/* $NetBSD: clnt_vc.c,v 1.4 2000/07/14 08:40:42 fvdl Exp $ */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2009, Sun Microsystems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of Sun Microsystems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #if defined(LIBC_SCCS) && !defined(lint) static char *sccsid2 = "@(#)clnt_tcp.c 1.37 87/10/05 Copyr 1984 Sun Micro"; static char *sccsid = "@(#)clnt_tcp.c 2.2 88/08/01 4.0 RPCSRC"; static char sccsid3[] = "@(#)clnt_vc.c 1.19 89/03/16 Copyr 1988 Sun Micro"; #endif #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); /* * clnt_tcp.c, Implements a TCP/IP based, client side RPC. * * Copyright (C) 1984, Sun Microsystems, Inc. * * TCP based RPC supports 'batched calls'. * A sequence of calls may be batched-up in a send buffer. The rpc call * return immediately to the client even though the call was not necessarily * sent. The batching occurs if the results' xdr routine is NULL (0) AND * the rpc timeout value is zero (see clnt.h, rpc). * * Clients should NOT casually batch calls that in fact return results; that is, * the server side should be aware that a call is batched and not produce any * return message. Batched calls that produce many result messages can * deadlock (netlock) the client and the server.... * * Now go hang yourself. */ #include "opt_kern_tls.h" #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/ktls.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mbuf.h> #include <sys/mutex.h> #include <sys/pcpu.h> #include <sys/proc.h> #include <sys/protosw.h> #include <sys/socket.h> #include <sys/socketvar.h> #include <sys/sx.h> #include <sys/syslog.h> #include <sys/time.h> #include <sys/uio.h> #include <net/vnet.h> #include <netinet/tcp.h> #include <rpc/rpc.h> #include <rpc/rpc_com.h> #include <rpc/krpc.h> #include <rpc/rpcsec_tls.h> struct cmessage { struct cmsghdr cmsg; struct cmsgcred cmcred; }; static enum clnt_stat clnt_vc_call(CLIENT *, struct rpc_callextra *, rpcproc_t, struct mbuf *, struct mbuf **, struct timeval); static void clnt_vc_geterr(CLIENT *, struct rpc_err *); static bool_t clnt_vc_freeres(CLIENT *, xdrproc_t, void *); static void clnt_vc_abort(CLIENT *); static bool_t clnt_vc_control(CLIENT *, u_int, void *); static void clnt_vc_close(CLIENT *); static void clnt_vc_destroy(CLIENT *); static bool_t time_not_ok(struct timeval *); static int clnt_vc_soupcall(struct socket *so, void *arg, int waitflag); static void clnt_vc_dotlsupcall(void *data); static const struct clnt_ops clnt_vc_ops = { .cl_call = clnt_vc_call, .cl_abort = clnt_vc_abort, .cl_geterr = clnt_vc_geterr, .cl_freeres = clnt_vc_freeres, .cl_close = clnt_vc_close, .cl_destroy = clnt_vc_destroy, .cl_control = clnt_vc_control }; static void clnt_vc_upcallsdone(struct ct_data *); static int fake_wchan; /* * Create a client handle for a connection. * Default options are set, which the user can change using clnt_control()'s. * The rpc/vc package does buffering similar to stdio, so the client * must pick send and receive buffer sizes, 0 => use the default. * NB: fd is copied into a private area. * NB: The rpch->cl_auth is set null authentication. Caller may wish to * set this something more useful. * * fd should be an open socket */ CLIENT * clnt_vc_create( struct socket *so, /* open file descriptor */ struct sockaddr *raddr, /* servers address */ const rpcprog_t prog, /* program number */ const rpcvers_t vers, /* version number */ size_t sendsz, /* buffer recv size */ size_t recvsz, /* buffer send size */ int intrflag) /* interruptible */ { CLIENT *cl; /* client handle */ struct ct_data *ct = NULL; /* client handle */ struct timeval now; struct rpc_msg call_msg; static uint32_t disrupt; struct __rpc_sockinfo si; XDR