/*- * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause) * * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... */ #include #include "opt_directio.h" #include "opt_ffs.h" #include "opt_ufs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef UFS_DIRHASH #include #endif #include #include #define ALIGNED_TO(ptr, s) \ (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) #ifdef DIRECTIO extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); #endif static vop_fdatasync_t ffs_fdatasync; static vop_fsync_t ffs_fsync; static vop_getpages_t ffs_getpages; static vop_getpages_async_t ffs_getpages_async; static vop_lock1_t ffs_lock; #ifdef INVARIANTS static vop_unlock_t ffs_unlock_debug; #endif static vop_read_t ffs_read; static vop_write_t ffs_write; static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred); static vop_strategy_t ffsext_strategy; static vop_closeextattr_t ffs_closeextattr; static vop_deleteextattr_t ffs_deleteextattr; static vop_getextattr_t ffs_getextattr; static vop_listextattr_t ffs_listextattr; static vop_openextattr_t ffs_openextattr; static vop_setextattr_t ffs_setextattr; static vop_vptofh_t ffs_vptofh; static vop_vput_pair_t ffs_vput_pair; vop_fplookup_vexec_t ufs_fplookup_vexec; /* Global vfs data structures for ufs. */ struct vop_vector ffs_vnodeops1 = { .vop_default = &ufs_vnodeops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_getpages = ffs_getpages, .vop_getpages_async = ffs_getpages_async, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_read = ffs_read, .vop_reallocblks = ffs_reallocblks, .vop_write = ffs_write, .vop_vptofh = ffs_vptofh, .vop_vput_pair = ffs_vput_pair, .vop_fplookup_vexec = ufs_fplookup_vexec, .vop_fplookup_symlink = VOP_EAGAIN, }; VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); struct vop_vector ffs_fifoops1 = { .vop_default = &ufs_fifoops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_vptofh = ffs_vptofh, .vop_fplookup_vexec = VOP_EAGAIN, .vop_fplookup_symlink = VOP_EAGAIN, }; VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); /* Global vfs data structures for ufs. */ struct vop_vector ffs_vnodeops2 = { .vop_default = &ufs_vnodeops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_getpages = ffs_getpages, .vop_getpages_async = ffs_getpages_async, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_read = ffs_read, .vop_reallocblks = ffs_reallocblks, .vop_write = ffs_write, .vop_closeextattr = ffs_closeextattr, .vop_deleteextattr = ffs_deleteextattr, .vop_getextattr = ffs_getextattr, .vop_listextattr = ffs_listextattr, .vop_openextattr = ffs_openextattr, .vop_setextattr = ffs_setextattr, .vop_vptofh = ffs_vptofh, .vop_vput_pair = ffs_vput_pair, .vop_fplookup_vexec = ufs_fplookup_vexec, .vop_fplookup_symlink = VOP_EAGAIN, }; VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); struct vop_vector ffs_fifoops2 = { .vop_default = &ufs_fifoops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_reallocblks = ffs_reallocblks, .vop_strategy = ffsext_strategy, .vop_closeextattr = ffs_closeextattr, .vop_deleteextattr = ffs_deleteextattr, .vop_getextattr = ffs_getextattr, .vop_listextattr = ffs_listextattr, .vop_openextattr = ffs_openextattr, .vop_setextattr = ffs_setextattr, .vop_vptofh = ffs_vptofh, .vop_fplookup_vexec = VOP_EAGAIN, .vop_fplookup_symlink = VOP_EAGAIN, }; VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); /* * Synch an open file. */ /* ARGSUSED */ static int ffs_fsync(struct vop_fsync_args *ap) { struct vnode *vp; struct bufobj *bo; int error; vp = ap->a_vp; bo = &vp->v_bufobj; retry: error = ffs_syncvnode(vp, ap->a_waitfor, 0); if (error) return (error); if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { error = softdep_fsync(vp); if (error) return (error); /* * The softdep_fsync() function may drop vp lock, * allowing for dirty buffers to reappear on the * bo_dirty list. Recheck and resync as needed. */ BO_LOCK(bo); if ((vp->v_type == VREG || vp->v_type == VDIR) && (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { BO_UNLOCK(bo); goto retry; } BO_UNLOCK(bo); } if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) return (ENXIO); return (0); } int ffs_syncvnode(struct vnode *vp, int waitfor, int flags) { struct inode *ip; struct bufobj *bo; struct ufsmount *ump; struct buf *bp, *nbp; ufs_lbn_t lbn; int error, passes, wflag; bool still_dirty, unlocked, wait; ip = VTOI(vp); bo = &vp->v_bufobj; ump = VFSTOUFS(vp->v_mount); #ifdef WITNESS wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0; #else wflag = 0; #endif /* * When doing MNT_WAIT we must first flush all dependencies * on the inode. */ if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && (error = softdep_sync_metadata(vp)) != 0) { if (ffs_fsfail_cleanup(ump, error)) error = 0; return (error); } /* * Flush all dirty buffers associated with a vnode. */ error = 0; passes = 0; wait = false; /* Always do an async pass first. */ unlocked = false; lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); BO_LOCK(bo); loop: TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) bp->b_vflags &= ~BV_SCANNED; TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { /* * Reasons to skip this buffer: it has already been considered * on this pass, the buffer has dependencies that will cause * it to be redirtied and it has not already been deferred, * or it is already being written. */ if ((bp->b_vflags & BV_SCANNED) != 0) continue; bp->b_vflags |= BV_SCANNED; /* * Flush indirects in order, if requested. * * Note that if only datasync is requested, we can * skip indirect blocks