/*- * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com> * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Some hw specific parts of this pmap were derived or influenced * by NetBSD's ibm4xx pmap module. More generic code is shared with * a few other pmap modules from the FreeBSD tree. */ /* * VM layout notes: * * Kernel and user threads run within one common virtual address space * defined by AS=0. * * Virtual address space layout: * ----------------------------- * 0x0000_0000 - 0xafff_ffff : user process * 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) * 0xc000_0000 - 0xc0ff_ffff : kernel reserved * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. * 0xc100_0000 - 0xfeef_ffff : KVA * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space * 0xfef0_0000 - 0xffff_ffff : I/O devices region */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); #include "opt_kstack_pages.h" #include <sys/param.h> #include <sys/conf.h> #include <sys/malloc.h> #include <sys/ktr.h> #include <sys/proc.h> #include <sys/user.h> #include <sys/queue.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/kerneldump.h> #include <sys/linker.h> #include <sys/msgbuf.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/rwlock.h> #include <sys/sched.h> #include <sys/smp.h> #include <sys/vmmeter.h> #include <vm/vm.h> #include <vm/vm_page.h> #include <vm/vm_kern.h> #include <vm/vm_pageout.h> #include <vm/vm_extern.h> #include <vm/vm_object.h> #include <vm/vm_param.h> #include <vm/vm_map.h> #include <vm/vm_pager.h> #include <vm/uma.h> #include <machine/cpu.h> #include <machine/pcb.h> #include <machine/platform.h> #include <machine/tlb.h> #include <machine/spr.h> #include <machine/md_var.h> #include <machine/mmuvar.h> #include <machine/pmap.h> #include <machine/pte.h> #include "mmu_if.h" #define SPARSE_MAPDEV #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif #define TODO panic("%s: not implemented", __func__); extern unsigned char _etext[]; extern unsigned char _end[]; extern uint32_t *bootinfo; vm_paddr_t kernload; vm_offset_t kernstart; vm_size_t kernsize; /* Message buffer and tables. */ static vm_offset_t data_start; static vm_size_t data_end; /* Phys/avail memory regions. */ static struct mem_region *availmem_regions; static int availmem_regions_sz; static struct mem_region *physmem_regions; static int physmem_regions_sz; /* Reserved KVA space and mutex for mmu_booke_zero_page. */ static vm_offset_t zero_page_va; static struct mtx zero_page_mutex; static struct mtx tlbivax_mutex; /* Reserved KVA space and mutex for mmu_booke_copy_page. */ static vm_offset_t copy_page_src_va; static vm_offset_t copy_page_dst_va; static struct mtx copy_page_mutex; /**************************************************************************/ /* PMAP */ /**************************************************************************/ static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); unsigned int kptbl_min; /* Index of the first kernel ptbl. */ unsigned int kernel_ptbls; /* Number of KVA ptbls. */ /* * If user pmap is processed with mmu_booke_remove and the resident count * drops to 0, there are no more pages to remove, so we need not continue. */ #define PMAP_REMOVE_DONE(pmap) \ ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) extern int elf32_nxstack; /**************************************************************************/ /* TLB and TID handling */ /**************************************************************************/ /* Translation ID busy table */ static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; /* * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 * core revisions and should be read from h/w registers during early config. */ uint32_t tlb0_entries; uint32_t tlb0_ways; uint32_t tlb0_entries_per_way; uint32_t tlb1_entries; #define TLB0_ENTRIES (tlb0_entries) #define TLB0_WAYS (tlb0_ways) #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) #define TLB1_ENTRIES (tlb1_entries) #define TLB1_MAXENTRIES 64 static vm_offset_t tlb1_map_base = VM_MAXUSER_ADDRESS + PAGE_SIZE; static tlbtid_t tid_alloc(struct pmap *); static void tid_flush(tlbtid_t tid); static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); static void tlb1_read_entry(tlb_entry_t *, unsigned int); static void tlb1_write_entry(tlb_entry_t *, unsigned int); static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t); static vm_size_t tsize2size(unsigned int); static unsigned int size2tsize(vm_size_t); static unsigned int ilog2(unsigned int); static void set_mas4_defaults(void); static inline void