/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (C) 2020 Justin Hibbits * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski * Copyright (C) 2006 Semihalf, Marian Balakowicz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Some hw specific parts of this pmap were derived or influenced * by NetBSD's ibm4xx pmap module. More generic code is shared with * a few other pmap modules from the FreeBSD tree. */ /* * VM layout notes: * * Kernel and user threads run within one common virtual address space * defined by AS=0. * * 32-bit pmap: * Virtual address space layout: * ----------------------------- * 0x0000_0000 - 0x7fff_ffff : user process * 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) * 0xc000_0000 - 0xffff_efff : KVA */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PRI0ptrX "08x" /* Reserved KVA space and mutex for mmu_booke_zero_page. */ static vm_offset_t zero_page_va; static struct mtx zero_page_mutex; /* Reserved KVA space and mutex for mmu_booke_copy_page. */ static vm_offset_t copy_page_src_va; static vm_offset_t copy_page_dst_va; static struct mtx copy_page_mutex; static vm_offset_t kernel_ptbl_root; static unsigned int kernel_ptbls; /* Number of KVA ptbls. */ /**************************************************************************/ /* PMAP */ /**************************************************************************/ #define VM_MAPDEV_BASE ((vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE) static void tid_flush(tlbtid_t tid); static unsigned long ilog2(unsigned long); /**************************************************************************/ /* Page table management */ /**************************************************************************/ #define PMAP_ROOT_SIZE (sizeof(pte_t**) * PDIR_NENTRIES) static void ptbl_init(void); static struct ptbl_buf *ptbl_buf_alloc(void); static void ptbl_buf_free(struct ptbl_buf *); static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); static pte_t *ptbl_alloc(pmap_t, unsigned int, boolean_t); static void ptbl_free(pmap_t, unsigned int); static void ptbl_hold(pmap_t, unsigned int); static int ptbl_unhold(pmap_t, unsigned int); static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t); static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); static int pte_remove(pmap_t, vm_offset_t, uint8_t); static pte_t *pte_find(pmap_t, vm_offset_t); struct ptbl_buf { TAILQ_ENTRY(ptbl_buf) link; /* list link */ vm_offset_t kva; /* va of mapping */ }; /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ #define PTBL_BUFS (128 * 16) /* ptbl free list and a lock used for access synchronization. */ static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; static struct mtx ptbl_buf_freelist_lock; /* Base address of kva space allocated fot ptbl bufs. */ static vm_offset_t ptbl_buf_pool_vabase; /* Pointer to ptbl_buf structures. */ static struct ptbl_buf *ptbl_bufs; /**************************************************************************/ /* Page table related */ /**************************************************************************/ /* Initialize pool of kva ptbl buffers. */ static void ptbl_init(void) { int i; CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); TAILQ_INIT(&ptbl_buf_freelist); for (i = 0; i < PTBL_BUFS; i++) { ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); } } /* Get a ptbl_buf from the freelist. */ static struct ptbl_buf * ptbl_buf_alloc(void) { struct ptbl_buf *buf; mtx_lock(&ptbl_buf_freelist_lock); buf = TAILQ_FIRST(&ptbl_buf_freelist); if (buf != NULL) TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); mtx_unlock(&ptbl_buf_freelist_lock); CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); return (buf); } /* Return ptbl buff to free pool. */ static void ptbl_buf_free(struct ptbl_buf *buf) { CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); mtx_lock(&ptbl_buf_freelist_lock); TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); mtx_unlock(&ptbl_buf_freelist_lock); } /* * Search the list of allocated ptbl bufs and find on list of allocated ptbls */ static void ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) { struct