved, and it is * transitioning from free to allocated. (Conversely, * the transition from allocated to free for managed * pages is blocked by the page busy lock.) (3) It is * allocated but not contained by an object and not * wired, e.g., allocated by Xen's balloon driver. */ run_ext = 0; } /* * Extend or reset the current run of pages. */ if (run_ext > 0) { if (run_len == 0) m_run = m; run_len += run_ext; } else { if (run_len > 0) { m_run = NULL; run_len = 0; } } } if (run_len >= npages) return (m_run); return (NULL); } /* * vm_page_reclaim_run: * * Try to relocate each of the allocated virtual pages within the * specified run of physical pages to a new physical address. Free the * physical pages underlying the relocated virtual pages. A virtual page * is relocatable if and only if it could be laundered or reclaimed by * the page daemon. Whenever possible, a virtual page is relocated to a * physical address above "high". * * Returns 0 if every physical page within the run was already free or * just freed by a successful relocation. Otherwise, returns a non-zero * value indicating why the last attempt to relocate a virtual page was * unsuccessful. * * "req_class" must be an allocation class. */ static int vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run, vm_paddr_t high) { struct vm_domain *vmd; struct spglist free; vm_object_t object; vm_paddr_t pa; vm_page_t m, m_end, m_new; int error, order, req; KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, ("req_class is not an allocation class")); SLIST_INIT(&free); error = 0; m = m_run; m_end = m_run + npages; for (; error == 0 && m < m_end; m++) { KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, ("page %p is PG_FICTITIOUS or PG_MARKER", m)); /* * Racily check for wirings. Races are handled once the object * lock is held and the page is unmapped. */ if (vm_page_wired(m)) error = EBUSY; else if ((object = atomic_load_ptr(&m->object)) != NULL) { /* * The page is relocated if and only if it could be * laundered or reclaimed by the page daemon. */ VM_OBJECT_WLOCK(object); /* Don't care: PG_NODUMP, PG_ZERO. */ if (m->object != object || (object->type != OBJT_DEFAULT && (object->flags & OBJ_SWAP) == 0 && object->type != OBJT_VNODE)) error = EINVAL; else if (object->memattr != VM_MEMATTR_DEFAULT) error = EINVAL; else if (vm_page_queue(m) != PQ_NONE && vm_page_tryxbusy(m) != 0) { if (vm_page_wired(m)) { vm_page_xunbusy(m); error = EBUSY; goto unlock; } KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has an unexpected memattr", m)); KASSERT(m->oflags == 0, ("page %p has unexpected oflags", m)); /* Don't care: PGA_NOSYNC. */ if (!vm_page_none_valid(m)) { /* * First, try to allocate a new page * that is above "high". Failing * that, try to allocate a new page * that is below "m_run". Allocate * the new page between the end of * "m_run" and "high" only as a last * resort. */ req = req_class | VM_ALLOC_NOOBJ; if ((m->flags & PG_NODUMP) != 0) req |= VM_ALLOC_NODUMP; if (trunc_page(high) != ~(vm_paddr_t)PAGE_MASK) { m_new = vm_page_alloc_contig( NULL, 0, req, 1, round_page(high), ~(vm_paddr_t)0, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } else m_new = NULL; if (m_new == NULL) { pa = VM_PAGE_TO_PHYS(m_run); m_new = vm_page_alloc_contig( NULL, 0, req, 1, 0, pa - 1, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } if (m_new == NULL) { pa += ptoa(npages); m_new = vm_page_alloc_contig( NULL, 0, req, 1, pa, high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } if (m_new == NULL) { vm_page_xunbusy(m); error = ENOMEM; goto unlock; } /* * Unmap the page and check for new * wirings that may have been acquired * through a pmap lookup. */ if (object->ref_count != 0 && !vm_page_try_remove_all(m)) { vm_page_xunbusy(m); vm_page_free(m_new); error = EBUSY; goto unlock; } /* * Replace "m" with the new page. For * vm_page_replace(), "m" must be busy * and dequeued. Finally, change "m" * as if vm_page_free() was called. */ m_new->a.flags = m->a.flags & ~PGA_QUEUE_STATE_MASK; KASSERT(m_new->oflags == VPO_UNMANAGED, ("page %p is managed", m_new)); m_new->oflags = 0; pmap_copy_page(m, m_new); m_new->valid = m->valid; m_new->dirty = m->dirty; m->flags &= ~PG_ZERO; vm_page_dequeue(m); if (vm_page_replace_hold(m_new, object, m->pindex, m) && vm_page_free_prep(m)) SLIST_INSERT_HEAD(&free, m, plinks.s.ss); /* * The new page must be deactivated * before the object is unlocked. */ vm_page_deactivate(m_new); } else { m->flags &= ~PG_ZERO; vm_page_dequeue(m); if (vm_page_free_prep(m)) SLIST_INSERT_HEAD(&free, m, plinks.s.ss); KASSERT(m->dirty == 0, ("page %p is dirty", m)); } } else error = EBUSY; unlock: VM_OBJECT_WUNLOCK(object); } else { MPASS(vm_page_domain(m) == domain); vmd = VM_DOMAIN(domain); vm_domain_free_lock(vmd); order = m->order; if (order < VM_NFREEORDER) { /* * The page is enqueued in the physical memory * allocator's free page queues. Moreover, it * is the first page in a power-of-two-sized * run of contiguous free pages. Jump ahead * to the last page within that run, and * continue from there. */ m += (1 << order) - 1; } #if VM_NRESERVLEVEL > 0 else if (vm_reserv_is_page_free(m)) order = 0; #endif vm_domain_free_unlock(vmd); if (order == VM_NFREEORDER) error = EINVAL; } } if ((m = SLIST_FIRST(&free)) != NULL) { int cnt; vmd = VM_DOMAIN(domain); cnt = 0; vm_domain_free_lock(vmd); do { MPASS(vm_page_domain(m) == domain); SLIST_REMOVE_HEAD(&free, plinks.s.ss); vm_phys_free_pages(m, 0); cnt++; } while ((m = SLIST_FIRST(&free)) != NULL); vm_domain_free_unlock(vmd); vm_domain_freecnt_inc(vmd, cnt); } return (error); } #define NRUNS 16 CTASSERT(powerof2(NRUNS)); #define RUN_INDEX(count) ((count) & (NRUNS - 1)) #define MIN_RECLAIM 8 /* * vm_page_reclaim_contig: * * Reclaim allocated, contiguous physical memory satisfying the specified * conditions by relocating the virtual pages using that physical memory. * Returns true if reclamation is successful and false otherwise. Since * relocation requires the allocation of physical pages, reclamation may * fail due to a shortage of free pages. When reclamation fails, callers * are expected to perform vm_wait() before retrying a failed allocation * operation, e.g., vm_page_alloc_contig(). * * The caller must always specify an allocation class through "req". * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * The optional allocation flags are ignored. * * "npages" must be greater than zero. Both "alignment" and "boundary" * must be a power of two. */ bool vm_page_reclaim_contig_domain(int domain, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { struct vm_domain *vmd; vm_paddr_t curr_low; vm_page_t m_run, m_runs[NRUNS]; u_long count, minalign, reclaimed; int error, i, options, req_class; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); /* * The caller will attempt an allocation after some runs have been * reclaimed and added to the vm_phys buddy lists. Due to limitations * of vm_phys_alloc_contig(), round up the requested length to the next * power of two or maximum chunk size, and ensure that each run is * suitably aligned. */ minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1); npages = roundup2(npages, minalign); if (alignment < ptoa(minalign)) alignment = ptoa(minalign); /* * The page daemon is allowed to dig deeper into the free page list. */ req_class = req & VM_ALLOC_CLASS_MASK; if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; /* * Return if the number of free pages cannot satisfy the requested * allocation. */ vmd = VM_DOMAIN(domain); count = vmd->vmd_free_count; if (count < npages + vmd->vmd_free_reserved || (count < npages + vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || (count < npages && req_class == VM_ALLOC_INTERRUPT)) return (false); /* * Scan up to three times, relaxing the restrictions ("options") on * the reclamation of reservations and superpages each time. */ for (options = VPSC_NORESERV;;) { /* * Find the highest runs that satisfy the given constraints * and restrictions, and record them in "m_runs". */ curr_low = low; count = 0; for (;;) { m_run = vm_phys_scan_contig(domain, npages, curr_low, high, alignment, boundary, options); if (m_run == NULL) break; curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); m_runs[RUN_INDEX(count)] = m_run; count++; } /* * Reclaim the highest runs in LIFO (descending) order until * the number of reclaimed pages, "reclaimed", is at least * MIN_RECLAIM. Reset "reclaimed" each time because each * reclamation is idempotent, and runs will (likely) recur * from one scan to the next