when softupdates are not * active. Otherwise we must flush them with data, * since dependencies prevent data block writes. */ if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && (lbn_level(bp->b_lblkno) >= passes || ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) continue; if (bp->b_lblkno > lbn) panic("ffs_syncvnode: syncing truncated data."); if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { BO_UNLOCK(bo); } else if (wait) { if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) { BO_LOCK(bo); bp->b_vflags &= ~BV_SCANNED; goto next_locked; } } else continue; if ((bp->b_flags & B_DELWRI) == 0) panic("ffs_fsync: not dirty"); /* * Check for dependencies and potentially complete them. */ if (!LIST_EMPTY(&bp->b_dep) && (error = softdep_sync_buf(vp, bp, wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { /* * Lock order conflict, buffer was already unlocked, * and vnode possibly unlocked. */ if (error == ERELOOKUP) { if (vp->v_data == NULL) return (EBADF); unlocked = true; if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && (error = softdep_sync_metadata(vp)) != 0) { if (ffs_fsfail_cleanup(ump, error)) error = 0; return (unlocked && error == 0 ? ERELOOKUP : error); } /* Re-evaluate inode size */ lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); goto next; } /* I/O error. */ if (error != EBUSY) { BUF_UNLOCK(bp); return (error); } /* If we deferred once, don't defer again. */ if ((bp->b_flags & B_DEFERRED) == 0) { bp->b_flags |= B_DEFERRED; BUF_UNLOCK(bp); goto next; } } if (wait) { bremfree(bp); error = bwrite(bp); if (ffs_fsfail_cleanup(ump, error)) error = 0; if (error != 0) return (error); } else if ((bp->b_flags & B_CLUSTEROK)) { (void) vfs_bio_awrite(bp); } else { bremfree(bp); (void) bawrite(bp); } next: /* * Since we may have slept during the I/O, we need * to start from a known point. */ BO_LOCK(bo); next_locked: nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); } if (waitfor != MNT_WAIT) { BO_UNLOCK(bo); if ((flags & NO_INO_UPDT) != 0) return (unlocked ? ERELOOKUP : 0); error = ffs_update(vp, 0); if (error == 0 && unlocked) error = ERELOOKUP; return (error); } /* Drain IO to see if we're done. */ bufobj_wwait(bo, 0, 0); /* * Block devices associated with filesystems may have new I/O * requests posted for them even if the vnode is locked, so no * amount of trying will get them clean. We make several passes * as a best effort. * * Regular files may need multiple passes to flush all dependency * work as it is possible that we must write once per indirect * level, once for the leaf, and once for the inode and each of * these will be done with one sync and one async pass. */ if (bo->bo_dirty.bv_cnt > 0) { if ((flags & DATA_ONLY) == 0) { still_dirty = true; } else { /* * For data-only sync, dirty indirect buffers * are ignored. */ still_dirty = false; TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { if (bp->b_lblkno > -UFS_NDADDR) { still_dirty = true; break; } } } if (still_dirty) { /* Write the inode after sync passes to flush deps. */ if (wait && DOINGSOFTDEP(vp) && (flags & NO_INO_UPDT) == 0) { BO_UNLOCK(bo); ffs_update(vp, 1); BO_LOCK(bo); } /* switch between sync/async. */ wait = !wait; if (wait || ++passes < UFS_NIADDR + 2) goto loop; } } BO_UNLOCK(bo); error = 0; if ((flags & DATA_ONLY) == 0) { if ((flags & NO_INO_UPDT) == 0) error = ffs_update(vp, 1); if (DOINGSUJ(vp)) softdep_journal_fsync(VTOI(vp)); } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { error = ffs_update(vp, 1); } if (error == 0 && unlocked) error = ERELOOKUP; if (error == 0) ip->i_flag &= ~IN_NEEDSYNC; return (error); } static int ffs_fdatasync(struct vop_fdatasync_args *ap) { return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); } static int ffs_lock( struct vop_lock1_args /* { struct vnode *a_vp; int a_flags; char *file; int line; } */ *ap) { #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) struct vnode *vp = ap->a_vp; #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ #ifdef DIAGNOSTIC struct inode *ip; #endif /* DIAGNOSTIC */ int result; #ifndef NO_FFS_SNAPSHOT int flags; struct lock *lkp; /* * Adaptive spinning mixed with SU leads to trouble. use a giant hammer * and only use it when LK_NODDLKTREAT is set. Currently this means it * is only used during path lookup. */ if ((ap->a_flags & LK_NODDLKTREAT) != 0) ap->a_flags |= LK_ADAPTIVE; switch (ap->a_flags & LK_TYPE_MASK) { case LK_SHARED: case LK_UPGRADE: case LK_EXCLUSIVE: flags = ap->a_flags; for (;;) { #ifdef DEBUG_VFS_LOCKS VNPASS(vp->v_holdcnt != 0, vp); #endif /* DEBUG_VFS_LOCKS */ lkp = vp->v_vnlock; result = lockmgr_lock_flags(lkp, flags, &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); if (lkp == vp->v_vnlock || result != 0) break; /* * Apparent success, except that the vnode * mutated between snapshot file vnode and * regular file vnode while this process * slept. The lock currently held is not the * right lock. Release it, and try to get the * new lock. */ lockmgr_unlock(lkp); if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == (LK_INTERLOCK | LK_NOWAIT)) return (EBUSY); if ((flags & LK_TYPE_MASK) == LK_UPGRADE) flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; flags &= ~LK_INTERLOCK; } #ifdef DIAGNOSTIC switch (ap->a_flags & LK_TYPE_MASK) { case LK_UPGRADE: case LK_EXCLUSIVE: if (result == 0 && vp->v_vnlock->lk_recurse == 0) { ip = VTOI(vp); if (ip != NULL) ip->i_lock_gen++; } } #endif /* DIAGNOSTIC */ break; default: #ifdef DIAGNOSTIC if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { ip = VTOI(vp); if (ip != NULL) ufs_unlock_tracker(ip); } #endif /* DIAGNOSTIC */ result = VOP_LOCK1_APV(&ufs_vnodeops, ap); break; } #else /* NO_FFS_SNAPSHOT */ /* * See above for an explanation. */ if ((ap->a_flags & LK_NODDLKTREAT) != 0) ap->a_flags |= LK_ADAPTIVE; #ifdef DIAGNOSTIC if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { ip = VTOI(vp); if (ip != NULL) ufs_unlock_tracker(ip); } #endif /* DIAGNOSTIC */ result = VOP_LOCK1_APV(&ufs_vnodeops, ap); #endif /* NO_FFS_SNAPSHOT */ #ifdef DIAGNOSTIC switch (ap->a_flags & LK_TYPE_MASK) { case LK_UPGRADE: case LK_EXCLUSIVE: if (result == 0 && vp->v_vnlock->lk_recurse == 0) { ip = VTOI(vp); if (ip != NULL) ip->i_lock_gen++; } } #endif /* DIAGNOSTIC */ return (result); } #ifdef INVARIANTS static int ffs_unlock_debug(struct vop_unlock_args *ap) { struct vnode *vp; struct inode *ip; vp = ap->a_vp; ip = VTOI(vp); if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { if ((vp->v_mflag & VMP_LAZYLIST) == 0) { VI_LOCK(vp); VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, ("%s: modified vnode (%x) not on lazy list", __func__, ip->i_flag)); VI_UNLOCK(vp); } } KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || (ip->i_flag & IN_ENDOFF) == 0, ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); #ifdef DIAGNOSTIC if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && vp->v_vnlock->lk_recurse == 0) ufs_unlock_tracker(ip); #endif return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); } #endif static int ffs_read_hole(struct uio *uio, long xfersize, long *size) { ssize_t saved_resid, tlen; int error; while (xfersize > 0) { tlen = min(xfersize, ZERO_REGION_SIZE); saved_resid = uio->uio_resid; error = vn_io_fault_uiomove(__DECONST(void *, zero_region), tlen, uio); if (error != 0) return (error); tlen = saved_resid - uio->uio_resid; xfersize -= tlen; *size -= tlen; } return (0); } /* * Vnode op for reading. */ static int ffs_read( struct vop_read_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap) { struct vnode *vp; struct inode *ip; struct uio *uio; struct fs *fs; struct buf *bp; ufs_lbn_t lbn, nextlbn; off_t bytesinfile; long size, xfersize, blkoffset; ssize_t orig_resid; int bflag, error, ioflag, seqcount; vp = ap->a_vp; uio = ap->a_uio; ioflag = ap->a_ioflag; if (ap->a_ioflag & IO_EXT) #ifdef notyet return (ffs_extread(vp, uio, ioflag)); #else panic("ffs_read+IO_EXT"); #endif #ifdef DIRECTIO if ((ioflag & IO_DIRECT) != 0) { int workdone; error = ffs_rawread(vp, uio, &workdone); if (error != 0 || workdone != 0) return error; } #endif seqcount = ap->a_ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_READ) panic("ffs_read: mode"); if (vp->v_type == VLNK) { if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen) panic("ffs_read: short symlink"); } else if (vp->v_type != VREG && vp->v_type != VDIR) panic("ffs_read: type %d", vp->v_type); #endif orig_resid = uio->uio_resid; KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); if (orig_resid == 0) return (0); KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); fs = ITOFS(ip); if (uio->uio_offset < ip->i_size && uio->uio_offset >= fs->fs_maxfilesize) return (EOVERFLOW); bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); #ifdef WITNESS bflag |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; #endif for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) break; lbn = lblkno(fs, uio->uio_offset); nextlbn = lbn + 1; /* * size of buffer. The buffer representing the * end of the file is rounded up to the size of * the block type ( fragment or full block, * depending ). */ size = blksize(fs, ip, lbn); blkoffset = blkoff(fs, uio->uio_offset); /* * The amount we want to transfer in this iteration is * one FS block less the amount of the data before * our startpoint (duh!) */ xfersize = fs->fs_bsize - blkoffset; /* * But if we actually want less than the block, * or the file doesn't have a whole block more of data, * then use the lesser number. */ if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (bytesinfile < xfersize) xfersize = bytesinfile; if (lblktosize(fs, nextlbn) >= ip->i_size) { /* * Don't do readahead if this is the end of the file. */ error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { /* * Otherwise if we are allowed to cluster, * grab as much as we can. * * XXX This may not be a win if we are not * doing sequential access. */ error = cluster_read(vp, ip->i_size, lbn, size, NOCRED, blkoffset + uio->uio_resid, seqcount, bflag, &bp); } else if (seqcount > 1) { /* * If we are NOT allowed to cluster, then * if we appear to be acting sequentially, * fire off a request for a readahead * as well as a read. Note that the 4th and 5th * arguments point to arrays of the size specified in * the 6th argument. */ int nextsize = blksize(fs, ip, nextlbn); error = breadn_flags(vp, lbn, lbn, size, &nextlbn, &nextsize, 1, NOCRED, bflag, NULL, &bp); } else { /* * Failing all of the above, just read what the * user asked for. Interestingly, the same as * the first option above. */ error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); } if (error == EJUSTRETURN) { error = ffs_read_hole(uio, xfersize, &size); if (error == 0) continue; } if (error != 0) { brelse(bp); bp = NULL; break; } /* * We should only get non-zero b_resid when an I/O error * has occurred, which should cause us to break above. * However, if the short read did not cause an error, * then we want to ensure that we do not uiomove bad * or uninitialized data. */ size -= bp->b_resid; if (size < xfersize) { if (size == 0) break; xfersize = size; } if (buf_mapped(bp)) { error = vn_io_fault_uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); } else { error = vn_io_fault_pgmove(bp->b_pages, blkoffset + (bp->b_offset & PAGE_MASK), (int)xfersize, uio); } if (error) break; vfs_bio_brelse(bp, ioflag); } /* * This can only happen in the case of an error * because the loop above resets bp to NULL on each iteration * and on normal completion has not set a new value into it. * so it must have come from a 'break' statement */ if (bp != NULL) vfs_bio_brelse(bp, ioflag); if ((error == 0 || uio->uio_resid != orig_resid) && (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); return (error); } /* * Vnode op for writing. */ static int ffs_write( struct vop_write_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap) { struct vnode *vp; struct uio *uio; struct inode *ip; struct fs *fs; struct buf *bp; ufs_lbn_t lbn; off_t osize; ssize_t resid, r; int seqcount; int blkoffset, error, flags, ioflag, size, xfersize; vp = ap->a_vp; if (DOINGSUJ(vp)) softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); uio = ap->a_uio; ioflag = ap->a_ioflag; if (ap->a_ioflag & IO_EXT) #ifdef notyet return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); #else panic("ffs_write+IO_EXT"); #endif seqcount = ap->a_ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_WRITE) panic("ffs_write: mode"); #endif switch (vp->v_type) { case VREG: if (ioflag & IO_APPEND) uio->uio_offset = ip->i_size; if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) return (EPERM); /* FALLTHROUGH */ case VLNK: break; case VDIR: panic("ffs_write: dir write"); break; default: panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, (int)uio->uio_offset, (int)uio->uio_resid ); } KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); fs = ITOFS(ip); /* * Maybe this should be above the vnode op call, but so long as * file servers have no limits, I don't think it matters. */ error = vn_rlimit_fsizex(vp, uio, fs->fs_maxfilesize, &r, uio->uio_td); if (error != 0) { vn_rlimit_fsizex_res(uio, r); return (error); } resid = uio->uio_resid; osize = ip->i_size; if (seqcount > BA_SEQMAX) flags = BA_SEQMAX << BA_SEQSHIFT; else flags = seqcount << BA_SEQSHIFT; if (ioflag & IO_SYNC) flags |= IO_SYNC; flags |= BA_UNMAPPED; for (error = 0; uio->uio_resid > 0;) { lbn = lblkno(fs, uio->uio_offset); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->fs_bsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (uio->uio_offset + xfersize > ip->i_size) vnode_pager_setsize(vp, uio->uio_offset + xfersize); /* * We must perform a read-before-write if the transfer size * does not cover the entire buffer. */ if (fs->fs_bsize > xfersize) flags |= BA_CLRBUF; else flags &= ~BA_CLRBUF; /* XXX is uio->uio_offset the right thing here? */ error = UFS_BALLOC(vp, uio->uio_offset, xfersize, ap->a_cred, flags, &bp); if (error != 0) { vnode_pager_setsize(vp, ip->i_size); break; } if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) bp->b_flags |= B_NOCACHE; if (uio->uio_offset + xfersize > ip->i_size) { ip->i_size = uio->uio_offset + xfersize; DIP_SET(ip, i_size, ip->i_size); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); } size = blksize(fs, ip, lbn) - bp->b_resid; if (size < xfersize) xfersize = size; if (buf_mapped(bp)) { error = vn_io_fault_uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); } else { error = vn_io_fault_pgmove(bp->b_pages, blkoffset + (bp->b_offset & PAGE_MASK), (int)xfersize, uio); } /* * If the buffer is not already filled and we encounter an * error while trying to fill it, we have to clear out any * garbage data from the pages instantiated for the buffer. * If we do not, a failed uiomove() during a write can leave * the prior contents of the pages exposed to a userland mmap. * * Note that we need only clear buffers with a transfer size * equal to the block size because buffers with a shorter * transfer size were cleared above by the call to UFS_BALLOC() * with the BA_CLRBUF flag set. * * If the source region for uiomove identically mmaps the * buffer, uiomove() performed the NOP copy, and the buffer * content remains valid because the page fault handler * validated the pages. */ if (error != 0 && (bp->b_flags & B_CACHE) == 0 && fs->fs_bsize == xfersize) { if (error == EFAULT && LIST_EMPTY(&bp->b_dep)) { bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE; brelse(bp); break; } else { vfs_bio_clrbuf(bp); } } vfs_bio_set_flags(bp, ioflag); /* * If IO_SYNC each buffer is written synchronously. Otherwise * if we have a severe page deficiency write the buffer * asynchronously. Otherwise try to cluster, and if that * doesn't do it then either do an async write (if O_DIRECT), * or a delayed write (if not). */ if (ioflag & IO_SYNC) { (void)bwrite(bp); } else if (vm_page_count_severe() || buf_dirty_count_severe() || (ioflag & IO_ASYNC)) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else if (xfersize + blkoffset == fs->fs_bsize) { if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { bp->b_flags |= B_CLUSTEROK; cluster_write(vp, &ip->i_clusterw, bp, ip->i_size, seqcount, GB_UNMAPPED); } else { bawrite(bp); } } else if (ioflag & IO_DIRECT) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else { bp->b_flags |= B_CLUSTEROK; bdwrite(bp); } if (error || xfersize == 0) break; UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); } /* * If we successfully wrote any data, and we are not the superuser * we clear the setuid and setgid bits as a precaution against * tampering. */ if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ap->a_cred) { if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { vn_seqc_write_begin(vp); UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); DIP_SET(ip, i_mode, ip->i_mode); vn_seqc_write_end(vp); } } if (error) { if (ioflag & IO_UNIT) { (void)ffs_truncate(vp, osize, IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); uio->uio_offset -= resid - uio->uio_resid; uio->uio_resid = resid; } } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { if (!