xdrs; int error, interrupted, one = 1, sleep_flag; struct sockopt sopt; if (disrupt == 0) disrupt = (uint32_t)(long)raddr; cl = (CLIENT *)mem_alloc(sizeof (*cl)); ct = (struct ct_data *)mem_alloc(sizeof (*ct)); mtx_init(&ct->ct_lock, "ct->ct_lock", NULL, MTX_DEF); ct->ct_threads = 0; ct->ct_closing = FALSE; ct->ct_closed = FALSE; ct->ct_upcallrefs = 0; ct->ct_rcvstate = RPCRCVSTATE_NORMAL; if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { error = soconnect(so, raddr, curthread); SOCK_LOCK(so); interrupted = 0; sleep_flag = PSOCK; if (intrflag != 0) sleep_flag |= PCATCH; while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, SOCK_MTX(so), sleep_flag, "connec", 0); if (error) { if (error == EINTR || error == ERESTART) interrupted = 1; break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); if (error) { if (!interrupted) so->so_state &= ~SS_ISCONNECTING; rpc_createerr.cf_stat = RPC_SYSTEMERROR; rpc_createerr.cf_error.re_errno = error; goto err; } } if (!__rpc_socket2sockinfo(so, &si)) { goto err; } if (so->so_proto->pr_flags & PR_CONNREQUIRED) { bzero(&sopt, sizeof(sopt)); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = SOL_SOCKET; sopt.sopt_name = SO_KEEPALIVE; sopt.sopt_val = &one; sopt.sopt_valsize = sizeof(one); sosetopt(so, &sopt); } if (so->so_proto->pr_protocol == IPPROTO_TCP) { bzero(&sopt, sizeof(sopt)); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = IPPROTO_TCP; sopt.sopt_name = TCP_NODELAY; sopt.sopt_val = &one; sopt.sopt_valsize = sizeof(one); sosetopt(so, &sopt); } ct->ct_closeit = FALSE; /* * Set up private data struct */ ct->ct_socket = so; ct->ct_wait.tv_sec = -1; ct->ct_wait.tv_usec = -1; memcpy(&ct->ct_addr, raddr, raddr->sa_len); /* * Initialize call message */ getmicrotime(&now); ct->ct_xid = ((uint32_t)++disrupt) ^ __RPC_GETXID(&now); call_msg.rm_xid = ct->ct_xid; call_msg.rm_direction = CALL; call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION; call_msg.rm_call.cb_prog = (uint32_t)prog; call_msg.rm_call.cb_vers = (uint32_t)vers; /* * pre-serialize the static part of the call msg and stash it away */ xdrmem_create(&xdrs, ct->ct_mcallc, MCALL_MSG_SIZE, XDR_ENCODE); if (! xdr_callhdr(&xdrs, &call_msg)) { if (ct->ct_closeit) { soclose(ct->ct_socket); } goto err; } ct->ct_mpos = XDR_GETPOS(&xdrs); XDR_DESTROY(&xdrs); ct->ct_waitchan = "rpcrecv"; ct->ct_waitflag = 0; /* * Create a client handle which uses xdrrec for serialization * and authnone for authentication. */ sendsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsz); recvsz = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsz); error = soreserve(ct->ct_socket, sendsz, recvsz); if (error != 0) { if (ct->ct_closeit) { soclose(ct->ct_socket); } goto err; } cl->cl_refs = 1; cl->cl_ops = &clnt_vc_ops; cl->cl_private = ct; cl->cl_auth = authnone_create(); SOCKBUF_LOCK(&ct->ct_socket->so_rcv); soupcall_set(ct->ct_socket, SO_RCV, clnt_vc_soupcall, ct); SOCKBUF_UNLOCK(&ct->ct_socket->so_rcv); ct->ct_raw = NULL; ct->ct_record = NULL; ct->ct_record_resid = 0; ct->ct_sslrefno = 0; TAILQ_INIT(&ct->ct_pending); return (cl); err: mtx_destroy(&ct->ct_lock); mem_free(ct, sizeof (struct ct_data)); mem_free(cl, sizeof (CLIENT)); return ((CLIENT *)NULL); } static enum clnt_stat clnt_vc_call( CLIENT *cl, /* client handle */ struct rpc_callextra *ext, /* call metadata */ rpcproc_t proc, /* procedure number */ struct mbuf *args, /* pointer to args */ struct mbuf **resultsp, /* pointer to results */ struct timeval utimeout) { struct ct_data *ct = (struct ct_data *) cl->cl_private; AUTH *auth; struct rpc_err *errp; enum clnt_stat stat; XDR xdrs; struct rpc_msg reply_msg; bool_t ok; int nrefreshes = 2; /* number of times to refresh cred */ struct timeval timeout; uint32_t