as restrictions are relaxed. */ reclaimed = 0; for (i = 0; count > 0 && i < NRUNS; i++) { count--; m_run = m_runs[RUN_INDEX(count)]; error = vm_page_reclaim_run(req_class, domain, npages, m_run, high); if (error == 0) { reclaimed += npages; if (reclaimed >= MIN_RECLAIM) return (true); } } /* * Either relax the restrictions on the next scan or return if * the last scan had no restrictions. */ if (options == VPSC_NORESERV) options = VPSC_NOSUPER; else if (options == VPSC_NOSUPER) options = VPSC_ANY; else if (options == VPSC_ANY) return (reclaimed != 0); } } bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { struct vm_domainset_iter di; int domain; bool ret; vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req); do { ret = vm_page_reclaim_contig_domain(domain, req, npages, low, high, alignment, boundary); if (ret) break; } while (vm_domainset_iter_page(&di, NULL, &domain) == 0); return (ret); } /* * Set the domain in the appropriate page level domainset. */ void vm_domain_set(struct vm_domain *vmd) { mtx_lock(&vm_domainset_lock); if (!vmd->vmd_minset && vm_paging_min(vmd)) { vmd->vmd_minset = 1; DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains); } if (!vmd->vmd_severeset && vm_paging_severe(vmd)) { vmd->vmd_severeset = 1; DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains); } mtx_unlock(&vm_domainset_lock); } /* * Clear the domain from the appropriate page level domainset. */ void vm_domain_clear(struct vm_domain *vmd) { mtx_lock(&vm_domainset_lock); if (vmd->vmd_minset && !vm_paging_min(vmd)) { vmd->vmd_minset = 0; DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains); if (vm_min_waiters != 0) { vm_min_waiters = 0; wakeup(&vm_min_domains); } } if (vmd->vmd_severeset && !vm_paging_severe(vmd)) { vmd->vmd_severeset = 0; DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains); if (vm_severe_waiters != 0) { vm_severe_waiters = 0; wakeup(&vm_severe_domains); } } /* * If pageout daemon needs pages, then tell it that there are * some free. */ if (vmd->vmd_pageout_pages_needed && vmd->vmd_free_count >= vmd->vmd_pageout_free_min) { wakeup(&vmd->vmd_pageout_pages_needed); vmd->vmd_pageout_pages_needed = 0; } /* See comments in vm_wait_doms(). */ if (vm_pageproc_waiters) { vm_pageproc_waiters = 0; wakeup(&vm_pageproc_waiters); } mtx_unlock(&vm_domainset_lock); } /* * Wait for free pages to exceed the min threshold globally. */ void vm_wait_min(void) { mtx_lock(&vm_domainset_lock); while (vm_page_count_min()) { vm_min_waiters++; msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0); } mtx_unlock(&vm_domainset_lock); } /* * Wait for free pages to exceed the severe threshold globally. */ void vm_wait_severe(void) { mtx_lock(&vm_domainset_lock); while (vm_page_count_severe()) { vm_severe_waiters++; msleep(&vm_severe_domains, &vm_domainset_lock, PVM, "vmwait", 0); } mtx_unlock(&vm_domainset_lock); } u_int vm_wait_count(void) { return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters); } int vm_wait_doms(const domainset_t *wdoms, int mflags) { int error; error = 0; /* * We use racey wakeup synchronization to avoid expensive global * locking for the pageproc when sleeping with a non-specific vm_wait. * To handle this, we only sleep for one tick in this instance. It * is expected that most allocations for the pageproc will come from * kmem or vm_page_grab* which will use the more specific and * race-free vm_wait_domain(). */ if (curproc == pageproc) { mtx_lock(&vm_domainset_lock); vm_pageproc_waiters++; error = msleep(&vm_pageproc_waiters, &vm_domainset_lock, PVM | PDROP | mflags, "pageprocwait", 1); } else { /* * XXX Ideally we would wait only until the allocation could * be satisfied. This condition can cause new allocators to * consume all freed pages while old allocators wait. */ mtx_lock(&vm_domainset_lock); if (vm_page_count_min_set(wdoms)) { vm_min_waiters++; error = msleep(&vm_min_domains, &vm_domainset_lock, PVM | PDROP | mflags, "vmwait", 0); } else mtx_unlock(&vm_domainset_lock); } return (error); } /* * vm_wait_domain: * * Sleep until free pages are available for allocation. * - Called in various places after failed memory allocations. */ void vm_wait_domain(int domain) { struct vm_domain *vmd; domainset_t wdom; vmd = VM_DOMAIN(domain); vm_domain_free_assert_unlocked(vmd); if (curproc == pageproc) { mtx_lock(&vm_domainset_lock); if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) { vmd->vmd_pageout_pages_needed = 1; msleep(&vmd->vmd_pageout_pages_needed, &vm_domainset_lock, PDROP | PSWP, "VMWait", 0); } else mtx_unlock(&vm_domainset_lock); } else { if (pageproc == NULL) panic("vm_wait in early boot"); DOMAINSET_ZERO(&wdom); DOMAINSET_SET(vmd->vmd_domain, &wdom); vm_wait_doms(&wdom, 0); } } static int vm_wait_flags(vm_object_t obj, int mflags) { struct domainset *d; d = NULL; /* * Carefully fetch pointers only once: the struct domainset * itself is ummutable but the pointer might change. */ if (obj != NULL) d = obj->domain.dr_policy; if (d == NULL) d = curthread->td_domain.dr_policy; return (vm_wait_doms(&d->ds_mask, mflags)); } /* * vm_wait: * * Sleep until free pages are available for allocation in the * affinity domains of the obj. If obj is NULL, the domain set * for the calling thread is used. * Called in various places after failed memory allocations. */ void vm_wait(vm_object_t obj) { (void)vm_wait_flags(obj, 0); } int vm_wait_intr(vm_object_t obj) { return (vm_wait_flags(obj, PCATCH)); } /* * vm_domain_alloc_fail: * * Called when a page allocation function fails. Informs the * pagedaemon and performs the requested wait. Requires the * domain_free and object lock on entry. Returns with the * object lock held and free lock released. Returns an error when * retry is necessary. * */ static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req) { vm_domain_free_assert_unlocked(vmd); atomic_add_int(&vmd->vmd_pageout_deficit, max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) { if (object != NULL) VM_OBJECT_WUNLOCK(object); vm_wait_domain(vmd->vmd_domain); if (object != NULL) VM_OBJECT_WLOCK(object); if (req & VM_ALLOC_WAITOK) return (EAGAIN); } return (0); } /* * vm_waitpfault: * * Sleep until free pages are available for allocation. * - Called only in vm_fault so that processes page faulting * can be easily tracked. * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing * processes will be able to grab memory first. Do not change * this balance without careful testing first. */ void vm_waitpfault(struct domainset *dset, int timo) { /* * XXX Ideally we would wait only until the allocation could * be satisfied. This condition can cause new allocators to * consume all freed pages while old allocators wait. */ mtx_lock(&vm_domainset_lock); if (vm_page_count_min_set(&dset->ds_mask)) { vm_min_waiters++; msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP, "pfault", timo); } else mtx_unlock(&vm_domainset_lock); } static struct vm_pagequeue * _vm_page_pagequeue(vm_page_t m, uint8_t queue) { return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]); } #ifdef INVARIANTS static struct vm_pagequeue * vm_page_pagequeue(vm_page_t m) { return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue)); } #endif static __always_inline bool vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) { vm_page_astate_t tmp; tmp = *old; do { if (__predict_true(vm_page_astate_fcmpset(m, old, new))) return (true); counter_u64_add(pqstate_commit_retries, 1); } while (old->_bits == tmp._bits); return (false); } /* * Do the work of committing a queue state update that moves the page out of * its current queue. */ static bool _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) { vm_page_t next; vm_pagequeue_assert_locked(pq); KASSERT(vm_page_pagequeue(m) == pq, ("%s: queue %p does not match page %p", __func__, pq, m)); KASSERT(old->queue != PQ_NONE && new.queue != old->queue, ("%s: invalid queue indices %d %d", __func__, old->queue, new.queue)); /* * Once the queue index of the page changes there is nothing * synchronizing with further updates to the page's physical * queue state. Therefore we must speculatively remove the page * from the queue now and be prepared to roll back if the queue * state update fails. If the page is not physically enqueued then * we just update its queue index. */ if ((old->flags & PGA_ENQUEUED) != 0) { new.flags &= ~PGA_ENQUEUED; next = TAILQ_NEXT(m, plinks.q); TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_dec(pq); if (!vm_page_pqstate_fcmpset(m, old, new)) { if (next == NULL) TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); else TAILQ_INSERT_BEFORE(next, m, plinks.q); vm_pagequeue_cnt_inc(pq); return (false); } else { return (true); } } else { return (vm_page_pqstate_fcmpset(m, old, new)); } } static bool vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) { struct vm_pagequeue *pq; vm_page_astate_t as; bool ret; pq = _vm_page_pagequeue(m, old->queue); /* * The queue field and PGA_ENQUEUED flag are stable only so long as the * corresponding page queue lock is held. */ vm_pagequeue_lock(pq); as = vm_page_astate_load(m); if (__predict_false(as._bits != old->_bits)) { *old = as; ret = false; } else { ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new); } vm_pagequeue_unlock(pq); return (ret); } /* * Commit a queue state update that enqueues or requeues a page. */ static bool _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) { struct vm_domain *vmd; vm_pagequeue_assert_locked(pq); KASSERT(old->queue != PQ_NONE && new.queue == old->queue, ("%s: invalid queue indices %d %d", __func__, old->queue, new.queue)); new.flags |= PGA_ENQUEUED; if (!vm_page_pqstate_fcmpset(m, old, new)) return (false); if ((old->flags & PGA_ENQUEUED) != 0) TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); else vm_pagequeue_cnt_inc(pq); /* * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if * both flags are set in close succession, only PGA_REQUEUE_HEAD will be * applied, even if it was set first. */ if ((old->flags & PGA_REQUEUE_HEAD) != 0) { vmd = vm_pagequeue_domain(m); KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE], ("%s: invalid page queue for page %p", __func__, m)); TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q); } else { TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); } return (true); } /* * Commit a queue state update that encodes a request for a deferred queue * operation. */ static bool vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) { KASSERT(old->queue == new.queue || new.queue != PQ_NONE, ("%s: invalid state, queue %d flags %x", __func__, new.queue, new.flags)); if (old->_bits != new._bits && !vm_page_pqstate_fcmpset(m, old, new)) return (false); vm_page_pqbatch_submit(m, new.queue); return (true); } /* * A generic queue state update function. This handles more cases than the * specialized functions above. */ bool vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new) { if (old->_bits == new._bits) return (true); if (old->queue != PQ_NONE && new.queue != old->queue) { if (!vm_page_pqstate_commit_dequeue(m, old, new)) return (false); if (new.queue != PQ_NONE) vm_page_pqbatch_submit(m, new.queue); } else { if (!vm_page_pqstate_fcmpset(m, old, new)) return (false); if (new.queue != PQ_NONE && ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0) vm_page_pqbatch_submit(m, new.queue); } return (true); } /* * Apply deferred queue state updates to a page. */ static inline void vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue) { vm_page_astate_t new, old; CRITICAL_ASSERT(curthread); vm_pagequeue_assert_locked(pq); KASSERT(queue < PQ_COUNT, ("%s: invalid queue index %d", __func__, queue)); KASSERT(pq == _vm_page_pagequeue(m, queue), ("%s: page %p does not belong to queue %p", __func__, m, pq)); for (old = vm_page_astate_load(m);;) { if (__predict_false(old.queue != queue || (old.flags & PGA_QUEUE_OP_MASK) == 0)) { counter_u64_add(queue_nops, 1); break; } KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is unmanaged", __func__, m)); new = old; if ((old.flags & PGA_DEQUEUE) != 0) { new.flags &= ~PGA_QUEUE_OP_MASK; new.queue = PQ_NONE; if (__predict_true(_vm_page_pqstate_commit_dequeue(pq, m, &old, new))) { counter_u64_add(queue_ops, 1); break; } } else { new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD); if (__predict_true(_vm_page_pqstate_commit_requeue(pq, m, &old, new))) { counter_u64_add(queue_ops, 1); break; } } } } static void vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq, uint8_t queue) { int i; for (i = 0; i < bq->bq_cnt; i++) vm_pqbatch_process_page(pq, bq->bq_pa[i], queue); vm_batchqueue_init(bq); } /* * vm_page_pqbatch_submit: [ internal use only ] * * Enqueue a page in the specified page queue's batched work queue. * The caller must have encoded the requested operation in the page * structure's a.flags field. */ void vm_page_pqbatch_submit(vm_page_t m, uint8_t queue) { struct vm_batchqueue *bq; struct vm_pagequeue *pq; int domain; KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue)); domain = vm_page_domain(m); critical_enter(); bq = DPCPU_PTR(pqbatch[domain][queue]); if (vm_batchqueue_insert(bq, m)) { critical_exit(); return; } critical_exit(); pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue]; vm_pagequeue_lock(pq); critical_enter(); bq = DPCPU_PTR(pqbatch[domain][queue]); vm_pqbatch_process(pq, bq, queue); vm_pqbatch_process_page(pq, m, queue); vm_pagequeue_unlock(pq); critical_exit(); } /* * vm_page_pqbatch_drain: [ internal use only ] * * Force all per-CPU page queue batch queues to be drained. This is * intended for use in severe memory shortages, to ensure that pages * do not remain stuck in the batch queues. */ void vm_page_pqbatch_drain(void) { struct thread *td; struct vm_domain *vmd; struct vm_pagequeue *pq; int cpu, domain, queue; td = curthread; CPU_FOREACH(cpu) { thread_lock(td); sched_bind(td, cpu); thread_unlock(td); for (domain = 0; domain < vm_ndomains; domain++) { vmd = VM_DOMAIN(domain); for (queue = 0; queue < PQ_COUNT; queue++) { pq = &vmd->vmd_pagequeues[queue]; vm_pagequeue_lock(pq); critical_enter(); vm_pqbatch_process(pq, DPCPU_PTR(pqbatch[domain][queue]), queue); critical_exit(); vm_pagequeue_unlock(pq); } } } thread_lock(td); sched_unbind(td); thread_unlock(td); } /* * vm_page_dequeue_deferred: [ internal use only ] * * Request removal of the given page from its current page * queue. Physical removal from the queue may be deferred * indefinitely. */ void vm_page_dequeue_deferred(vm_page_t m) { vm_page_astate_t new, old; old = vm_page_astate_load(m); do { if (old.queue == PQ_NONE) { KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, ("%s: page %p has unexpected queue state", __func__, m)); break; } new = old; new.flags |= PGA_DEQUEUE; } while (!vm_page_pqstate_commit_request(m, &old, new)); } /* * vm_page_dequeue: * * Remove the page from whichever page queue it's in, if any, before * returning. */ void vm_page_dequeue(vm_page_t m) { vm_page_astate_t new, old; old = vm_page_astate_load(m); do { if (old.queue == PQ_NONE) { KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0, ("%s: page %p has unexpected queue state", __func__, m)); break; } new = old; new.flags &= ~PGA_QUEUE_OP_MASK; new.queue = PQ_NONE; } while (!vm_page_pqstate_commit_dequeue(m, &old, new)); } /* * Schedule the given page for insertion into the specified page queue. * Physical insertion of the page may be deferred indefinitely. */ static void vm_page_enqueue(vm_page_t m, uint8_t queue) { KASSERT(m->a.queue == PQ_NONE && (m->a.flags & PGA_QUEUE_STATE_MASK) == 0, ("%s: page %p is already enqueued", __func__, m)); KASSERT(m->ref_count > 0, ("%s: page %p does not carry any references", __func__, m)); m->a.queue = queue; if ((m->a.flags & PGA_REQUEUE) == 0) vm_page_aflag_set(m, PGA_REQUEUE); vm_page_pqbatch_submit(m, queue); } /* * vm_page_free_prep: * * Prepares the given page to be put on the free list, * disassociating it from any VM object. The caller may return * the page to the free list only if this function returns true. * * The object, if it exists, must be locked, and then the page must * be xbusy. Otherwise the page must be not busied. A managed * page must be unmapped. */ static bool vm_page_free_prep(vm_page_t m) { /* * Synchronize with threads that have dropped a reference to this * page. */ atomic_thread_fence_acq(); #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP) if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) { uint64_t *p; int i; p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++) KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx", m, i, (uintmax_t)*p)); } #endif if ((m->oflags & VPO_UNMANAGED) == 0) { KASSERT(!pmap_page_is_mapped(m), ("vm_page_free_prep: freeing mapped page %p", m)); KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0, ("vm_page_free_prep: mapping flags set in page %p", m)); } else { KASSERT(m->a.queue == PQ_NONE, ("vm_page_free_prep: unmanaged page %p is queued", m)); } VM_CNT_INC(v_tfree); if (m->object != NULL) { KASSERT(((m->oflags & VPO_UNMANAGED) != 0) == ((m->object->flags & OBJ_UNMANAGED) != 0), ("vm_page_free_prep: managed flag mismatch for page %p", m)); vm_page_assert_xbusied(m); /* * The object reference can be released without an atomic * operation. */ KASSERT((m->flags & PG_FICTITIOUS) != 0 || m->ref_count == VPRC_OBJREF, ("vm_page_free_prep: page %p has unexpected ref_count %u", m, m->ref_count)); vm_page_object_remove(m); m->ref_count -= VPRC_OBJREF; } else vm_page_assert_unbusied(m); vm_page_busy_free(m); /* * If fictitious remove object association and * return. */ if ((m->flags & PG_FICTITIOUS) != 0) { KASSERT(m->ref_count == 1, ("fictitious page %p is referenced", m)); KASSERT(m->a.queue == PQ_NONE, ("fictitious page %p is queued", m)); return (false); } /* * Pages need not be dequeued before they are returned to the physical * memory allocator, but they must at least be marked for a deferred * dequeue. */ if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_dequeue_deferred(m); m->valid = 0; vm_page_undirty(m); if (m->ref_count != 0) panic("vm_page_free_prep: page %p has references", m); /* * Restore the default memory attribute to the page. */ if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); #if VM_NRESERVLEVEL > 0 /* * Determine whether the page belongs to a reservation. If the page was * allocated from a per-CPU cache, it cannot belong to a reservation, so * as an optimization, we avoid the check in that case. */ if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m)) return (false); #endif return (true); } /* * vm_page_free_toq: * * Returns the given page to the free list, disassociating it * from any VM object. * * The object must be locked. The page must be exclusively busied if it * belongs to an object. */ static void vm_page_free_toq(vm_page_t m) { struct vm_domain *vmd; uma_zone_t zone; if (!vm_page_free_prep(m)) return; vmd = vm_pagequeue_domain(m); zone = vmd->vmd_pgcache[m->pool].zone; if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) { uma_zfree(zone, m); return; } vm_domain_free_lock(vmd); vm_phys_free_pages(m, 0); vm_domain_free_unlock(vmd); vm_domain_freecnt_inc(vmd, 1); } /* * vm_page_free_pages_toq: * * Returns a list of pages to the free list, disassociating it * from any VM object. In other words, this is equivalent to * calling vm_page_free_toq() for each page of a list of VM objects. */ void vm_page_free_pages_toq(struct spglist *free, bool update_wire_count) { vm_page_t m; int count; if (SLIST_EMPTY(free)) return; count = 0; while ((m = SLIST_FIRST(free)) != NULL) { count++; SLIST_REMOVE_HEAD(free, plinks.s.ss); vm_page_free_toq(m); } if (update_wire_count) vm_wire_sub(count); } /* * Mark this page as wired down. For managed pages, this prevents reclamation * by the page daemon, or when the containing object, if any, is destroyed. */ void vm_page_wire(vm_page_t m) { u_int old; #ifdef INVARIANTS if (m->object != NULL && !vm_page_busied(m) && !vm_object_busied(m->object)) VM_OBJECT_ASSERT_LOCKED(m->object); #endif KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(m->ref_count) >= 1, ("vm_page_wire: fictitious page %p has zero wirings", m)); old = atomic_fetchadd_int(&m->ref_count, 1); KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX, ("vm_page_wire: counter overflow for page %p", m)); if (VPRC_WIRE_COUNT(old) == 0) { if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_DEQUEUE); vm_wire_add(1); } } /* * Attempt to wire a mapped page following a pmap lookup of that page. * This may fail if a thread is concurrently tearing down mappings of the page. * The transient failure is acceptable because it translates to the * failure of the caller pmap_extract_and_hold(), which should be then * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages(). */ bool vm_page_wire_mapped(vm_page_t m) { u_int old; old = m->ref_count; do { KASSERT(old > 0, ("vm_page_wire_mapped: wiring unreferenced page %p", m)); if ((old & VPRC_BLOCKED) != 0) return (false); } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1)); if (VPRC_WIRE_COUNT(old) == 0) { if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_DEQUEUE); vm_wire_add(1); } return (true); } /* * Release a wiring reference to a managed page. If the page still belongs to * an object, update its position in the page queues to reflect the reference. * If the wiring was the last reference to the page, free the page. */ static void vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse) { u_int old; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is unmanaged", __func__, m)); /* * Update LRU state before releasing the wiring reference. * Use a release store when updating the reference count to * synchronize with vm_page_free_prep(). */ old = m->ref_count; do { KASSERT(VPRC_WIRE_COUNT(old) > 0, ("vm_page_unwire: wire count underflow for page %p", m)); if (old > VPRC_OBJREF + 1) { /* * The page has at least one other wiring reference. An * earlier iteration of this loop may have called * vm_page_release_toq() and cleared PGA_DEQUEUE, so * re-set it if necessary. */ if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0) vm_page_aflag_set(m, PGA_DEQUEUE); } else if (old == VPRC_OBJREF + 1) { /* * This is the last wiring. Clear PGA_DEQUEUE and * update the page's queue state to reflect the * reference. If the page does not belong to an object * (i.e., the VPRC_OBJREF bit is clear), we only need to * clear leftover queue state. */ vm_page_release_toq(m, nqueue, noreuse); } else if (old == 1) { vm_page_aflag_clear(m, PGA_DEQUEUE); } } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1)); if (VPRC_WIRE_COUNT(old) == 1) { vm_wire_sub(1); if (old == 1) vm_page_free(m); } } /* * Release one wiring of the specified page, potentially allowing it to be * paged out. * * Only managed pages belonging to an object can be paged out. If the number * of wirings transitions to zero and the page is eligible for page out, then * the page is added to the specified paging queue. If the released wiring * represented the last reference to the page, the page is freed. */ void vm_page_unwire(vm_page_t m, uint8_t nqueue) { KASSERT(nqueue < PQ_COUNT, ("vm_page_unwire: invalid queue %u request for page %p", nqueue, m)); if ((m->oflags & VPO_UNMANAGED) != 0) { if (vm_page_unwire_noq(m) && m->ref_count == 0) vm_page_free(m); return; } vm_page_unwire_managed(m, nqueue, false); } /* * Unwire a page without (re-)inserting it into a page queue. It is up * to the caller to enqueue, requeue, or free the page as appropriate. * In most cases involving managed pages, vm_page_unwire() should be used * instead. */ bool vm_page_unwire_noq(vm_page_t m) { u_int old; old = vm_page_drop(m, 1); KASSERT(VPRC_WIRE_COUNT(old) != 0, ("vm_page_unref: counter underflow for page %p", m)); KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1, ("vm_page_unref: missing ref on fictitious page %p", m)); if (VPRC_WIRE_COUNT(old) > 1) return (false); if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_clear(m, PGA_DEQUEUE); vm_wire_sub(1); return (true); } /* * Ensure that the page ends up in the specified page queue. If the page is * active or being moved to the active queue, ensure that its act_count is * at least ACT_INIT but do not otherwise mess with it. */ static __always_inline void vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag) { vm_page_astate_t old, new; KASSERT(m->ref_count > 0, ("%s: page %p does not carry any references", __func__, m)); KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD, ("%s: invalid flags %x", __func__, nflag)); if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m)) return; old = vm_page_astate_load(m); do { if ((old.flags & PGA_DEQUEUE) != 0) break; new = old; new.flags &= ~PGA_QUEUE_OP_MASK; if (nqueue == PQ_ACTIVE) new.act_count = max(old.act_count, ACT_INIT); if (old.queue == nqueue) { if (nqueue != PQ_ACTIVE) new.flags |= nflag; } else { new.flags |= nflag; new.queue = nqueue; } } while (!vm_page_pqstate_commit(m, &old, new)); } /* * Put the specified page on the active list (if appropriate). */ void vm_page_activate(vm_page_t m) { vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE); } /* * Move the specified page to the tail of the inactive queue, or requeue * the page if it is already in the inactive queue. */ void vm_page_deactivate(vm_page_t m) { vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE); } void vm_page_deactivate_noreuse(vm_page_t m) { vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD); } /* * Put a page in the laundry, or requeue it if it is already there. */ void vm_page_launder(vm_page_t m) { vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE); } /* * Put a page in the PQ_UNSWAPPABLE holding queue. */ void vm_page_unswappable(vm_page_t m) { KASSERT(!vm_page_wired(m) && (m->oflags & VPO_UNMANAGED) == 0, ("page %p already unswappable", m)); vm_page_dequeue(m); vm_page_enqueue(m, PQ_UNSWAPPABLE); } /* * Release a page back to the page queues in preparation for unwiring. */ static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse) { vm_page_astate_t old, new; uint16_t nflag; /* * Use a check of the valid bits to determine whether we should * accelerate reclamation of the page. The object lock might not be * held here, in which case the check is racy. At worst we will either * accelerate reclamation of a valid page and violate LRU, or * unnecessarily defer reclamation of an invalid page. * * If we were asked to not cache the page, place it near the head of the * inactive queue so that is reclaimed sooner. */ if (noreuse || m->valid == 0) { nqueue = PQ_INACTIVE; nflag = PGA_REQUEUE_HEAD; } else { nflag = PGA_REQUEUE; } old = vm_page_astate_load(m); do { new = old; /* * If the page is already in the active queue and we are not * trying to accelerate reclamation, simply mark it as * referenced and avoid any queue operations. */ new.flags &= ~PGA_QUEUE_OP_MASK; if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE) new.flags |= PGA_REFERENCED; else { new.flags |= nflag; new.queue = nqueue; } } while (!vm_page_pqstate_commit(m, &old, new)); } /* * Unwire a page and either attempt to free it or re-add it to the page queues. */ void vm_page_release(vm_page_t m, int flags) { vm_object_t object; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("vm_page_release: page %p is unmanaged", m)); if ((flags & VPR_TRYFREE) != 0) { for (;;) { object = atomic_load_ptr(&m->object); if (object == NULL) break; /* Depends on type-stability. */ if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object)) break; if (object == m->object) { vm_page_release_locked(m, flags); VM_OBJECT_WUNLOCK(object); return; } VM_OBJECT_WUNLOCK(object); } } vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0); } /* See vm_page_release(). */ void vm_page_release_locked(vm_page_t m, int flags) { VM_OBJECT_ASSERT_WLOCKED(m->object); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("vm_page_release_locked: page %p is unmanaged", m)); if (vm_page_unwire_noq(m)) { if ((flags & VPR_TRYFREE) != 0 && (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) && m->dirty == 0 && vm_page_tryxbusy(m)) { /* * An unlocked lookup may have wired the page before the * busy lock was acquired, in which case the page must * not be freed. */ if (__predict_true(!vm_page_wired(m))) { vm_page_free(m); return; } vm_page_xunbusy(m); } else { vm_page_release_toq(m, PQ_INACTIVE, flags != 0); } } } static bool vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t)) { u_int old; KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0, ("vm_page_try_blocked_op: page %p has no object", m)); KASSERT(vm_page_busied(m), ("vm_page_try_blocked_op: page %p is not busy", m)); VM_OBJECT_ASSERT_LOCKED(m->object); old = m->ref_count; do { KASSERT(old != 0, ("vm_page_try_blocked_op: page %p has no references", m)); if (VPRC_WIRE_COUNT(old) != 0) return (false); } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED)); (op)(m); /* * If the object is read-locked, new wirings may be created via an * object lookup. */ old = vm_page_drop(m, VPRC_BLOCKED); KASSERT(!VM_OBJECT_WOWNED(m->object) || old == (VPRC_BLOCKED | VPRC_OBJREF), ("vm_page_try_blocked_op: unexpected refcount value %u for %p", old, m)); return (true); } /* * Atomically check for wirings and remove all mappings of the page. */ bool vm_page_try_remove_all(vm_page_t m) { return (vm_page_try_blocked_op(m, pmap_remove_all)); } /* * Atomically check for wirings and remove all writeable mappings of the page. */ bool vm_page_try_remove_write(vm_page_t m) { return (vm_page_try_blocked_op(m, pmap_remove_write)); } /* * vm_page_advise * * Apply the specified advice to the given page. */ void vm_page_advise(vm_page_t m, int advice) { VM_OBJECT_ASSERT_WLOCKED(m->object); vm_page_assert_xbusied(m); if (advice == MADV_FREE) /* * Mark the page clean. This will allow the page to be freed * without first paging it out. MADV_FREE pages are often * quickly reused by malloc(3), so we do not do anything that * would result in a page fault on a later access. */ vm_page_undirty(m); else if (advice != MADV_DONTNEED) { if (advice == MADV_WILLNEED) vm_page_activate(m); return; } if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) vm_page_dirty(m); /* * Clear any references to the page. Otherwise, the page daemon will * immediately reactivate the page. */ vm_page_aflag_clear(m, PGA_REFERENCED); /* * Place clean pages near the head of the inactive queue rather than * the tail, thus defeating the queue's LRU operation and ensuring that * the page will be reused quickly. Dirty pages not already in the * laundry are moved there. */ if (m->dirty == 0) vm_page_deactivate_noreuse(m); else if (!vm_page_in_laundry(m)) vm_page_launder(m); } /* * vm_page_grab_release * * Helper routine for grab functions to release busy on return. */ static inline void vm_page_grab_release(vm_page_t m, int allocflags) { if ((allocflags & VM_ALLOC_NOBUSY) != 0) { if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) vm_page_sunbusy(m); else vm_page_xunbusy(m); } } /* * vm_page_grab_sleep * * Sleep for busy according to VM_ALLOC_ parameters. Returns true * if the caller should retry and false otherwise. * * If the object is locked on entry the object will be unlocked with * false returns and still locked but possibly having been dropped * with true returns. */ static bool vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked) { if ((allocflags & VM_ALLOC_NOWAIT) != 0) return (false); /* * Reference the page before unlocking and sleeping so that * the page daemon is less likely to reclaim it. */ if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0) vm_page_reference(m); if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) && locked) VM_OBJECT_WLOCK(object); if ((allocflags & VM_ALLOC_WAITFAIL) != 0) return (false); return (true); } /* * Assert that the grab flags are valid. */ static inline void vm_page_grab_check(int allocflags) { KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 || (allocflags & VM_ALLOC_WIRED) != 0, ("vm_page_grab*: the pages must be busied or wired")); KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || (allocflags & VM_ALLOC_IGN_SBUSY) != 0, ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); } /* * Calculate the page allocation flags for grab. */ static inline int vm_page_grab_pflags(int allocflags) { int pflags; pflags = allocflags & ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL | VM_ALLOC_NOBUSY); if ((allocflags & VM_ALLOC_NOWAIT) == 0) pflags |= VM_ALLOC_WAITFAIL; if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0) pflags |= VM_ALLOC_SBUSY; return (pflags); } /* * Grab a page, waiting until we are waken up due to the page * changing state. We keep on waiting, if the page continues * to be in the object. If the page doesn't exist, first allocate it * and then conditionally zero it. * * This routine may sleep. * * The object must be locked on entry. The lock will, however, be released * and reacquired if the routine sleeps. */ vm_page_t vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) { vm_page_t m; VM_OBJECT_ASSERT_WLOCKED(object); vm_page_grab_check(allocflags); retrylookup: if ((m = vm_page_lookup(object, pindex)) != NULL) { if (!vm_page_tryacquire(m, allocflags)) { if (vm_page_grab_sleep(object, m, pindex, "pgrbwt", allocflags, true)) goto retrylookup; return (NULL); } goto out; } if ((allocflags & VM_ALLOC_NOCREAT) != 0) return (NULL); m = vm_page_alloc(object, pindex, vm_page_grab_pflags(allocflags)); if (m == NULL) { if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) return (NULL); goto retrylookup; } if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); out: vm_page_grab_release(m, allocflags); return (m); } /* * Locklessly attempt to acquire a page given a (object, pindex) tuple * and an optional previous page to avoid the radix lookup. The resulting * page will be validated against the identity tuple and busied or wired * as requested. A NULL *mp return guarantees that the page was not in * radix at the time of the call but callers must perform higher level * synchronization or retry the operation under a lock if they require * an atomic answer. This is the only lock free validation routine, * other routines can depend on the resulting page state. * * The return value indicates whether the operation failed due to caller * flags. The return is tri-state with mp: * * (true, *mp != NULL) - The operation was successful. * (true, *mp == NULL) - The page was not found in tree. * (false, *mp == NULL) - WAITFAIL or NOWAIT prevented acquisition. */ static bool vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t prev, vm_page_t *mp, int allocflags) { vm_page_t m; vm_page_grab_check(allocflags); MPASS(prev == NULL || vm_page_busied(prev) || vm_page_wired(prev)); *mp = NULL; for (;;) { /* * We may see a false NULL here because the previous page * has been removed or just inserted and the list is loaded * without barriers. Switch to radix to verify. */ if (prev == NULL || (m = TAILQ_NEXT(prev, listq)) == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex || atomic_load_ptr(&m->object) != object) { prev = NULL; /* * This guarantees the result is instantaneously * correct. */ m = vm_radix_lookup_unlocked(&object->rtree, pindex); } if (m == NULL) return (true); if (vm_page_trybusy(m, allocflags)) { if (m->object == object && m->pindex == pindex) break; /* relookup. */ vm_page_busy_release(m); cpu_spinwait(); continue; } if (!vm_page_grab_sleep(object, m, pindex, "pgnslp", allocflags, false)) return (false); } if ((allocflags & VM_ALLOC_WIRED) != 0) vm_page_wire(m); vm_page_grab_release(m, allocflags); *mp = m; return (true); } /* * Try to locklessly grab a page and fall back to the object lock if NOCREAT * is not set. */ vm_page_t vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags) { vm_page_t m; vm_page_grab_check(allocflags); if (!vm_page_acquire_unlocked(object, pindex, NULL, &m, allocflags)) return (NULL); if (m != NULL) return (m); /* * The radix lockless lookup should never return a false negative * errors. If the user specifies NOCREAT they are guaranteed there * was no page present at the instant of the call. A NOCREAT caller * must handle create races gracefully. */ if ((allocflags & VM_ALLOC_NOCREAT) != 0) return (NULL); VM_OBJECT_WLOCK(object); m = vm_page_grab(object, pindex, allocflags); VM_OBJECT_WUNLOCK(object); return (m); } /* * Grab a page and make it valid, paging in if necessary. Pages missing from * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought * in simultaneously. Additional pages will be left on a paging queue but * will neither be wired nor busy regardless of allocflags. */ int vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) { vm_page_t m; vm_page_t ma[VM_INITIAL_PAGEIN]; int after, i, pflags, rv; KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || (allocflags & VM_ALLOC_IGN_SBUSY) != 0, ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); KASSERT((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, ("vm_page_grab_valid: Invalid flags 0x%X", allocflags)); VM_OBJECT_ASSERT_WLOCKED(object); pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY | VM_ALLOC_WIRED); pflags |= VM_ALLOC_WAITFAIL; retrylookup: if ((m = vm_page_lookup(object, pindex)) != NULL) { /* * If the page is fully valid it can only become invalid * with the object lock held. If it is not valid it can * become valid with the busy lock held. Therefore, we * may unnecessarily lock the exclusive busy here if we * race with I/O completion not using the object lock. * However, we will not end up with an invalid page and a * shared lock. */ if (!vm_page_trybusy(m, vm_page_all_valid(m) ? allocflags : 0)) { (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt", allocflags, true); goto retrylookup; } if (vm_page_all_valid(m)) goto out; if ((allocflags & VM_ALLOC_NOCREAT) != 0) { vm_page_busy_release(m); *mp = NULL; return (VM_PAGER_FAIL); } } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) { *mp = NULL; return (VM_PAGER_FAIL); } else if ((m = vm_page_alloc(object, pindex, pflags)) == NULL) { goto retrylookup; } vm_page_assert_xbusied(m); if (vm_pager_has_page(object, pindex, NULL, &after)) { after = MIN(after, VM_INITIAL_PAGEIN); after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT); after = MAX(after, 1); ma[0] = m; for (i = 1; i < after; i++) { if ((ma[i] = vm_page_next(ma[i - 1])) != NULL) { if (ma[i]->valid || !vm_page_tryxbusy(ma[i])) break; } else { ma[i] = vm_page_alloc(object, m->pindex + i, VM_ALLOC_NORMAL); if (ma[i] == NULL) break; } } after = i; vm_object_pip_add(object, after); VM_OBJECT_WUNLOCK(object); rv = vm_pager_get_pages(object, ma, after, NULL, NULL); VM_OBJECT_WLOCK(object); vm_object_pip_wakeupn(object, after); /* Pager may have replaced a page. */ m = ma[0]; if (rv != VM_PAGER_OK) { for (i = 0; i < after; i++) { if (!vm_page_wired(ma[i])) vm_page_free(ma[i]); else vm_page_xunbusy(ma[i]); } *mp = NULL; return (rv); } for (i = 1; i < after; i++) vm_page_readahead_finish(ma[i]); MPASS(vm_page_all_valid(m)); } else { vm_page_zero_invalid(m, TRUE); } out: if ((allocflags & VM_ALLOC_WIRED) != 0) vm_page_wire(m); if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m)) vm_page_busy_downgrade(m); else if ((allocflags & VM_ALLOC_NOBUSY) != 0) vm_page_busy_release(m); *mp = m; return (VM_PAGER_OK); } /* * Locklessly grab a valid page. If the page is not valid or not yet * allocated this will fall back to the object lock method. */ int vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex, int allocflags) { vm_page_t m; int flags; int error; KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || (allocflags & VM_ALLOC_IGN_SBUSY) != 0, ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY " "mismatch")); KASSERT((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0, ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags)); /* * Attempt a lockless lookup and busy. We need at least an sbusy * before we can inspect the valid field and return a wired page. */ flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); if (!vm_page_acquire_unlocked(object, pindex, NULL, mp, flags)) return (VM_PAGER_FAIL); if ((m = *mp) != NULL) { if (vm_page_all_valid(m)) { if ((allocflags & VM_ALLOC_WIRED) != 0) vm_page_wire(m); vm_page_grab_release(m, allocflags); return (VM_PAGER_OK); } vm_page_busy_release(m); } if ((allocflags & VM_ALLOC_NOCREAT) != 0) { *mp = NULL; return (VM_PAGER_FAIL); } VM_OBJECT_WLOCK(object); error = vm_page_grab_valid(mp, object, pindex, allocflags); VM_OBJECT_WUNLOCK(object); return (error); } /* * Return the specified range of pages from the given object. For each * page offset within the range, if a page already exists within the object * at that offset and it is busy, then wait for it to change state. If, * instead, the page doesn't exist, then allocate it. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs the pages * * The caller must always specify that the pages are to be busied and/or * wired. * * optional allocation flags: * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NOWAIT do not sleep * VM_ALLOC_SBUSY set page to sbusy state * VM_ALLOC_WIRED wire the pages * VM_ALLOC_ZERO zero and validate any invalid pages * * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it * may return a partial prefix of the requested range. */ int vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags, vm_page_t *ma, int count) { vm_page_t m, mpred; int pflags; int i; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0, ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed")); KASSERT(count > 0, ("vm_page_grab_pages: invalid page count %d", count)); vm_page_grab_check(allocflags); pflags = vm_page_grab_pflags(allocflags); i = 0; retrylookup: m = vm_radix_lookup_le(&object->rtree, pindex + i); if (m == NULL || m->pindex != pindex + i) { mpred = m; m = NULL; } else mpred = TAILQ_PREV(m, pglist, listq); for (; i < count; i++) { if (m != NULL) { if (!vm_page_tryacquire(m, allocflags)) { if (vm_page_grab_sleep(object, m, pindex + i, "grbmaw", allocflags, true)) goto retrylookup; break; } } else { if ((allocflags & VM_ALLOC_NOCREAT) != 0) break; m = vm_page_alloc_after(object, pindex + i, pflags | VM_ALLOC_COUNT(count - i), mpred); if (m == NULL) { if ((allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0) break; goto retrylookup; } } if (vm_page_none_valid(m) && (allocflags & VM_ALLOC_ZERO) != 0) { if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); vm_page_valid(m); } vm_page_grab_release(m, allocflags); ma[i] = mpred = m; m = vm_page_next(m); } return (i); } /* * Unlocked variant of vm_page_grab_pages(). This accepts the