ptbl_buf *pbuf; CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); PMAP_LOCK_ASSERT(pmap, MA_OWNED); TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) if (pbuf->kva == (vm_offset_t)ptbl) { /* Remove from pmap ptbl buf list. */ TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); /* Free corresponding ptbl buf. */ ptbl_buf_free(pbuf); break; } } /* Allocate page table. */ static pte_t * ptbl_alloc(pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) { vm_page_t mtbl[PTBL_PAGES]; vm_page_t m; struct ptbl_buf *pbuf; unsigned int pidx; pte_t *ptbl; int i, j; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_alloc: invalid pdir_idx")); KASSERT((pmap->pm_pdir[pdir_idx] == NULL), ("pte_alloc: valid ptbl entry exists!")); pbuf = ptbl_buf_alloc(); if (pbuf == NULL) panic("pte_alloc: couldn't alloc kernel virtual memory"); ptbl = (pte_t *)pbuf->kva; CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); for (i = 0; i < PTBL_PAGES; i++) { pidx = (PTBL_PAGES * pdir_idx) + i; while ((m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) { if (nosleep) { ptbl_free_pmap_ptbl(pmap, ptbl); for (j = 0; j < i; j++) vm_page_free(mtbl[j]); vm_wire_sub(i); return (NULL); } PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); vm_wait(NULL); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); } m->pindex = pidx; mtbl[i] = m; } /* Map allocated pages into kernel_pmap. */ mmu_booke_qenter((vm_offset_t)ptbl, mtbl, PTBL_PAGES); /* Zero whole ptbl. */ bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); /* Add pbuf to the pmap ptbl bufs list. */ TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); return (ptbl); } /* Free ptbl pages and invalidate pdir entry. */ static void ptbl_free(pmap_t pmap, unsigned int pdir_idx) { pte_t *ptbl; vm_paddr_t pa; vm_offset_t va; vm_page_t m; int i; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_free: invalid pdir_idx")); ptbl = pmap->pm_pdir[pdir_idx]; CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); /* * Invalidate the pdir entry as soon as possible, so that other CPUs * don't attempt to look up the page tables we are releasing. */ mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); pmap->pm_pdir[pdir_idx] = NULL; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); for (i = 0; i < PTBL_PAGES; i++) { va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); pa = pte_vatopa(kernel_pmap, va); m = PHYS_TO_VM_PAGE(pa); vm_page_free_zero(m); vm_wire_sub(1); mmu_booke_kremove(va); } ptbl_free_pmap_ptbl(pmap, ptbl); } /* * Decrement ptbl pages hold count and attempt to free ptbl pages. * Called when removing pte entry from ptbl. * * Return 1 if ptbl pages were freed. */ static int ptbl_unhold(pmap_t pmap, unsigned int pdir_idx) { pte_t *ptbl; vm_paddr_t pa; vm_page_t m; int i; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_unhold: invalid pdir_idx")); KASSERT((pmap != kernel_pmap), ("ptbl_unhold: unholding kernel ptbl!")); ptbl = pmap->pm_pdir[pdir_idx]; //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), ("ptbl_unhold: non kva ptbl")); /* decrement hold count */ for (i = 0; i < PTBL_PAGES; i++) { pa = pte_vatopa(kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE)); m = PHYS_TO_VM_PAGE(pa); m->ref_count--; } /* * Free ptbl pages if there are no pte etries in this ptbl. * ref_count has the same value for all ptbl pages, so check the last * page. */ if (m->ref_count == 0) { ptbl_free(pmap, pdir_idx); //debugf("ptbl_unhold: e (freed ptbl)\n"); return (1); } return (0); } /* * Increment hold count for ptbl pages. This routine is used when a new pte * entry is being inserted into the ptbl. */ static void ptbl_hold(pmap_t pmap, unsigned int pdir_idx) { vm_paddr_t pa; pte_t *ptbl; vm_page_t m; int i; CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_hold: invalid pdir_idx")); KASSERT((pmap != kernel_pmap), ("ptbl_hold: holding kernel ptbl!")); ptbl = pmap->pm_pdir[pdir_idx]; KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); for (i = 0; i < PTBL_PAGES; i++) { pa = pte_vatopa(kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE)); m = PHYS_TO_VM_PAGE(pa); m->ref_count++; } } /* * Clean pte entry, try to free page table page if requested. * * Return 1 if ptbl pages were freed, otherwise return 0. */ static int pte_remove(pmap_t pmap, vm_offset_t va, uint8_t flags) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); vm_page_t m; pte_t *ptbl; pte_t *pte; //int su = (pmap == kernel_pmap); //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", // su, (u_int32_t)pmap, va, flags); ptbl = pmap->pm_pdir[pdir_idx]; KASSERT(ptbl, ("pte_remove: null ptbl")); pte = &ptbl[ptbl_idx]; if (pte == NULL || !PTE_ISVALID(pte)) return (0); if (PTE_ISWIRED(pte)) pmap->pm_stats.wired_count--; /* Get vm_page_t for mapped pte. */ m = PHYS_TO_VM_PAGE(PTE_PA(pte)); /* Handle managed entry. */ if (PTE_ISMANAGED(pte)) { if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); if (PTE_ISREFERENCED(pte)) vm_page_aflag_set(m, PGA_REFERENCED); pv_remove(pmap, va, m); } else if (pmap == kernel_pmap && m && m->md.pv_tracked) { /* * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is * used. This is needed by the NCSW support code for fast * VA<->PA translation. */ pv_remove(pmap, va, m); if (TAILQ_EMPTY(&m->md.pv_list)) m->md.pv_tracked = false; } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); *pte = 0; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); pmap->pm_stats.resident_count--; if (flags & PTBL_UNHOLD) { //debugf("pte_remove: e (unhold)\n"); return (ptbl_unhold(pmap, pdir_idx)); } //debugf("pte_remove: e\n"); return (0); } /* * Insert PTE for a given page and virtual address. */ static int pte_enter(pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, boolean_t nosleep) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); pte_t *ptbl, *pte, pte_tmp; CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, pmap == kernel_pmap, pmap, va); /* Get the page table pointer. */ ptbl = pmap->pm_pdir[pdir_idx]; if (ptbl == NULL) { /* Allocate page table pages. */ ptbl = ptbl_alloc(pmap, pdir_idx, nosleep); if (ptbl == NULL) { KASSERT(nosleep, ("nosleep and NULL ptbl")); return (ENOMEM); } pmap->pm_pdir[pdir_idx] = ptbl; pte = &ptbl[ptbl_idx]; } else { /* * Check if there is valid mapping for requested * va, if there is, remove it. */ pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; if (PTE_ISVALID(pte)) { pte_remove(pmap, va, PTBL_HOLD); } else { /* * pte is not used, increment hold count * for ptbl pages. */ if (pmap != kernel_pmap) ptbl_hold(pmap, pdir_idx); } } /* * Insert pv_entry into pv_list for mapped page if part of managed * memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { flags |= PTE_MANAGED; /* Create and insert pv entry. */ pv_insert(pmap, va, m); } pmap->pm_stats.resident_count++; pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); *pte = pte_tmp; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); return (0); } /* Return the pa for the given pmap/va. */ static vm_paddr_t pte_vatopa(pmap_t pmap, vm_offset_t va) { vm_paddr_t pa = 0; pte_t *pte; pte = pte_find(pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); return (pa); } /* Get a pointer to a PTE in a page table. */ static pte_t * pte_find(pmap_t pmap, vm_offset_t va) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); KASSERT((pmap != NULL), ("pte_find: invalid pmap")); if (pmap->pm_pdir[pdir_idx]) return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); return (NULL); } /* Get a pointer to a PTE in a page table, or the next closest (greater) one. */ static __inline pte_t * pte_find_next(pmap_t pmap, vm_offset_t *pva) { vm_offset_t va; pte_t **pdir; pte_t *pte; unsigned long i, j; KASSERT((pmap != NULL), ("pte_find: invalid pmap")); va = *pva; i = PDIR_IDX(va); j = PTBL_IDX(va); pdir = pmap->pm_pdir; for (; i < PDIR_NENTRIES; i++, j = 0) { if (pdir[i] == NULL) continue; for (; j < PTBL_NENTRIES; j++) { pte = &pdir[i][j]; if (!PTE_ISVALID(pte)) continue; *pva = PDIR_SIZE * i + PAGE_SIZE * j; return (pte); } } return (NULL); } /* Set up kernel page tables. */ static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr) { pte_t *pte; vm_offset_t va; vm_offset_t pdir_start; int i; kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; kernel_pmap->pm_pdir = (pte_t **)kernel_ptbl_root; pdir_start = kernel_ptbl_root + PDIR_NENTRIES * sizeof(pte_t); /* Initialize kernel pdir */ for (i = 0; i < kernel_ptbls; i++) { kernel_pmap->pm_pdir[kptbl_min + i] = (pte_t *)(pdir_start + (i * PAGE_SIZE * PTBL_PAGES)); } /* * Fill in PTEs covering kernel code and data. They are not required * for address translation, as this area is covered by static TLB1 * entries, but for pte_vatopa() to work correctly with kernel area * addresses. */ for (va = addr; va < data_end; va += PAGE_SIZE) { pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); powerpc_sync(); *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID | PTE_PS_4KB; } } static vm_offset_t mmu_booke_alloc_kernel_pgtables(vm_offset_t data_end) { /* Allocate space for ptbl_bufs. */ ptbl_bufs = (struct ptbl_buf *)data_end; data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", (uintptr_t)ptbl_bufs, data_end); data_end = round_page(data_end); kernel_ptbl_root = data_end; data_end += PDIR_NENTRIES * sizeof(pte_t*); /* Allocate PTE tables for kernel KVA. */ kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, PDIR_SIZE); data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; debugf(" kernel ptbls: %d\n", kernel_ptbls); debugf(" kernel pdir at %#jx end = %#jx\n", (uintmax_t)kernel_ptbl_root, (uintmax_t)data_end); return (data_end); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ static int mmu_booke_pinit(pmap_t pmap) { int i; CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, curthread->td_proc->p_pid, curthread->td_proc->p_comm); KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); for (i = 0; i < MAXCPU; i++) pmap->pm_tid[i] = TID_NONE; CPU_ZERO(&kernel_pmap->pm_active); bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK); bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); TAILQ_INIT(&pmap->pm_ptbl_list); return (1); } /* * Release any resources held by the given physical map. * Called when a pmap initialized by mmu_booke_pinit is being released. * Should only be called if the map contains no valid mappings. */ static void mmu_booke_release(pmap_t pmap) { KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); uma_zfree(ptbl_root_zone, pmap->pm_pdir); } static void mmu_booke_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) { pte_t *pte; vm_paddr_t pa = 0; int sync_sz, valid; pmap_t pmap; vm_page_t m; vm_offset_t addr; int active; rw_wlock(&pvh_global_lock); pmap = PCPU_GET(curpmap); active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; while (sz > 0) { PMAP_LOCK(pm); pte = pte_find(pm, va); valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; if (valid) pa = PTE_PA(pte); PMAP_UNLOCK(pm); sync_sz = PAGE_SIZE - (va & PAGE_MASK); sync_sz = min(sync_sz, sz); if (valid) { if (!active) { /* * Create a mapping in the active pmap. * * XXX: We use the zero page here, because * it isn't likely to be in use. * If we ever decide to support * security.bsd.map_at_zero on Book-E, change * this to some other address that isn't * normally mappable. */ addr = 0; m = PHYS_TO_VM_PAGE(pa); PMAP_LOCK(pmap); pte_enter(pmap, m, addr, PTE_SR | PTE_VALID, FALSE); __syncicache((void *)(addr + (va & PAGE_MASK)), sync_sz); pte_remove(pmap, addr, PTBL_UNHOLD); PMAP_UNLOCK(pmap); } else __syncicache((void *)va, sync_sz); } va += sync_sz; sz -= sync_sz; } rw_wunlock(&pvh_global_lock); } /* * mmu_booke_zero_page_area zeros the specified hardware page by * mapping it into virtual memory and using bzero to clear * its contents. * * off and size must reside within a single page. */ static void mmu_booke_zero_page_area(vm_page_t m, int off, int size) { vm_offset_t va; /* XXX KASSERT off and size are within a single page? */ mtx_lock(&zero_page_mutex); va = zero_page_va; mmu_booke_kenter(va, VM_PAGE_TO_PHYS(m)); bzero((caddr_t)va + off, size); mmu_booke_kremove(va); mtx_unlock(&zero_page_mutex); } /* * mmu_booke_zero_page zeros the specified hardware page. */ static void mmu_booke_zero_page(vm_page_t m) { vm_offset_t off, va; va = zero_page_va; mtx_lock(&zero_page_mutex); mmu_booke_kenter(va, VM_PAGE_TO_PHYS(m)); for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(va + off)); mmu_booke_kremove(va); mtx_unlock(&zero_page_mutex); } /* * mmu_booke_copy_page copies the specified (machine independent) page by * mapping the page into virtual memory and using memcopy to copy the page, * one machine dependent page at a time. */ static void mmu_booke_copy_page(vm_page_t sm, vm_page_t dm) { vm_offset_t sva, dva; sva = copy_page_src_va; dva = copy_page_dst_va; mtx_lock(©_page_mutex); mmu_booke_kenter(sva, VM_PAGE_TO_PHYS(sm)); mmu_booke_kenter(dva, VM_PAGE_TO_PHYS(dm)); memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); mmu_booke_kremove(dva); mmu_booke_kremove(sva); mtx_unlock(©_page_mutex); } static inline void mmu_booke_copy_pages(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; mtx_lock(©_page_mutex); while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); mmu_booke_kenter(copy_page_src_va, VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); a_cp = (char *)copy_page_src_va + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); mmu_booke_kenter(copy_page_dst_va, VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); b_cp = (char *)copy_page_dst_va + b_pg_offset; bcopy(a_cp, b_cp, cnt); mmu_booke_kremove(copy_page_dst_va); mmu_booke_kremove(copy_page_src_va); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } mtx_unlock(©_page_mutex); } static vm_offset_t mmu_booke_quick_enter_page(vm_page_t m) { vm_paddr_t paddr; vm_offset_t qaddr; uint32_t flags; pte_t *pte; paddr = VM_PAGE_TO_PHYS(m); flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; flags |= PTE_PS_4KB; critical_enter(); qaddr = PCPU_GET(qmap_addr); pte = pte_find(kernel_pmap, qaddr); KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); /* * XXX: tlbivax is broadcast to other cores, but qaddr should * not be present in other TLBs. Is there a better instruction * sequence to use? Or just forget it & use mmu_booke_kenter()... */ __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); __asm __volatile("isync; msync"); *pte = PTE_RPN_FROM_PA(paddr) | flags; /* Flush the real memory from the instruction cache. */ if ((flags & (PTE_I | PTE_G)) == 0) __syncicache((void *)qaddr, PAGE_SIZE); return (qaddr); } static void mmu_booke_quick_remove_page(vm_offset_t addr) { pte_t *pte; pte = pte_find(kernel_pmap, addr); KASSERT(PCPU_GET(qmap_addr) == addr, ("mmu_booke_quick_remove_page: invalid address")); KASSERT(*pte != 0, ("mmu_booke_quick_remove_page: PTE not in use")); *pte = 0; critical_exit(); } /**************************************************************************/ /* TID handling */ /**************************************************************************/ /* * Return the largest uint value log such that 2^log <= num. */ static unsigned long ilog2(unsigned long num) { long lz; __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); return (31 - lz); } /* * Invalidate all TLB0 entries which match the given TID. Note this is * dedicated for cases when invalidations should NOT be propagated to other * CPUs. */ static void tid_flush(tlbtid_t tid) { register_t msr; uint32_t mas0, mas1, mas2; int entry, way; /* Don't evict kernel translations */ if (tid == TID_KERNEL) return; msr = mfmsr(); __asm __volatile("wrteei 0"); /* * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use * it for PID invalidation. */ switch ((mfpvr() >> 16) & 0xffff) { case FSL_E500mc: case FSL_E5500: case FSL_E6500: mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT); /* tlbilxpid */ __asm __volatile("isync; .long 0x7c200024; isync; msync"); __asm __volatile("wrtee %0" :: "r"(msr)); return; } for (way = 0; way < TLB0_WAYS; way++) for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); mtspr(SPR_MAS0, mas0); mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; mtspr(SPR_MAS2, mas2); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); if (!(mas1 & MAS1_VALID)) continue; if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) continue; mas1 &= ~MAS1_VALID; mtspr(SPR_MAS1, mas1); __asm __volatile("isync; tlbwe; isync; msync"); } __asm __volatile("wrtee %0" :: "r"(msr)); }