(ioflag & IO_DATASYNC) || (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) error = ffs_update(vp, 1); if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) error = ENXIO; } vn_rlimit_fsizex_res(uio, r); return (error); } /* * Extended attribute area reading. */ static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) { struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct buf *bp; ufs_lbn_t lbn, nextlbn; off_t bytesinfile; long size, xfersize, blkoffset; ssize_t orig_resid; int error; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; #ifdef INVARIANTS if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_extread: mode"); #endif orig_resid = uio->uio_resid; KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); if (orig_resid == 0) return (0); KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) break; lbn = lblkno(fs, uio->uio_offset); nextlbn = lbn + 1; /* * size of buffer. The buffer representing the * end of the file is rounded up to the size of * the block type ( fragment or full block, * depending ). */ size = sblksize(fs, dp->di_extsize, lbn); blkoffset = blkoff(fs, uio->uio_offset); /* * The amount we want to transfer in this iteration is * one FS block less the amount of the data before * our startpoint (duh!) */ xfersize = fs->fs_bsize - blkoffset; /* * But if we actually want less than the block, * or the file doesn't have a whole block more of data, * then use the lesser number. */ if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (bytesinfile < xfersize) xfersize = bytesinfile; if (lblktosize(fs, nextlbn) >= dp->di_extsize) { /* * Don't do readahead if this is the end of the info. */ error = bread(vp, -1 - lbn, size, NOCRED, &bp); } else { /* * If we have a second block, then * fire off a request for a readahead * as well as a read. Note that the 4th and 5th * arguments point to arrays of the size specified in * the 6th argument. */ int nextsize = sblksize(fs, dp->di_extsize, nextlbn); nextlbn = -1 - nextlbn; error = breadn(vp, -1 - lbn, size, &nextlbn, &nextsize, 1, NOCRED, &bp); } if (error) { brelse(bp); bp = NULL; break; } /* * We should only get non-zero b_resid when an I/O error * has occurred, which should cause us to break above. * However, if the short read did not cause an error, * then we want to ensure that we do not uiomove bad * or uninitialized data. */ size -= bp->b_resid; if (size < xfersize) { if (size == 0) break; xfersize = size; } error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); if (error) break; vfs_bio_brelse(bp, ioflag); } /* * This can only happen in the case of an error * because the loop above resets bp to NULL on each iteration * and on normal completion has not set a new value into it. * so it must have come from a 'break' statement */ if (bp != NULL) vfs_bio_brelse(bp, ioflag); return (error); } /* * Extended attribute area writing. */ static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) { struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct buf *bp; ufs_lbn_t lbn; off_t osize; ssize_t resid; int blkoffset, error, flags, size, xfersize; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; #ifdef INVARIANTS if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_extwrite: mode"); #endif if (ioflag & IO_APPEND) uio->uio_offset = dp->di_extsize; KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); if ((uoff_t)uio->uio_offset + uio->uio_resid > UFS_NXADDR * fs->fs_bsize) return (EFBIG); resid = uio->uio_resid; osize = dp->di_extsize; flags = IO_EXT; if (ioflag & IO_SYNC) flags |= IO_SYNC; for (error = 0; uio->uio_resid > 0;) { lbn = lblkno(fs, uio->uio_offset); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->fs_bsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; /* * We must perform a read-before-write if the transfer size * does not cover the entire buffer. */ if (fs->fs_bsize > xfersize) flags |= BA_CLRBUF; else flags &= ~BA_CLRBUF; error = UFS_BALLOC(vp, uio->uio_offset, xfersize, ucred, flags, &bp); if (error != 0) break; /* * If the buffer is not valid we have to clear out any * garbage data from the pages instantiated for the buffer. * If we do not, a failed uiomove() during a write can leave * the prior contents of the pages exposed to a userland * mmap(). XXX deal with uiomove() errors a better way. */ if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) vfs_bio_clrbuf(bp); if (uio->uio_offset + xfersize > dp->di_extsize) { dp->di_extsize = uio->uio_offset + xfersize; UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); } size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; if (size < xfersize) xfersize = size; error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); vfs_bio_set_flags(bp, ioflag); /* * If IO_SYNC each buffer is written synchronously. Otherwise * if we have a severe page deficiency write the buffer * asynchronously. Otherwise try to cluster, and if that * doesn't do it then either do an async write (if O_DIRECT), * or a delayed write (if not). */ if (ioflag & IO_SYNC) { (void)bwrite(bp); } else if (vm_page_count_severe() || buf_dirty_count_severe() || xfersize + blkoffset == fs->fs_bsize || (ioflag & (IO_ASYNC | IO_DIRECT))) bawrite(bp); else bdwrite(bp); if (error || xfersize == 0) break; UFS_INODE_SET_FLAG(ip, IN_CHANGE); } /* * If we successfully wrote any data, and we are not the superuser * we clear the setuid and setgid bits as a precaution against * tampering. */ if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { vn_seqc_write_begin(vp); UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); dp->di_mode = ip->i_mode; vn_seqc_write_end(vp); } } if (error) { if (ioflag & IO_UNIT) { (void)ffs_truncate(vp, osize, IO_EXT | (ioflag&IO_SYNC), ucred); uio->uio_offset -= resid - uio->uio_resid; uio->uio_resid = resid; } } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) error = ffs_update(vp, 1); return (error); } /* * Vnode operating to retrieve a named extended attribute. * * Locate a particular EA (nspace:name) in the area (ptr:length), and return * the length of the EA, and possibly the pointer to the entry and to the data. */ static int ffs_findextattr(uint8_t *ptr, uint64_t length, int nspace, const char *name, struct extattr **eapp, uint8_t **eac) { struct extattr *eap, *eaend; size_t nlen; nlen = strlen(name); KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); eap = (struct extattr *)ptr; eaend = (struct extattr *)(ptr + length); for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { KASSERT(EXTATTR_NEXT(eap) <= eaend, ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); if (eap->ea_namespace != nspace || eap->ea_namelength != nlen || memcmp(eap->ea_name, name, nlen) != 0) continue; if (eapp != NULL) *eapp = eap; if (eac != NULL) *eac = EXTATTR_CONTENT(eap); return (EXTATTR_CONTENT_SIZE(eap)); } return (-1); } static int ffs_rdextattr(uint8_t **p, struct vnode *vp, struct thread *td) { const struct extattr *eap, *eaend, *eapnext; struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct uio luio; struct iovec liovec; uint64_t easize; int error; uint8_t *eae; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; easize = dp->di_extsize; if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) return (EFBIG); eae = malloc(easize, M_TEMP, M_WAITOK); liovec.iov_base = eae; liovec.iov_len = easize; luio.uio_iov = &liovec; luio.uio_iovcnt = 1; luio.uio_offset = 0; luio.uio_resid = easize; luio.uio_segflg = UIO_SYSSPACE; luio.uio_rw = UIO_READ; luio.uio_td = td; error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); if (error) { free(eae, M_TEMP); return (error); } /* Validate disk xattrfile contents. */ for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; eap = eapnext) { /* Detect zeroed out tail */ if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) { easize = (const uint8_t *)eap - eae; break; } eapnext = EXTATTR_NEXT(eap); /* Bogusly long entry. */ if (eapnext > eaend) { free(eae, M_TEMP); return (EINTEGRITY); } } ip->i_ea_len = easize; *p = eae; return (0); } static void ffs_lock_ea(struct vnode *vp) { struct inode *ip; ip = VTOI(vp); VI_LOCK(vp); while (ip->i_flag & IN_EA_LOCKED) { UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 0); } UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); VI_UNLOCK(vp); } static void ffs_unlock_ea(struct vnode *vp) { struct inode *ip; ip = VTOI(vp); VI_LOCK(vp); if (ip->i_flag & IN_EA_LOCKWAIT) wakeup(&ip->i_ea_refs); ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); VI_UNLOCK(vp); } static int ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) { struct inode *ip; int error; ip = VTOI(vp); ffs_lock_ea(vp); if (ip->i_ea_area != NULL) { ip->i_ea_refs++; ffs_unlock_ea(vp); return (0); } error = ffs_rdextattr(&ip->i_ea_area, vp, td); if (error) { ffs_unlock_ea(vp); return (error); } ip->i_ea_error = 0; ip->i_ea_refs++; ffs_unlock_ea(vp); return (0); } /* * Vnode extattr transaction commit/abort */ static int ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) { struct inode *ip; struct uio luio; struct iovec *liovec; struct ufs2_dinode *dp; size_t ea_len, tlen; int error, i, lcnt; bool truncate; ip = VTOI(vp); ffs_lock_ea(vp); if (ip->i_ea_area == NULL) { ffs_unlock_ea(vp); return (EINVAL); } dp = ip->i_din2; error = ip->i_ea_error; truncate = false; if (commit && error == 0) { ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); if (cred == NOCRED) cred = vp->v_mount->mnt_cred; ea_len = MAX(ip->i_ea_len, dp->di_extsize); for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { tlen -= MIN(ZERO_REGION_SIZE, tlen); lcnt++; } liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); luio.uio_iovcnt = lcnt; liovec[0].iov_base = ip->i_ea_area; liovec[0].iov_len = ip->i_ea_len; for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) { liovec[i].iov_base = __DECONST(void *, zero_region); liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); tlen -= liovec[i].iov_len; } MPASS(tlen == 0); luio.uio_iov = liovec; luio.uio_offset = 0; luio.uio_resid = ea_len; luio.uio_segflg = UIO_SYSSPACE; luio.uio_rw = UIO_WRITE; luio.uio_td = td; error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); if (error == 0 && ip->i_ea_len == 0) truncate = true; } if (--ip->i_ea_refs == 0) { free(ip->i_ea_area, M_TEMP); ip->i_ea_area = NULL; ip->i_ea_len = 0; ip->i_ea_error = 0; } ffs_unlock_ea(vp); if (truncate) ffs_truncate(vp, 0, IO_EXT, cred); return (error); } /* * Vnode extattr strategy routine for fifos. * * We need to check for a read or write of the external attributes. * Otherwise we just fall through and do the usual thing. */ static int ffsext_strategy( struct vop_strategy_args /* { struct vnodeop_desc *a_desc; struct vnode *a_vp; struct