same flags * and will fall back to the locked variant to handle allocation. */ int vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags, vm_page_t *ma, int count) { vm_page_t m, pred; int flags; int i; KASSERT(count > 0, ("vm_page_grab_pages_unlocked: invalid page count %d", count)); vm_page_grab_check(allocflags); /* * Modify flags for lockless acquire to hold the page until we * set it valid if necessary. */ flags = allocflags & ~VM_ALLOC_NOBUSY; pred = NULL; for (i = 0; i < count; i++, pindex++) { if (!vm_page_acquire_unlocked(object, pindex, pred, &m, flags)) return (i); if (m == NULL) break; if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) { if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); vm_page_valid(m); } /* m will still be wired or busy according to flags. */ vm_page_grab_release(m, allocflags); pred = ma[i] = m; } if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0) return (i); count -= i; VM_OBJECT_WLOCK(object); i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count); VM_OBJECT_WUNLOCK(object); return (i); } /* * Mapping function for valid or dirty bits in a page. * * Inputs are required to range within a page. */ vm_page_bits_t vm_page_bits(int base, int size) { int first_bit; int last_bit; KASSERT( base + size <= PAGE_SIZE, ("vm_page_bits: illegal base/size %d/%d", base, size) ); if (size == 0) /* handle degenerate case */ return (0); first_bit = base >> DEV_BSHIFT; last_bit = (base + size - 1) >> DEV_BSHIFT; return (((vm_page_bits_t)2 << last_bit) - ((vm_page_bits_t)1 << first_bit)); } void vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set) { #if PAGE_SIZE == 32768 atomic_set_64((uint64_t *)bits, set); #elif PAGE_SIZE == 16384 atomic_set_32((uint32_t *)bits, set); #elif (PAGE_SIZE == 8192) && defined(atomic_set_16) atomic_set_16((uint16_t *)bits, set); #elif (PAGE_SIZE == 4096) && defined(atomic_set_8) atomic_set_8((uint8_t *)bits, set); #else /* PAGE_SIZE <= 8192 */ uintptr_t addr; int shift; addr = (uintptr_t)bits; /* * Use a trick to perform a 32-bit atomic on the * containing aligned word, to not depend on the existence * of atomic_{set, clear}_{8, 16}. */ shift = addr & (sizeof(uint32_t) - 1); #if BYTE_ORDER == BIG_ENDIAN shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; #else shift *= NBBY; #endif addr &= ~(sizeof(uint32_t) - 1); atomic_set_32((uint32_t *)addr, set << shift); #endif /* PAGE_SIZE */ } static inline void vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear) { #if PAGE_SIZE == 32768 atomic_clear_64((uint64_t *)bits, clear); #elif PAGE_SIZE == 16384 atomic_clear_32((uint32_t *)bits, clear); #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16) atomic_clear_16((uint16_t *)bits, clear); #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8) atomic_clear_8((uint8_t *)bits, clear); #else /* PAGE_SIZE <= 8192 */ uintptr_t addr; int shift; addr = (uintptr_t)bits; /* * Use a trick to perform a 32-bit atomic on the * containing aligned word, to not depend on the existence * of atomic_{set, clear}_{8, 16}. */ shift = addr & (sizeof(uint32_t) - 1); #if BYTE_ORDER == BIG_ENDIAN shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; #else shift *= NBBY; #endif addr &= ~(sizeof(uint32_t) - 1); atomic_clear_32((uint32_t *)addr, clear << shift); #endif /* PAGE_SIZE */ } static inline vm_page_bits_t vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits) { #if PAGE_SIZE == 32768 uint64_t old; old = *bits; while (atomic_fcmpset_64(bits, &old, newbits) == 0); return (old); #elif PAGE_SIZE == 16384 uint32_t old; old = *bits; while (atomic_fcmpset_32(bits, &old, newbits) == 0); return (old); #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16) uint16_t old; old = *bits; while (atomic_fcmpset_16(bits, &old, newbits) == 0); return (old); #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8) uint8_t old; old = *bits; while (atomic_fcmpset_8(bits, &old, newbits) == 0); return (old); #else /* PAGE_SIZE <= 4096*/ uintptr_t addr; uint32_t old, new, mask; int shift; addr = (uintptr_t)bits; /* * Use a trick to perform a 32-bit atomic on the * containing aligned word, to not depend on the existence * of atomic_{set, swap, clear}_{8, 16}. */ shift = addr & (sizeof(uint32_t) - 1); #if BYTE_ORDER == BIG_ENDIAN shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY; #else shift *= NBBY; #endif addr &= ~(sizeof(uint32_t) - 1); mask = VM_PAGE_BITS_ALL << shift; old = *bits; do { new = old & ~mask; new |= newbits << shift; } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0); return (old >> shift); #endif /* PAGE_SIZE */ } /* * vm_page_set_valid_range: * * Sets portions of a page valid. The arguments are expected * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive * of any partial chunks touched by the range. The invalid portion of * such chunks will be zeroed. * * (base + size) must be less then or equal to PAGE_SIZE. */ void vm_page_set_valid_range(vm_page_t m, int base, int size) { int endoff, frag; vm_page_bits_t pagebits; vm_page_assert_busied(m); if (size == 0) /* handle degenerate case */ return; /* * If the base is not DEV_BSIZE aligned and the valid * bit is clear, we have to zero out a portion of the * first block. */ if ((frag = rounddown2(base, DEV_BSIZE)) != base && (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, frag, base - frag); /* * If the ending offset is not DEV_BSIZE aligned and the * valid bit is clear, we have to zero out a portion of * the last block. */ endoff = base + size; if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, endoff, DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); /* * Assert that no previously invalid block that is now being validated * is already dirty. */ KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, ("vm_page_set_valid_range: page %p is dirty", m)); /* * Set valid bits inclusive of any overlap. */ pagebits = vm_page_bits(base, size); if (vm_page_xbusied(m)) m->valid |= pagebits; else vm_page_bits_set(m, &m->valid, pagebits); } /* * Set the page dirty bits and free the invalid swap space if * present. Returns the previous dirty bits. */ vm_page_bits_t vm_page_set_dirty(vm_page_t m) { vm_page_bits_t old; VM_PAGE_OBJECT_BUSY_ASSERT(m); if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) { old = m->dirty; m->dirty = VM_PAGE_BITS_ALL; } else old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL); if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0) vm_pager_page_unswapped(m); return (old); } /* * Clear the given bits from the specified page's dirty field. */ static __inline void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) { vm_page_assert_busied(m); /* * If the page is xbusied and not write mapped we are the * only thread that can modify dirty bits. Otherwise, The pmap * layer can call vm_page_dirty() without holding a distinguished * lock. The combination of page busy and atomic operations * suffice to guarantee consistency of the page dirty field. */ if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) m->dirty &= ~pagebits; else vm_page_bits_clear(m, &m->dirty, pagebits); } /* * vm_page_set_validclean: * * Sets portions of a page valid and clean. The arguments are expected * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive * of any partial chunks touched by the range. The invalid portion of * such chunks will be zero'd. * * (base + size) must be less then or equal to PAGE_SIZE. */ void vm_page_set_validclean(vm_page_t m, int base, int size) { vm_page_bits_t oldvalid, pagebits; int endoff, frag; vm_page_assert_busied(m); if (size == 0) /* handle degenerate case */ return; /* * If the base is not DEV_BSIZE aligned and the valid * bit is clear, we have to zero out a portion of the * first block. */ if ((frag = rounddown2(base, DEV_BSIZE)) != base && (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, frag, base - frag); /* * If the ending offset is not DEV_BSIZE aligned and the * valid bit is clear, we have to zero out a portion of * the last block. */ endoff = base + size; if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, endoff, DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); /* * Set valid, clear dirty bits. If validating the entire * page we can safely clear the pmap modify bit. We also * use this opportunity to clear the PGA_NOSYNC flag. If a process * takes a write fault on a MAP_NOSYNC memory area the flag will * be set again. * * We set valid bits inclusive of any overlap, but we can only * clear dirty bits for DEV_BSIZE chunks that are fully within * the