tlb0_flush_entry(vm_offset_t); static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); /**************************************************************************/ /* Page table management */ /**************************************************************************/ static struct rwlock_padalign pvh_global_lock; /* Data for the pv entry allocation mechanism */ static uma_zone_t pvzone; static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif static void ptbl_init(void); static struct ptbl_buf *ptbl_buf_alloc(void); static void ptbl_buf_free(struct ptbl_buf *); static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); static void ptbl_free(mmu_t, pmap_t, unsigned int); static void ptbl_hold(mmu_t, pmap_t, unsigned int); static int ptbl_unhold(mmu_t, pmap_t, unsigned int); static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir); static pv_entry_t pv_alloc(void); static void pv_free(pv_entry_t); static void pv_insert(pmap_t, vm_offset_t, vm_page_t); static void pv_remove(pmap_t, vm_offset_t, vm_page_t); static void booke_pmap_init_qpages(void); /* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ #define PTBL_BUFS (128 * 16) struct ptbl_buf { TAILQ_ENTRY(ptbl_buf) link; /* list link */ vm_offset_t kva; /* va of mapping */ }; /* ptbl free list and a lock used for access synchronization. */ static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; static struct mtx ptbl_buf_freelist_lock; /* Base address of kva space allocated fot ptbl bufs. */ static vm_offset_t ptbl_buf_pool_vabase; /* Pointer to ptbl_buf structures. */ static struct ptbl_buf *ptbl_bufs; #ifdef SMP extern tlb_entry_t __boot_tlb1[]; void pmap_bootstrap_ap(volatile uint32_t *); #endif /* * Kernel MMU interface */ static void mmu_booke_clear_modify(mmu_t, vm_page_t); static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t); static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); static void mmu_booke_copy_pages(mmu_t, vm_page_t *, vm_offset_t, vm_page_t *, vm_offset_t, int); static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); static void mmu_booke_init(mmu_t); static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); static int mmu_booke_ts_referenced(mmu_t, vm_page_t); static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, vm_paddr_t *); static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, vm_object_t, vm_pindex_t, vm_size_t); static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); static void mmu_booke_page_init(mmu_t, vm_page_t); static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); static void mmu_booke_pinit(mmu_t, pmap_t); static void mmu_booke_pinit0(mmu_t, pmap_t); static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); static void mmu_booke_qremove(mmu_t, vm_offset_t, int); static void mmu_booke_release(mmu_t, pmap_t); static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); static void mmu_booke_remove_all(mmu_t, vm_page_t); static void mmu_booke_remove_write(mmu_t, vm_page_t); static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); static void mmu_booke_zero_page(mmu_t, vm_page_t); static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); static void mmu_booke_activate(mmu_t, struct thread *); static void mmu_booke_deactivate(mmu_t, struct thread *); static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t); static void mmu_booke_kremove(mmu_t, vm_offset_t); static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t, void **); static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t, void *); static void mmu_booke_scan_init(mmu_t); static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m); static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr); static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, vm_memattr_t mode); static mmu_method_t mmu_booke_methods[] = { /* pmap dispatcher interface */ MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), MMUMETHOD(mmu_copy, mmu_booke_copy), MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), MMUMETHOD(mmu_enter, mmu_booke_enter), MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), MMUMETHOD(mmu_extract, mmu_booke_extract), MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), MMUMETHOD(mmu_init, mmu_booke_init), MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), MMUMETHOD(mmu_map, mmu_booke_map), MMUMETHOD(mmu_mincore, mmu_booke_mincore), MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), MMUMETHOD(mmu_page_init, mmu_booke_page_init), MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), MMUMETHOD(mmu_pinit, mmu_booke_pinit), MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), MMUMETHOD(mmu_protect, mmu_booke_protect), MMUMETHOD(mmu_qenter, mmu_booke_qenter), MMUMETHOD(mmu_qremove, mmu_booke_qremove), MMUMETHOD(mmu_release, mmu_booke_release), MMUMETHOD(mmu_remove, mmu_booke_remove), MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), MMUMETHOD(mmu_unwire, mmu_booke_unwire), MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), MMUMETHOD(mmu_activate, mmu_booke_activate), MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page), MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page), /* Internal