buf *a_bp; } */ *ap) { struct vnode *vp; daddr_t lbn; vp = ap->a_vp; lbn = ap->a_bp->b_lblkno; if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); if (vp->v_type == VFIFO) return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); panic("spec nodes went here"); } /* * Vnode extattr transaction commit/abort */ static int ffs_openextattr( struct vop_openextattr_args /* { struct vnodeop_desc *a_desc; struct vnode *a_vp; IN struct ucred *a_cred; IN struct thread *a_td; } */ *ap) { if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); } /* * Vnode extattr transaction commit/abort */ static int ffs_closeextattr( struct vop_closeextattr_args /* { struct vnodeop_desc *a_desc; struct vnode *a_vp; int a_commit; IN struct ucred *a_cred; IN struct thread *a_td; } */ *ap) { struct vnode *vp; vp = ap->a_vp; if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) return (EROFS); if (ap->a_commit && DOINGSUJ(vp)) { ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); } return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); } /* * Vnode operation to remove a named attribute. */ static int ffs_deleteextattr( struct vop_deleteextattr_args /* { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; IN struct ucred *a_cred; IN struct thread *a_td; } */ *ap) { struct vnode *vp; struct inode *ip; struct extattr *eap; uint32_t ul; int olen, error, i, easize; uint8_t *eae; void *tmp; vp = ap->a_vp; ip = VTOI(vp); if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); if (strlen(ap->a_name) == 0) return (EINVAL); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); error = extattr_check_cred(vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) { /* * ffs_lock_ea is not needed there, because the vnode * must be exclusively locked. */ if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } if (DOINGSUJ(vp)) { ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); } error = ffs_open_ea(vp, ap->a_cred, ap->a_td); if (error) return (error); /* CEM: delete could be done in-place instead */ eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); bcopy(ip->i_ea_area, eae, ip->i_ea_len); easize = ip->i_ea_len; olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, &eap, NULL); if (olen == -1) { /* delete but nonexistent */ free(eae, M_TEMP); ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); return (ENOATTR); } ul = eap->ea_length; i = (uint8_t *)EXTATTR_NEXT(eap) - eae; bcopy(EXTATTR_NEXT(eap), eap, easize - i); easize -= ul; tmp = ip->i_ea_area; ip->i_ea_area = eae; ip->i_ea_len = easize; free(tmp, M_TEMP); error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to retrieve a named extended attribute. */ static int ffs_getextattr( struct vop_getextattr_args /* { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; } */ *ap) { struct inode *ip; uint8_t *eae, *p; unsigned easize; int error, ealen; ip = VTOI(ap->a_vp); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); eae = ip->i_ea_area; easize = ip->i_ea_len; ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, NULL, &p); if (ealen >= 0) { error = 0; if (ap->a_size != NULL) *ap->a_size = ealen; else if (ap->a_uio != NULL) error = uiomove(p, ealen, ap->a_uio); } else error = ENOATTR; ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to retrieve extended attributes on a vnode. */ static int ffs_listextattr( struct vop_listextattr_args /* { IN struct vnode *a_vp; IN int a_attrnamespace; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; } */ *ap) { struct inode *ip; struct extattr *eap, *eaend; int error, ealen; ip = VTOI(ap->a_vp); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); error = 0; if (ap->a_size != NULL) *ap->a_size = 0; KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); eap = (struct extattr *)ip->i_ea_area; eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { KASSERT(EXTATTR_NEXT(eap) <= eaend, ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); if (eap->ea_namespace != ap->a_attrnamespace) continue; ealen = eap->ea_namelength; if (ap->a_size != NULL) *ap->a_size += ealen + 1; else if (ap->a_uio != NULL) error = uiomove(&eap->ea_namelength, ealen + 1, ap->a_uio); } ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to set a named attribute. */ static int ffs_setextattr( struct vop_setextattr_args /* { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; IN struct ucred *a_cred; IN struct thread *a_td; } */ *ap) { struct vnode *vp; struct inode *ip; struct fs *fs; struct extattr *eap; uint32_t ealength, ul; ssize_t ealen; int olen, eapad1, eapad2, error, i, easize; uint8_t *eae; void *tmp; vp = ap->a_vp; ip = VTOI(vp); fs = ITOFS(ip); if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); if (strlen(ap->a_name) == 0) return (EINVAL); /* XXX Now unsupported API to delete EAs using NULL uio. */ if (ap->a_uio == NULL) return (EOPNOTSUPP); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); ealen = ap->a_uio->uio_resid; if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) return (EINVAL); error = extattr_check_cred(vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) { /* * ffs_lock_ea is not needed there, because the vnode * must be exclusively locked. */ if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } if (DOINGSUJ(vp)) { ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); } error = ffs_open_ea(vp, ap->a_cred, ap->a_td); if (error) return (error); ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); eapad1 = roundup2(ealength, 8) - ealength; eapad2 = roundup2(ealen, 8) - ealen; ealength += eapad1 + ealen + eapad2; /* * CEM: rewrites of the same size or smaller could be done in-place * instead. (We don't acquire any fine-grained locks in here either, * so we could also do bigger writes in-place.) */ eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); bcopy(ip->i_ea_area, eae, ip->i_ea_len); easize = ip->i_ea_len; olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, &eap, NULL); if (olen == -1) { /* new, append at end */ KASSERT(ALIGNED_TO(eae + easize, struct extattr), ("unaligned")); eap = (struct extattr *)(eae + easize); easize += ealength; } else { ul = eap->ea_length; i = (uint8_t *)EXTATTR_NEXT(eap) - eae; if (ul != ealength) { bcopy(EXTATTR_NEXT(eap), (uint8_t *)eap + ealength, easize - i); easize += (ealength - ul); } } if (easize > lblktosize(fs, UFS_NXADDR)) { free(eae, M_TEMP); ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = ENOSPC; return (ENOSPC); } eap->ea_length = ealength; eap->ea_namespace = ap->a_attrnamespace; eap->ea_contentpadlen = eapad2; eap->ea_namelength = strlen(ap->a_name); memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); if (error) { free(eae, M_TEMP); ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } bzero((uint8_t *)EXTATTR_CONTENT(eap) + ealen, eapad2); tmp = ip->i_ea_area; ip->i_ea_area = eae; ip->i_ea_len = easize; free(tmp, M_TEMP); error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); return (error); } /* * Vnode pointer to File handle */ static int ffs_vptofh( struct vop_vptofh_args /* { IN struct vnode *a_vp; IN struct fid *a_fhp; } */ *ap) { struct inode *ip; struct ufid *ufhp; _Static_assert(sizeof(struct ufid) <= sizeof(struct fid), "struct ufid cannot be larger than struct fid"); ip = VTOI(ap->a_vp); ufhp = (struct ufid *)ap->a_fhp; ufhp->ufid_len = sizeof(struct ufid); ufhp->ufid_ino = ip->i_number; ufhp->ufid_gen = ip->i_gen; return (0); } SYSCTL_DECL(_vfs_ffs); static int use_buf_pager = 1; SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, "Always use buffer pager instead of bmap"); static daddr_t ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) { return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); } static int ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) { *sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn); return (0); } static int ffs_getpages(struct vop_getpages_args *ap) { struct vnode *vp; struct ufsmount *um; vp = ap->a_vp; um = VFSTOUFS(vp->v_mount); if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, NULL, NULL)); return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); } static int ffs_getpages_async(struct vop_getpages_async_args *ap) { struct vnode *vp; struct ufsmount *um; bool do_iodone; int error; vp = ap->a_vp; um = VFSTOUFS(vp->v_mount); do_iodone = true; if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); if (error == 0) do_iodone = false; } else { error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz); } if (do_iodone && ap->a_iodone != NULL) ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); return (error); } static int ffs_vput_pair(struct vop_vput_pair_args *ap) { struct mount *mp; struct vnode *dvp, *vp, *vp1, **vpp; struct inode *dp, *ip; ino_t ip_ino; uint64_t ip_gen; int error, vp_locked; dvp = ap->a_dvp; dp = VTOI(dvp); vpp = ap->a_vpp; vp = vpp != NULL ? *vpp : NULL; if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { vput(dvp); if (vp != NULL && ap->a_unlock_vp) vput(vp); return (0); } mp = dvp->v_mount; if (vp != NULL) { if (ap->a_unlock_vp) { vput(vp); } else { MPASS(vp->v_type != VNON); vp_locked = VOP_ISLOCKED(vp); ip = VTOI(vp); ip_ino = ip->i_number; ip_gen = ip->i_gen; VOP_UNLOCK(vp); } } /* * If compaction or fsync was requested do it in ffs_vput_pair() * now that other locks are no longer held. */ if ((dp->i_flag & IN_ENDOFF) != 0) { VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, ("IN_ENDOFF set but I_ENDOFF() is not")); dp->i_flag &= ~IN_ENDOFF; error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); if (error != 0 && error != ERELOOKUP) { if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { vn_printf(dvp, "IN_ENDOFF: failed to truncate, " "error %d\n", error); } #ifdef UFS_DIRHASH ufsdirhash_free(dp); #endif } SET_I_ENDOFF(dp, 0); } if ((dp->i_flag & IN_NEEDSYNC) != 0) { do { error = ffs_syncvnode(dvp, MNT_WAIT, 0); } while (error == ERELOOKUP); } vput(dvp); if (vp == NULL || ap->a_unlock_vp) return (0); MPASS(mp != NULL); /* * It is possible that vp is reclaimed at this point. Only * routines that call us with a_unlock_vp == false can find * that their vp has been reclaimed. There are three areas * that are affected: * 1) vn_open_cred() - later VOPs could fail, but * dead_open() returns 0 to simulate successful open. * 2) ffs_snapshot() - creation of snapshot fails with EBADF. * 3) NFS server (several places) - code is prepared to detect * and respond to dead vnodes by returning ESTALE. */ VOP_LOCK(vp, vp_locked | LK_RETRY); if (IS_UFS(vp)) return (0); /* * Try harder to recover from reclaimed vp if reclaim was not * because underlying inode was cleared. We saved inode * number and inode generation, so we can try to reinstantiate * exactly same version of inode. If this fails, return * original doomed vnode and let caller to handle * consequences. * * Note that callers must keep write started around * VOP_VPUT_PAIR() calls, so it is safe to use mp without * busying it. */ VOP_UNLOCK(vp); error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, FFSV_REPLACE_DOOMED); if (error != 0) { VOP_LOCK(vp, vp_locked | LK_RETRY); } else { vrele(vp); *vpp = vp1; } return (error); }