range. */ oldvalid = m->valid; pagebits = vm_page_bits(base, size); if (vm_page_xbusied(m)) m->valid |= pagebits; else vm_page_bits_set(m, &m->valid, pagebits); #if 0 /* NOT YET */ if ((frag = base & (DEV_BSIZE - 1)) != 0) { frag = DEV_BSIZE - frag; base += frag; size -= frag; if (size < 0) size = 0; } pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); #endif if (base == 0 && size == PAGE_SIZE) { /* * The page can only be modified within the pmap if it is * mapped, and it can only be mapped if it was previously * fully valid. */ if (oldvalid == VM_PAGE_BITS_ALL) /* * Perform the pmap_clear_modify() first. Otherwise, * a concurrent pmap operation, such as * pmap_protect(), could clear a modification in the * pmap and set the dirty field on the page before * pmap_clear_modify() had begun and after the dirty * field was cleared here. */ pmap_clear_modify(m); m->dirty = 0; vm_page_aflag_clear(m, PGA_NOSYNC); } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m)) m->dirty &= ~pagebits; else vm_page_clear_dirty_mask(m, pagebits); } void vm_page_clear_dirty(vm_page_t m, int base, int size) { vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); } /* * vm_page_set_invalid: * * Invalidates DEV_BSIZE'd chunks within a page. Both the * valid and dirty bits for the effected areas are cleared. */ void vm_page_set_invalid(vm_page_t m, int base, int size) { vm_page_bits_t bits; vm_object_t object; /* * The object lock is required so that pages can't be mapped * read-only while we're in the process of invalidating them. */ object = m->object; VM_OBJECT_ASSERT_WLOCKED(object); vm_page_assert_busied(m); if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + size >= object->un_pager.vnp.vnp_size) bits = VM_PAGE_BITS_ALL; else bits = vm_page_bits(base, size); if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0) pmap_remove_all(m); KASSERT((bits == 0 && vm_page_all_valid(m)) || !pmap_page_is_mapped(m), ("vm_page_set_invalid: page %p is mapped", m)); if (vm_page_xbusied(m)) { m->valid &= ~bits; m->dirty &= ~bits; } else { vm_page_bits_clear(m, &m->valid, bits); vm_page_bits_clear(m, &m->dirty, bits); } } /* * vm_page_invalid: * * Invalidates the entire page. The page must be busy, unmapped, and * the enclosing object must be locked. The object locks protects * against concurrent read-only pmap enter which is done without * busy. */ void vm_page_invalid(vm_page_t m) { vm_page_assert_busied(m); VM_OBJECT_ASSERT_LOCKED(m->object); MPASS(!pmap_page_is_mapped(m)); if (vm_page_xbusied(m)) m->valid = 0; else vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL); } /* * vm_page_zero_invalid() * * The kernel assumes that the invalid portions of a page contain * garbage, but such pages can be mapped into memory by user code. * When this occurs, we must zero out the non-valid portions of the * page so user code sees what it expects. * * Pages are most often semi-valid when the end of a file is mapped * into memory and the file's size is not page aligned. */ void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) { int b; int i; /* * Scan the valid bits looking for invalid sections that * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the * valid bit may be set ) have already been zeroed by * vm_page_set_validclean(). */ for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { if (i == (PAGE_SIZE / DEV_BSIZE) || (m->valid & ((vm_page_bits_t)1 << i))) { if (i > b) { pmap_zero_page_area(m, b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); } b = i + 1; } } /* * setvalid is TRUE when we can safely set the zero'd areas * as being valid. We can do this if there are no cache consistancy * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. */ if (setvalid) vm_page_valid(m); } /* * vm_page_is_valid: * * Is (partial) page valid? Note that the case where size == 0 * will return FALSE in the degenerate case where the page is * entirely invalid, and TRUE otherwise. * * Some callers envoke this routine without the busy lock held and * handle races via higher level locks. Typical callers should * hold a busy lock to prevent invalidation. */ int vm_page_is_valid(vm_page_t m, int base, int size) { vm_page_bits_t bits; bits = vm_page_bits(base, size); return (m->valid != 0 && (m->valid & bits) == bits); } /* * Returns true if all of the specified predicates are true for the entire * (super)page and false otherwise. */ bool vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m) { vm_object_t object; int i, npages; object = m->object; if (skip_m != NULL && skip_m->object != object) return (false); VM_OBJECT_ASSERT_LOCKED(object); npages = atop(pagesizes[m->psind]); /* * The physically contiguous pages that make up a superpage, i.e., a * page with a page size index ("psind") greater than zero, will * occupy adjacent entries in vm_page_array[]. */ for (i = 0; i < npages; i++) { /* Always test object consistency, including "skip_m". */ if (m[i].object != object) return (false); if (&m[i] == skip_m) continue; if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i])) return (false); if ((flags & PS_ALL_DIRTY) != 0) { /* * Calling vm_page_test_dirty() or pmap_is_modified() * might stop this case from spuriously returning * "false". However, that would require a write lock * on the object containing "m[i]". */ if (m[i].dirty != VM_PAGE_BITS_ALL) return (false); } if ((flags & PS_ALL_VALID) != 0 && m[i].valid != VM_PAGE_BITS_ALL) return (false); } return (true); } /* * Set the page's dirty bits if the page is modified. */ void vm_page_test_dirty(vm_page_t m) { vm_page_assert_busied(m); if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) vm_page_dirty(m); } void vm_page_valid(vm_page_t m) { vm_page_assert_busied(m); if (vm_page_xbusied(m)) m->valid = VM_PAGE_BITS_ALL; else vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL); } void vm_page_lock_KBI(vm_page_t m, const char *file, int line) { mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); } void vm_page_unlock_KBI(vm_page_t m, const char *file, int line) { mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); } int vm_page_trylock_KBI(vm_page_t m, const char *file, int line) { return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); } #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) { vm_page_lock_assert_KBI(m, MA_OWNED, file, line); } void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) { mtx_assert_(vm_page_lockptr(m), a, file, line); } #endif #ifdef INVARIANTS void vm_page_object_busy_assert(vm_page_t m) { /* * Certain of the page's fields may only be modified by the * holder of a page or object busy. */ if (m->object != NULL && !vm_page_busied(m)) VM_OBJECT_ASSERT_BUSY(m->object); } void vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits) { if ((bits & PGA_WRITEABLE) == 0) return; /* * The PGA_WRITEABLE flag can only be set if the page is * managed, is exclusively busied or the object is locked. * Currently, this flag is only set by pmap_enter(). */ KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("PGA_WRITEABLE on unmanaged page")); if (!vm_page_xbusied(m)) VM_OBJECT_ASSERT_BUSY(m->object); } #endif #include "opt_ddb.h" #ifdef DDB #include #include DB_SHOW_COMMAND(page, vm_page_print_page_info) { db_printf("vm_cnt.v_free_count: %d\n", vm_free_count()); db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count()); db_printf("vm_cnt.v_active_count: %d\n", vm_active_count()); db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count()); db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count()); db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); } DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) { int dom; db_printf("pq_free %d\n", vm_free_count()); for (dom = 0; dom < vm_ndomains; dom++) { db_printf( "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n", dom, vm_dom[dom].vmd_page_count, vm_dom[dom].vmd_free_count, vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt); } } DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) { vm_page_t m; boolean_t phys, virt; if (!have_addr) { db_printf("show pginfo addr\n"); return; } phys = strchr(modif, 'p') != NULL; virt = strchr(modif, 'v') != NULL; if (virt) m = PHYS_TO_VM_PAGE(pmap_kextract(addr)); else if (phys) m = PHYS_TO_VM_PAGE(addr); else m = (vm_page_t)addr; db_printf( "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n" " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, m->a.queue, m->ref_count, m->a.flags, m->oflags, m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty); } #endif /* DDB */