xid; struct mbuf *mreq = NULL, *results; struct ct_request *cr; int error, maxextsiz, trycnt; #ifdef KERN_TLS u_int maxlen; #endif cr = malloc(sizeof(struct ct_request), M_RPC, M_WAITOK); mtx_lock(&ct->ct_lock); if (ct->ct_closing || ct->ct_closed) { mtx_unlock(&ct->ct_lock); free(cr, M_RPC); return (RPC_CANTSEND); } ct->ct_threads++; if (ext) { auth = ext->rc_auth; errp = &ext->rc_err; } else { auth = cl->cl_auth; errp = &ct->ct_error; } cr->cr_mrep = NULL; cr->cr_error = 0; if (ct->ct_wait.tv_usec == -1) { timeout = utimeout; /* use supplied timeout */ } else { timeout = ct->ct_wait; /* use default timeout */ } /* * After 15sec of looping, allow it to return RPC_CANTSEND, which will * cause the clnt_reconnect layer to create a new TCP connection. */ trycnt = 15 * hz; call_again: mtx_assert(&ct->ct_lock, MA_OWNED); if (ct->ct_closing || ct->ct_closed) { ct->ct_threads--; wakeup(ct); mtx_unlock(&ct->ct_lock); free(cr, M_RPC); return (RPC_CANTSEND); } ct->ct_xid++; xid = ct->ct_xid; mtx_unlock(&ct->ct_lock); /* * Leave space to pre-pend the record mark. */ mreq = m_gethdr(M_WAITOK, MT_DATA); mreq->m_data += sizeof(uint32_t); KASSERT(ct->ct_mpos + sizeof(uint32_t) <= MHLEN, ("RPC header too big")); bcopy(ct->ct_mcallc, mreq->m_data, ct->ct_mpos); mreq->m_len = ct->ct_mpos; /* * The XID is the first thing in the request. */ *mtod(mreq, uint32_t *) = htonl(xid); xdrmbuf_create(&xdrs, mreq, XDR_ENCODE); errp->re_status = stat = RPC_SUCCESS; if ((! XDR_PUTINT32(&xdrs, &proc)) || (! AUTH_MARSHALL(auth, xid, &xdrs, m_copym(args, 0, M_COPYALL, M_WAITOK)))) { errp->re_status = stat = RPC_CANTENCODEARGS; mtx_lock(&ct->ct_lock); goto out; } mreq->m_pkthdr.len = m_length(mreq, NULL); /* * Prepend a record marker containing the packet length. */ M_PREPEND(mreq, sizeof(uint32_t), M_WAITOK); *mtod(mreq, uint32_t *) = htonl(0x80000000 | (mreq->m_pkthdr.len - sizeof(uint32_t))); cr->cr_xid = xid; mtx_lock(&ct->ct_lock); /* * Check to see if the other end has already started to close down * the connection. The upcall will have set ct_error.re_status * to RPC_CANTRECV if this is the case. * If the other end starts to close down the connection after this * point, it will be detected later when cr_error is checked, * since the request is in the ct_pending queue. */ if (ct->ct_error.re_status == RPC_CANTRECV) { if (errp != &ct->ct_error) { errp->re_errno = ct->ct_error.re_errno; errp->re_status = RPC_CANTRECV; } stat = RPC_CANTRECV; goto out; } /* For TLS, wait for an upcall to be done, as required. */ while ((ct->ct_rcvstate & (RPCRCVSTATE_NORMAL | RPCRCVSTATE_NONAPPDATA)) == 0) msleep(&ct->ct_rcvstate, &ct->ct_lock, 0, "rpcrcvst", hz); TAILQ_INSERT_TAIL(&ct->ct_pending, cr, cr_link); mtx_unlock(&ct->ct_lock); if (ct->ct_sslrefno != 0) { /* * Copy the mbuf chain to a chain of ext_pgs mbuf(s) * as required by KERN_TLS. */ maxextsiz = TLS_MAX_MSG_SIZE_V10_2; #ifdef KERN_TLS if (rpctls_getinfo(&maxlen, false, false)) maxextsiz = min(maxextsiz, maxlen); #endif mreq = _rpc_copym_into_ext_pgs(mreq, maxextsiz); } /* * sosend consumes mreq. */ error = sosend(ct->ct_socket, NULL, NULL, mreq, NULL, 0, curthread); mreq = NULL; if (error == EMSGSIZE || (error == ERESTART && (ct->ct_waitflag & PCATCH) == 0 && trycnt-- > 0)) { SOCKBUF_LOCK(&ct->ct_socket->so_snd); sbwait(ct->ct_socket, SO_SND); SOCKBUF_UNLOCK(&ct->ct_socket->so_snd); AUTH_VALIDATE(auth, xid, NULL, NULL); mtx_lock(&ct->ct_lock); TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); /* Sleep for 1 clock tick before trying the sosend() again. */ msleep(&fake_wchan, &ct->ct_lock, 0, "rpclpsnd", 1); goto call_again; } reply_msg.acpted_rply.ar_verf.oa_flavor = AUTH_NULL; reply_msg.acpted_rply.ar_verf.oa_base = cr->cr_verf; reply_msg.acpted_rply.ar_verf.oa_length = 0; reply_msg.acpted_rply.ar_results.where = NULL; reply_msg.acpted_rply.ar_results.proc = (xdrproc_t)xdr_void; mtx_lock(&ct->ct_lock); if (error) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); errp->re_errno = error; errp->re_status = stat = RPC_CANTSEND; goto out; } /* * Check to see if we got an upcall while waiting for the * lock. In both these cases, the request has been removed * from ct->ct_pending. */ if (cr->cr_error) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); errp->re_errno = cr->cr_error; errp->re_status = stat = RPC_CANTRECV; goto out; } if (cr->cr_mrep) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); goto got_reply; } /* * Hack to provide rpc-based message passing */ if (timeout.tv_sec == 0 && timeout.tv_usec == 0) { TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); errp->re_status = stat = RPC_TIMEDOUT; goto out; } error = msleep(cr, &ct->ct_lock, ct->ct_waitflag, ct->ct_waitchan, tvtohz(&timeout)); TAILQ_REMOVE(&ct->ct_pending, cr, cr_link); if (error) { /* * The sleep returned an error so our request is still * on the list. Turn the error code into an * appropriate client status. */ errp->re_errno = error; switch (error) { case EINTR: stat = RPC_INTR; break; case EWOULDBLOCK: stat = RPC_TIMEDOUT; break; default: stat = RPC_CANTRECV; } errp->re_status = stat; goto out; } else { /* * We were woken up by the upcall. If the * upcall had a receive error, report that, * otherwise we have a reply. */ if (cr->cr_error) { errp->re_errno = cr->cr_error; errp->re_status = stat = RPC_CANTRECV; goto out; } } got_reply: /* * Now decode and validate the response. We need to drop the * lock since xdr_replymsg may end up sleeping in malloc. */ mtx_unlock(&ct->ct_lock); if (ext && ext->rc_feedback) ext->rc_feedback(FEEDBACK_OK, proc, ext->rc_feedback_arg); xdrmbuf_create(&xdrs, cr->cr_mrep, XDR_DECODE); ok = xdr_replymsg(&xdrs, &reply_msg); cr->cr_mrep = NULL; if (ok) { if ((reply_msg.rm_reply.rp_stat == MSG_ACCEPTED) && (reply_msg.acpted_rply.ar_stat == SUCCESS)) errp->re_status = stat = RPC_SUCCESS; else stat = _seterr_reply(&reply_msg, errp); if (stat == RPC_SUCCESS) { results = xdrmbuf_getall(&xdrs); if (!AUTH_VALIDATE(auth, xid, &reply_msg.acpted_rply.ar_verf, &results)) { errp->re_status = stat = RPC_AUTHERROR; errp->re_why = AUTH_INVALIDRESP; } else { KASSERT(results, ("auth validated but no result")); *resultsp = results; } } /* end successful completion */ /* * If unsuccessful AND error is an authentication error * then refresh credentials and try again, else break */ else if (stat == RPC_AUTHERROR) /* maybe our credentials need to be refreshed ... */ if (nrefreshes > 0 && AUTH_REFRESH(auth, &reply_msg)) { nrefreshes--; XDR_DESTROY(&xdrs); mtx_lock(&ct->ct_lock); goto call_again; } /* end of unsuccessful completion */ } /* end of valid reply message */ else { errp->re_status = stat = RPC_CANTDECODERES; } XDR_DESTROY(&xdrs); mtx_lock(&ct->ct_lock); out: mtx_assert(&ct->ct_lock, MA_OWNED); KASSERT(stat != RPC_SUCCESS || *resultsp, ("RPC_SUCCESS without reply")); if (mreq) m_freem(mreq); if (cr->cr_mrep) m_freem(cr->cr_mrep); ct->ct_threads--; if (ct->ct_closing) wakeup(ct); mtx_unlock(&ct->ct_lock); if (auth && stat != RPC_SUCCESS) AUTH_VALIDATE(auth, xid, NULL, NULL); free(cr, M_RPC); return (stat); } static void clnt_vc_geterr(CLIENT *cl, struct rpc_err *errp) { struct ct_data *ct = (struct ct_data *) cl->cl_private; *errp = ct->ct_error; } static bool_t clnt_vc_freeres(CLIENT *cl, xdrproc_t xdr_res, void *res_ptr) { XDR xdrs; bool_t dummy; xdrs.x_op = XDR_FREE; dummy = (*xdr_res)(&xdrs, res_ptr); return (dummy); } /*ARGSUSED*/ static void clnt_vc_abort(CLIENT *cl) { } static bool_t clnt_vc_control(CLIENT *cl, u_int request, void *info) { struct ct_data *ct = (struct ct_data *)cl->cl_private; void *infop = info; SVCXPRT *xprt; uint64_t *p; int error; static u_int thrdnum = 0; mtx_lock(&ct->ct_lock); switch (request) { case CLSET_FD_CLOSE: ct->ct_closeit = TRUE; mtx_unlock(&ct->ct_lock); return (TRUE); case CLSET_FD_NCLOSE: ct->ct_closeit = FALSE; mtx_unlock(&ct->ct_lock); return (TRUE); default: break; } /* for other requests which use info */ if (info == NULL) { mtx_unlock(&ct->ct_lock); return (FALSE); } switch (request) { case CLSET_TIMEOUT: if (time_not_ok((struct timeval *)info)) { mtx_unlock(&ct->ct_lock); return (FALSE); } ct->ct_wait = *(struct timeval *)infop; break; case CLGET_TIMEOUT: *(struct timeval *)infop = ct->ct_wait; break; case CLGET_SERVER_ADDR: (void) memcpy(info, &ct->ct_addr, (size_t)ct->ct_addr.ss_len); break; case CLGET_SVC_ADDR: /* * Slightly different semantics to userland - we use * sockaddr instead of netbuf. */ memcpy(info, &ct->ct_addr, ct->ct_addr.ss_len); break; case CLSET_SVC_ADDR: /* set to new address */ mtx_unlock(&ct->ct_lock); return (FALSE); case CLGET_XID: *(uint32_t *)info = ct->ct_xid; break; case CLSET_XID: /* This will set the xid of the NEXT call */ /* decrement by 1 as clnt_vc_call() increments once */ ct->ct_xid = *(uint32_t *)info - 1; break; case CLGET_VERS: /* * This RELIES on the information that, in the call body, * the version number field is the fifth field from the * beginning of the RPC header. MUST be changed if the * call_struct is changed */ *(uint32_t *)info = ntohl(*(uint32_t *)(void *)(ct->ct_mcallc + 4 * BYTES_PER_XDR_UNIT)); break; case CLSET_VERS: *(uint32_t *)(void *)(ct->ct_mcallc + 4 * BYTES_PER_XDR_UNIT) = htonl(*(uint32_t *)info); break; case CLGET_PROG: /* * This RELIES on the information that, in the call body, * the program number field is the fourth field from the * beginning of the RPC header. MUST be changed if the * call_struct is changed */ *(uint32_t *)info = ntohl(*(uint32_t *)(void *)(ct->ct_mcallc + 3 * BYTES_PER_XDR_UNIT)); break; case CLSET_PROG: *(uint32_t *)(void *)(ct->ct_mcallc + 3 * BYTES_PER_XDR_UNIT) = htonl(*(uint32_t *)info); break; case CLSET_WAITCHAN: ct->ct_waitchan = (const char *)info; break; case CLGET_WAITCHAN: *(const char **) info = ct->ct_waitchan; break; case CLSET_INTERRUPTIBLE: if (*(int *) info) ct->ct_waitflag = PCATCH; else ct->ct_waitflag = 0; break; case CLGET_INTERRUPTIBLE: if (ct->ct_waitflag) *(int *) info = TRUE; else *(int *) info = FALSE; break; case CLSET_BACKCHANNEL: xprt = (SVCXPRT *)info; if (ct->ct_backchannelxprt == NULL) { xprt->xp_p2 = ct; if (ct->ct_sslrefno != 0) xprt->xp_tls = RPCTLS_FLAGS_HANDSHAKE; ct->ct_backchannelxprt = xprt; } break; case CLSET_TLS: p = (uint64_t *)info; ct->ct_sslsec = *p++; ct->ct_sslusec = *p++; ct->ct_sslrefno = *p; if (ct->ct_sslrefno != RPCTLS_REFNO_HANDSHAKE) { mtx_unlock(&ct->ct_lock); /* Start the kthread that handles upcalls. */ error = kthread_add(clnt_vc_dotlsupcall, ct, NULL, NULL, 0, 0, "krpctls%u", thrdnum++); if (error != 0) panic("Can't add KRPC thread error %d", error); } else mtx_unlock(&ct->ct_lock); return (TRUE); case CLSET_BLOCKRCV: if (*(int *) info) { ct->ct_rcvstate &= ~RPCRCVSTATE_NORMAL; ct->ct_rcvstate |= RPCRCVSTATE_TLSHANDSHAKE; } else { ct->ct_rcvstate &= ~RPCRCVSTATE_TLSHANDSHAKE; ct->ct_rcvstate |= RPCRCVSTATE_NORMAL; } break; default: mtx_unlock(&ct->ct_lock); return (FALSE); } mtx_unlock(&ct->ct_lock); return (TRUE); } static void clnt_vc_close(CLIENT *cl) { struct ct_data *ct = (struct ct_data *) cl->cl_private; struct ct_request *cr; mtx_lock(&ct->ct_lock); if (ct->ct_closed) { mtx_unlock(&ct->ct_lock); return; } if (ct->ct_closing) { while (ct->ct_closing) msleep(ct, &ct->ct_lock, 0, "rpcclose", 0); KASSERT(ct->ct_closed, ("client should be closed")); mtx_unlock(&ct->ct_lock); return; } if (ct->ct_socket) { ct->ct_closing = TRUE; mtx_unlock(&ct->ct_lock); SOCKBUF_LOCK(&ct->ct_socket->so_rcv); if (ct->ct_socket->so_rcv.sb_upcall != NULL) { soupcall_clear(ct->ct_socket, SO_RCV); clnt_vc_upcallsdone(ct); } SOCKBUF_UNLOCK(&ct->ct_socket->so_rcv); /* * Abort any pending requests and wait until everyone * has finished with clnt_vc_call. */ mtx_lock(&ct->ct_lock); TAILQ_FOREACH(cr, &ct->ct_pending, cr_link) { cr->cr_xid = 0; cr->cr_error = ESHUTDOWN; wakeup(cr); } while (ct->ct_threads) msleep(ct, &ct->ct_lock, 0, "rpcclose", 0); } ct->ct_closing = FALSE; ct->ct_closed = TRUE; wakeup(&ct->ct_sslrefno); mtx_unlock(&ct->ct_lock); wakeup(ct); } static void clnt_vc_destroy(CLIENT *cl) { struct ct_data *ct = (struct ct_data *) cl->cl_private; struct socket *so = NULL; SVCXPRT *xprt; uint32_t reterr; clnt_vc_close(cl); mtx_lock(&ct->ct_lock); xprt = ct->ct_backchannelxprt; ct->ct_backchannelxprt = NULL; if (xprt != NULL) { mtx_unlock(&ct->ct_lock); /* To avoid a LOR. */ sx_xlock(&xprt->xp_lock); mtx_lock(&ct->ct_lock); xprt->xp_p2 = NULL; sx_xunlock(&xprt->xp_lock); } if (ct->ct_socket) { if (ct->ct_closeit) { so = ct->ct_socket; } } /* Wait for the upcall kthread to terminate. */ while ((ct->ct_rcvstate & RPCRCVSTATE_UPCALLTHREAD) != 0) msleep(&ct->ct_sslrefno, &ct->ct_lock, 0, "clntvccl", hz); mtx_unlock(&ct->ct_lock); mtx_destroy(&ct->ct_lock); if (so) { if (ct->ct_sslrefno != 0) { /* * If the TLS handshake is in progress, the upcall * will fail, but the socket should be closed by the * daemon, since the connect upcall has just failed. */ if (ct->ct_sslrefno != RPCTLS_REFNO_HANDSHAKE) { /* * If the upcall fails, the socket has * probably been closed via the rpctlscd * daemon having crashed or been * restarted, so ignore return stat. */ rpctls_cl_disconnect(ct->ct_sslsec, ct->ct_sslusec, ct->ct_sslrefno, &reterr); } /* Must sorele() to get rid of reference. */ CURVNET_SET(so->so_vnet); sorele(so); CURVNET_RESTORE(); } else { soshutdown(so, SHUT_WR); soclose(so); } } m_freem(ct->ct_record); m_freem(ct->ct_raw); mem_free(ct, sizeof(struct ct_data)); if (cl->cl_netid && cl->cl_netid[0]) mem_free(cl->cl_netid, strlen(cl->cl_netid) +1); if (cl->cl_tp && cl->cl_tp[0]) mem_free(cl->cl_tp, strlen(cl->cl_tp) +1); mem_free(cl, sizeof(CLIENT)); } /* * Make sure that the time is not garbage. -1 value is disallowed. * Note this is different from time_not_ok in clnt_dg.c */ static bool_t time_not_ok(struct timeval *t) { return (t->tv_sec <= -1 || t->tv_sec > 100000000 || t->tv_usec <= -1 || t->tv_usec > 1000000); } int clnt_vc_soupcall(struct socket *so, void *arg, int waitflag) { struct ct_data *ct = (struct ct_data *) arg; struct uio uio; struct mbuf *m, *m2; struct ct_request *cr; int error, rcvflag, foundreq; uint32_t xid_plus_direction[2], header; SVCXPRT *xprt; struct cf_conn *cd; u_int rawlen; struct cmsghdr *cmsg; struct tls_get_record tgr; /* * RPC-over-TLS needs to block reception during * upcalls since the upcall will be doing I/O on * the socket via openssl library calls. */ mtx_lock(&ct->ct_lock); if ((ct->ct_rcvstate & (RPCRCVSTATE_NORMAL | RPCRCVSTATE_NONAPPDATA)) == 0) { /* Mark that a socket upcall needs to be done. */ if ((ct->ct_rcvstate & (RPCRCVSTATE_UPCALLNEEDED | RPCRCVSTATE_UPCALLINPROG)) != 0) ct->ct_rcvstate |= RPCRCVSTATE_SOUPCALLNEEDED; mtx_unlock(&ct->ct_lock); return (SU_OK); } mtx_unlock(&ct->ct_lock); /* * If another thread is already here, it must be in * soreceive(), so just return to avoid races with it. * ct_upcallrefs is protected by the SOCKBUF_LOCK(), * which is held in this function, except when * soreceive() is called. */ if (ct->ct_upcallrefs > 0) return (SU_OK); ct->ct_upcallrefs++; /* * Read as much as possible off the socket and link it * onto ct_raw. */ for (;;) { uio.uio_resid = 1000000000; uio.uio_td = curthread; m2 = m = NULL; rcvflag = MSG_DONTWAIT | MSG_SOCALLBCK; if (ct->ct_sslrefno != 0 && (ct->ct_rcvstate & RPCRCVSTATE_NORMAL) != 0) rcvflag |= MSG_TLSAPPDATA; SOCKBUF_UNLOCK(&so->so_rcv); error = soreceive(so, NULL, &uio, &m, &m2, &rcvflag); SOCKBUF_LOCK(&so->so_rcv); if (error == EWOULDBLOCK) { /* * We must re-test for readability after * taking the lock to protect us in the case * where a new packet arrives on the socket * after our call to soreceive fails with * EWOULDBLOCK. */ error = 0; if (!soreadable(so)) break; continue; } if (error == 0 && m == NULL) { /* * We must have got EOF trying * to read from the stream. */ error = ECONNRESET; } /* * A return of ENXIO indicates that there is an * alert record at the head of the * socket's receive queue, for TLS connections. * This record needs to be handled in userland * via an SSL_read() call, so do an upcall to the daemon. */ if (ct->ct_sslrefno != 0 && error == ENXIO) { /* Disable reception, marking an upcall needed. */ mtx_lock(&ct->ct_lock); ct->ct_rcvstate |= RPCRCVSTATE_UPCALLNEEDED; /* * If an upcall in needed, wake up the kthread * that runs clnt_vc_dotlsupcall(). */ wakeup(&ct->ct_sslrefno); mtx_unlock(&ct->ct_lock); break; } if (error != 0) break; /* Process any record header(s). */ if (m2 != NULL) { cmsg = mtod(m2, struct cmsghdr *); if (cmsg->cmsg_type == TLS_GET_RECORD && cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) { memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr)); /* * TLS_RLTYPE_ALERT records should be handled * since soreceive() would have returned * ENXIO. Just throw any other * non-TLS_RLTYPE_APP records away. */ if (tgr.tls_type != TLS_RLTYPE_APP) { m_freem(m); m_free(m2); mtx_lock(&ct->ct_lock); ct->ct_rcvstate &= ~RPCRCVSTATE_NONAPPDATA; ct->ct_rcvstate |= RPCRCVSTATE_NORMAL; mtx_unlock(&ct->ct_lock); continue; } } m_free(m2); } if (ct->ct_raw != NULL) m_last(ct->ct_raw)->m_next = m; else ct->ct_raw = m; } rawlen = m_length(ct->ct_raw, NULL); /* Now, process as much of ct_raw as possible. */ for (;;) { /* * If ct_record_resid is zero, we are waiting for a * record mark. */ if (ct->ct_record_resid == 0) { if (rawlen < sizeof(uint32_t)) break; m_copydata(ct->ct_raw, 0, sizeof(uint32_t), (char *)&header); header = ntohl(header); ct->ct_record_resid = header & 0x7fffffff; ct->ct_record_eor = ((header & 0x80000000) != 0); m_adj(ct->ct_raw, sizeof(uint32_t)); rawlen -= sizeof(uint32_t); } else { /* * Move as much of the record as possible to * ct_record. */ if (rawlen == 0) break; if (rawlen <= ct->ct_record_resid) { if (ct->ct_record != NULL) m_last(ct->ct_record)->m_next = ct->ct_raw; else ct->ct_record = ct->ct_raw; ct->ct_raw = NULL; ct->ct_record_resid -= rawlen; rawlen = 0; } else { m = m_split(ct->ct_raw, ct->ct_record_resid, M_NOWAIT); if (m == NULL) break; if (ct->ct_record != NULL) m_last(ct->ct_record)->m_next = ct->ct_raw; else ct->ct_record = ct->ct_raw; rawlen -= ct->ct_record_resid; ct->ct_record_resid = 0; ct->ct_raw = m; } if (ct->ct_record_resid > 0) break; /* * If we have the entire record, see if we can * match it to a request. */ if (ct->ct_record_eor) { /* * The XID is in the first uint32_t of * the reply and the message direction * is the second one. */ if (ct->ct_record->m_len < sizeof(xid_plus_direction) && m_length(ct->ct_record, NULL) < sizeof(xid_plus_direction)) { /* * What to do now? * The data in the TCP stream is * corrupted such that there is no * valid RPC message to parse. * I think it best to close this * connection and allow * clnt_reconnect_call() to try * and establish a new one. */ printf("clnt_vc_soupcall: " "connection data corrupted\n"); error = ECONNRESET; goto wakeup_all; } m_copydata(ct->ct_record, 0, sizeof(xid_plus_direction), (char *)xid_plus_direction); xid_plus_direction[0] = ntohl(xid_plus_direction[0]); xid_plus_direction[1] = ntohl(xid_plus_direction[1]); /* Check message direction. */ if (xid_plus_direction[1] == CALL) { /* This is a backchannel request. */ mtx_lock(&ct->ct_lock); xprt = ct->ct_backchannelxprt; if (xprt == NULL) { mtx_unlock(&ct->ct_lock); /* Just throw it away. */ m_freem(ct->ct_record); ct->ct_record = NULL; } else { cd = (struct cf_conn *) xprt->xp_p1; m2 = cd->mreq; /* * The requests are chained * in the m_nextpkt list. */ while (m2 != NULL && m2->m_nextpkt != NULL) /* Find end of list. */ m2 = m2->m_nextpkt; if (m2 != NULL) m2->m_nextpkt = ct->ct_record; else cd->mreq = ct->ct_record; ct->ct_record->m_nextpkt = NULL; ct->ct_record = NULL; xprt_active(xprt); mtx_unlock(&ct->ct_lock); } } else { mtx_lock(&ct->ct_lock); foundreq = 0; TAILQ_FOREACH(cr, &ct->ct_pending, cr_link) { if (cr->cr_xid == xid_plus_direction[0]) { /* * This one * matches. We leave * the reply mbuf in * cr->cr_mrep. Set * the XID to zero so * that we will ignore * any duplicated * replies. */ cr->cr_xid = 0; cr->cr_mrep = ct->ct_record; cr->cr_error = 0; foundreq = 1; wakeup(cr); break; } } mtx_unlock(&ct->ct_lock); if (!foundreq) m_freem(ct->ct_record); ct->ct_record = NULL; } } } } if (error != 0) { wakeup_all: /* * This socket is broken, so mark that it cannot * receive and fail all RPCs waiting for a reply * on it, so that they will be retried on a new * TCP connection created by clnt_reconnect_X(). */ mtx_lock(&ct->ct_lock); ct->ct_error.re_status = RPC_CANTRECV; ct->ct_error.re_errno = error; TAILQ_FOREACH(cr, &ct->ct_pending, cr_link) { cr->cr_error = error; wakeup(cr); } mtx_unlock(&ct->ct_lock); } ct->ct_upcallrefs--; if (ct->ct_upcallrefs < 0) panic("rpcvc upcall refcnt"); if (ct->ct_upcallrefs == 0) wakeup(&ct->ct_upcallrefs); return (SU_OK); } /* * Wait for all upcalls in progress to complete. */ static void clnt_vc_upcallsdone(struct ct_data *ct) { SOCKBUF_LOCK_ASSERT(&ct->ct_socket->so_rcv); while (ct->ct_upcallrefs > 0) (void) msleep(&ct->ct_upcallrefs, SOCKBUF_MTX(&ct->ct_socket->so_rcv), 0, "rpcvcup", 0); } /* * Do a TLS upcall to the rpctlscd daemon, as required. * This function runs as a kthread. */ static void clnt_vc_dotlsupcall(void *data) { struct ct_data *ct = (struct ct_data *)data; enum clnt_stat ret; uint32_t reterr; mtx_lock(&ct->ct_lock); ct->ct_rcvstate |= RPCRCVSTATE_UPCALLTHREAD; while (!ct->ct_closed) { if ((ct->ct_rcvstate & RPCRCVSTATE_UPCALLNEEDED) != 0) { ct->ct_rcvstate &= ~RPCRCVSTATE_UPCALLNEEDED; ct->ct_rcvstate |= RPCRCVSTATE_UPCALLINPROG; if (ct->ct_sslrefno != 0 && ct->ct_sslrefno != RPCTLS_REFNO_HANDSHAKE) { mtx_unlock(&ct->ct_lock); ret = rpctls_cl_handlerecord(ct->ct_sslsec, ct->ct_sslusec, ct->ct_sslrefno, &reterr); mtx_lock(&ct->ct_lock); } ct->ct_rcvstate &= ~RPCRCVSTATE_UPCALLINPROG; if (ret == RPC_SUCCESS && reterr == RPCTLSERR_OK) ct->ct_rcvstate |= RPCRCVSTATE_NORMAL; else ct->ct_rcvstate |= RPCRCVSTATE_NONAPPDATA; wakeup(&ct->ct_rcvstate); } if ((ct->ct_rcvstate & RPCRCVSTATE_SOUPCALLNEEDED) != 0) { ct->ct_rcvstate &= ~RPCRCVSTATE_SOUPCALLNEEDED; mtx_unlock(&ct->ct_lock); SOCKBUF_LOCK(&ct->ct_socket->so_rcv); clnt_vc_soupcall(ct->ct_socket, ct, M_NOWAIT); SOCKBUF_UNLOCK(&ct->ct_socket->so_rcv); mtx_lock(&ct->ct_lock); } msleep(&ct->ct_sslrefno, &ct->ct_lock, 0, "clntvcdu", hz); } ct->ct_rcvstate &= ~RPCRCVSTATE_UPCALLTHREAD; wakeup(&ct->ct_sslrefno); mtx_unlock(&ct->ct_lock); kthread_exit(); }