interfaces */ MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr), MMUMETHOD(mmu_kenter, mmu_booke_kenter), MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr), MMUMETHOD(mmu_kextract, mmu_booke_kextract), MMUMETHOD(mmu_kremove, mmu_booke_kremove), MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), MMUMETHOD(mmu_change_attr, mmu_booke_change_attr), /* dumpsys() support */ MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), MMUMETHOD(mmu_scan_init, mmu_booke_scan_init), { 0, 0 } }; MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) { uint32_t attrib; int i; if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (MAS2_I | MAS2_G); case VM_MEMATTR_WRITE_COMBINING: case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: return (MAS2_I); case VM_MEMATTR_WRITE_THROUGH: return (MAS2_W | MAS2_M); case VM_MEMATTR_CACHEABLE: return (MAS2_M); } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ attrib = _TLB_ENTRY_IO; for (i = 0; i < physmem_regions_sz; i++) { if ((pa >= physmem_regions[i].mr_start) && (pa < (physmem_regions[i].mr_start + physmem_regions[i].mr_size))) { attrib = _TLB_ENTRY_MEM; break; } } return (attrib); } static inline void tlb_miss_lock(void) { #ifdef SMP struct pcpu *pc; if (!smp_started) return; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { if (pc != pcpup) { CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock); KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), ("tlb_miss_lock: tried to lock self")); tlb_lock(pc->pc_booke_tlb_lock); CTR1(KTR_PMAP, "%s: locked", __func__); } } #endif } static inline void tlb_miss_unlock(void) { #ifdef SMP struct pcpu *pc; if (!smp_started) return; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { if (pc != pcpup) { CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", __func__, pc->pc_cpuid); tlb_unlock(pc->pc_booke_tlb_lock); CTR1(KTR_PMAP, "%s: unlocked", __func__); } } #endif } /* Return number of entries in TLB0. */ static __inline void tlb0_get_tlbconf(void) { uint32_t tlb0_cfg; tlb0_cfg = mfspr(SPR_TLB0CFG); tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; tlb0_entries_per_way = tlb0_entries / tlb0_ways; } /* Return number of entries in TLB1. */ static __inline void tlb1_get_tlbconf(void) { uint32_t tlb1_cfg; tlb1_cfg = mfspr(SPR_TLB1CFG); tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK; } /**************************************************************************/ /* Page table related */ /**************************************************************************/ /* Initialize pool of kva ptbl buffers. */ static void ptbl_init(void) { int i; CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); TAILQ_INIT(&ptbl_buf_freelist); for (i = 0; i < PTBL_BUFS; i++) { ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); } } /* Get a ptbl_buf from the freelist. */ static struct ptbl_buf * ptbl_buf_alloc(void) { struct ptbl_buf *buf; mtx_lock(&ptbl_buf_freelist_lock); buf = TAILQ_FIRST(&ptbl_buf_freelist); if (buf != NULL) TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); mtx_unlock(&ptbl_buf_freelist_lock); CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); return (buf); } /* Return ptbl buff to free pool. */ static void ptbl_buf_free(struct ptbl_buf *buf) { CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); mtx_lock(&ptbl_buf_freelist_lock); TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); mtx_unlock(&ptbl_buf_freelist_lock); } /* * Search the list of allocated ptbl bufs and find on list of allocated ptbls */ static void ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) { struct ptbl_buf *pbuf; CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); PMAP_LOCK_ASSERT(pmap, MA_OWNED); TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) if (pbuf->kva == (vm_offset_t)ptbl) { /* Remove from pmap ptbl buf list. */ TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); /* Free corresponding ptbl buf. */ ptbl_buf_free(pbuf); break; } } /* Allocate page table. */ static pte_t * ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) { vm_page_t mtbl[PTBL_PAGES]; vm_page_t m; struct ptbl_buf *pbuf; unsigned int pidx; pte_t *ptbl; int i, j; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_alloc: invalid pdir_idx")); KASSERT((pmap->pm_pdir[pdir_idx] == NULL), ("pte_alloc: valid ptbl entry exists!")); pbuf = ptbl_buf_alloc(); if (pbuf == NULL) panic("pte_alloc: couldn't alloc kernel virtual memory"); ptbl = (pte_t *)pbuf->kva; CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); /* Allocate ptbl pages, this will sleep! */ for (i = 0; i < PTBL_PAGES; i++) { pidx = (PTBL_PAGES * pdir_idx) + i; while ((m = vm_page_alloc(NULL, pidx, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); if (nosleep) { ptbl_free_pmap_ptbl(pmap, ptbl); for (j = 0; j < i; j++) vm_page_free(mtbl[j]); atomic_subtract_int(&vm_cnt.v_wire_count, i); return (NULL); } VM_WAIT; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); } mtbl[i] = m; } /* Map allocated pages into kernel_pmap. */ mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); /* Zero whole ptbl. */ bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); /* Add pbuf to the pmap ptbl bufs list. */ TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); return (ptbl); } /* Free ptbl pages and invalidate pdir entry. */ static void ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) { pte_t *ptbl; vm_paddr_t pa; vm_offset_t va; vm_page_t m; int i; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_free: invalid pdir_idx")); ptbl = pmap->pm_pdir[pdir_idx]; CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); /* * Invalidate the pdir entry as soon as possible, so that other CPUs * don't attempt to look up the page tables we are releasing. */ mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); pmap->pm_pdir[pdir_idx] = NULL; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); for (i = 0; i < PTBL_PAGES; i++) { va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); pa = pte_vatopa(mmu, kernel_pmap, va); m = PHYS_TO_VM_PAGE(pa); vm_page_free_zero(m); atomic_subtract_int(&vm_cnt.v_wire_count, 1); mmu_booke_kremove(mmu, va); } ptbl_free_pmap_ptbl(pmap, ptbl); } /* * Decrement ptbl pages hold count and attempt to free ptbl pages. * Called when removing pte entry from ptbl. * * Return 1 if ptbl pages were freed. */ static int ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) { pte_t *ptbl; vm_paddr_t pa; vm_page_t m; int i; CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, (pmap == kernel_pmap), pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_unhold: invalid pdir_idx")); KASSERT((pmap != kernel_pmap), ("ptbl_unhold: unholding kernel ptbl!")); ptbl = pmap->pm_pdir[pdir_idx]; //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), ("ptbl_unhold: non kva ptbl")); /* decrement hold count */ for (i = 0; i < PTBL_PAGES; i++) { pa = pte_vatopa(mmu, kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE)); m = PHYS_TO_VM_PAGE(pa); m->wire_count--; } /* * Free ptbl pages if there are no pte etries in this ptbl. * wire_count has the same value for all ptbl pages, so check the last * page. */ if (m->wire_count == 0) { ptbl_free(mmu, pmap, pdir_idx); //debugf("ptbl_unhold: e (freed ptbl)\n"); return (1); } return (0); } /* * Increment hold count for ptbl pages. This routine is used when a new pte * entry is being inserted into the ptbl. */ static void ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) { vm_paddr_t pa; pte_t *ptbl; vm_page_t m; int i; CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, pdir_idx); KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), ("ptbl_hold: invalid pdir_idx")); KASSERT((pmap != kernel_pmap), ("ptbl_hold: holding kernel ptbl!")); ptbl = pmap->pm_pdir[pdir_idx]; KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); for (i = 0; i < PTBL_PAGES; i++) { pa = pte_vatopa(mmu, kernel_pmap, (vm_offset_t)ptbl + (i * PAGE_SIZE)); m = PHYS_TO_VM_PAGE(pa); m->wire_count++; } } /* Allocate pv_entry structure. */ pv_entry_t pv_alloc(void) { pv_entry_t pv; pv_entry_count++; if (pv_entry_count > pv_entry_high_water) pagedaemon_wakeup(); pv = uma_zalloc(pvzone, M_NOWAIT); return (pv); } /* Free pv_entry structure. */ static __inline void pv_free(pv_entry_t pve) { pv_entry_count--; uma_zfree(pvzone, pve); } /* Allocate and initialize pv_entry structure. */ static void pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pve; //int su = (pmap == kernel_pmap); //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, // (u_int32_t)pmap, va, (u_int32_t)m); pve = pv_alloc(); if (pve == NULL) panic("pv_insert: no pv entries!"); pve->pv_pmap = pmap; pve->pv_va = va; /* add to pv_list */ PMAP_LOCK_ASSERT(pmap, MA_OWNED); rw_assert(&pvh_global_lock, RA_WLOCKED); TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); //debugf("pv_insert: e\n"); } /* Destroy pv entry. */ static void pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pve; //int su = (pmap == kernel_pmap); //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); PMAP_LOCK_ASSERT(pmap, MA_OWNED); rw_assert(&pvh_global_lock, RA_WLOCKED); /* find pv entry */ TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { /* remove from pv_list */ TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); if (TAILQ_EMPTY(&m->md.pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); /* free pv entry struct */ pv_free(pve); break; } } //debugf("pv_remove: e\n"); } /* * Clean pte entry, try to free page table page if requested. * * Return 1 if ptbl pages were freed, otherwise return 0. */ static int pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); vm_page_t m; pte_t *ptbl; pte_t *pte; //int su = (pmap == kernel_pmap); //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", // su, (u_int32_t)pmap, va, flags); ptbl = pmap->pm_pdir[pdir_idx]; KASSERT(ptbl, ("pte_remove: null ptbl")); pte = &ptbl[ptbl_idx]; if (pte == NULL || !PTE_ISVALID(pte)) return (0); if (PTE_ISWIRED(pte)) pmap->pm_stats.wired_count--; /* Handle managed entry. */ if (PTE_ISMANAGED(pte)) { /* Get vm_page_t for mapped pte. */ m = PHYS_TO_VM_PAGE(PTE_PA(pte)); if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); if (PTE_ISREFERENCED(pte)) vm_page_aflag_set(m, PGA_REFERENCED); pv_remove(pmap, va, m); } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); *pte = 0; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); pmap->pm_stats.resident_count--; if (flags & PTBL_UNHOLD) { //debugf("pte_remove: e (unhold)\n"); return (ptbl_unhold(mmu, pmap, pdir_idx)); } //debugf("pte_remove: e\n"); return (0); } /* * Insert PTE for a given page and virtual address. */ static int pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, boolean_t nosleep) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); pte_t *ptbl, *pte; CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, pmap == kernel_pmap, pmap, va); /* Get the page table pointer. */ ptbl = pmap->pm_pdir[pdir_idx]; if (ptbl == NULL) { /* Allocate page table pages. */ ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); if (ptbl == NULL) { KASSERT(nosleep, ("nosleep and NULL ptbl")); return (ENOMEM); } } else { /* * Check if there is valid mapping for requested * va, if there is, remove it. */ pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; if (PTE_ISVALID(pte)) { pte_remove(mmu, pmap, va, PTBL_HOLD); } else { /* * pte is not used, increment hold count * for ptbl pages. */ if (pmap != kernel_pmap) ptbl_hold(mmu, pmap, pdir_idx); } } /* * Insert pv_entry into pv_list for mapped page if part of managed * memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { flags |= PTE_MANAGED; /* Create and insert pv entry. */ pv_insert(pmap, va, m); } pmap->pm_stats.resident_count++; mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); if (pmap->pm_pdir[pdir_idx] == NULL) { /* * If we just allocated a new page table, hook it in * the pdir. */ pmap->pm_pdir[pdir_idx] = ptbl; } pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]); *pte = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); *pte |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); return (0); } /* Return the pa for the given pmap/va. */ static vm_paddr_t pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) { vm_paddr_t pa = 0; pte_t *pte; pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); return (pa); } /* Get a pointer to a PTE in a page table. */ static pte_t * pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) { unsigned int pdir_idx = PDIR_IDX(va); unsigned int ptbl_idx = PTBL_IDX(va); KASSERT((pmap != NULL), ("pte_find: invalid pmap")); if (pmap->pm_pdir[pdir_idx]) return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); return (NULL); } /* Set up kernel page tables. */ static void kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) { int i; vm_offset_t va; pte_t *pte; /* Initialize kernel pdir */ for (i = 0; i < kernel_ptbls; i++) kernel_pmap->pm_pdir[kptbl_min + i] = (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES)); /* * Fill in PTEs covering kernel code and data. They are not required * for address translation, as this area is covered by static TLB1 * entries, but for pte_vatopa() to work correctly with kernel area * addresses. */ for (va = addr; va < data_end; va += PAGE_SIZE) { pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID | PTE_PS_4KB; } } /**************************************************************************/ /* PMAP related */ /**************************************************************************/ /* * This is called during booke_init, before the system is really initialized. */ static void mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) { vm_paddr_t phys_kernelend; struct mem_region *mp, *mp1; int cnt, i, j; vm_paddr_t s, e, sz; vm_paddr_t physsz, hwphyssz; u_int phys_avail_count; vm_size_t kstack0_sz; vm_offset_t kernel_pdir, kstack0; vm_paddr_t kstack0_phys; void *dpcpu; debugf("mmu_booke_bootstrap: entered\n"); /* Set interesting system properties */ hw_direct_map = 0; elf32_nxstack = 1; /* Initialize invalidation mutex */ mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); /* Read TLB0 size and associativity. */ tlb0_get_tlbconf(); /* * Align kernel start and end address (kernel image). * Note that kernel end does not necessarily relate to kernsize. * kernsize is the size of the kernel that is actually mapped. */ kernstart = trunc_page(start); data_start = round_page(kernelend); data_end = data_start; /* * Addresses of preloaded modules (like file systems) use * physical addresses. Make sure we relocate those into * virtual addresses. */ preload_addr_relocate = kernstart - kernload; /* Allocate the dynamic per-cpu area. */ dpcpu = (void *)data_end; data_end += DPCPU_SIZE; /* Allocate space for the message buffer. */ msgbufp = (struct msgbuf *)data_end; data_end += msgbufsize; debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp, data_end); data_end = round_page(data_end); /* Allocate space for ptbl_bufs. */ ptbl_bufs = (struct ptbl_buf *)data_end; data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs, data_end); data_end = round_page(data_end); /* Allocate PTE tables for kernel KVA. */ kernel_pdir = data_end; kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, PDIR_SIZE); data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; debugf(" kernel ptbls: %d\n", kernel_ptbls); debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end); debugf(" data_end: 0x%08x\n", data_end); if (data_end - kernstart > kernsize) { kernsize += tlb1_mapin_region(kernstart + kernsize, kernload + kernsize, (data_end - kernstart) - kernsize); } data_end = kernstart + kernsize; debugf(" updated data_end: 0x%08x\n", data_end); /* * Clear the structures - note we can only do it safely after the * possible additional TLB1 translations are in place (above) so that * all range up to the currently calculated 'data_end' is covered. */ dpcpu_init(dpcpu, 0); memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); /*******************************************************/ /* Set the start and end of kva. */ /*******************************************************/ virtual_avail = round_page(data_end); virtual_end = VM_MAX_KERNEL_ADDRESS; /* Allocate KVA space for page zero/copy operations. */ zero_page_va = virtual_avail; virtual_avail += PAGE_SIZE; copy_page_src_va = virtual_avail; virtual_avail += PAGE_SIZE; copy_page_dst_va = virtual_avail; virtual_avail += PAGE_SIZE; debugf("zero_page_va = 0x%08x\n", zero_page_va); debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va); debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va); /* Initialize page zero/copy mutexes. */ mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); /* Allocate KVA space for ptbl bufs. */ ptbl_buf_pool_vabase = virtual_avail; virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n", ptbl_buf_pool_vabase, virtual_avail); /* Calculate corresponding physical addresses for the kernel region. */ phys_kernelend = kernload + kernsize; debugf("kernel image and allocated data:\n"); debugf(" kernload = 0x%09llx\n", (uint64_t)kernload); debugf(" kernstart = 0x%08x\n", kernstart); debugf(" kernsize = 0x%08x\n", kernsize); if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz) panic("mmu_booke_bootstrap: phys_avail too small"); /* * Remove kernel physical address range from avail regions list. Page * align all regions. Non-page aligned memory isn't very interesting * to us. Also, sort the entries for ascending addresses. */ /* Retrieve phys/avail mem regions */ mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, &availmem_regions_sz); sz = 0; cnt = availmem_regions_sz; debugf("processing avail regions:\n"); for (mp = availmem_regions; mp->mr_size; mp++) { s = mp->mr_start; e = mp->mr_start + mp->mr_size; debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e); /* Check whether this region holds all of the kernel. */ if (s < kernload && e > phys_kernelend) { availmem_regions[cnt].mr_start = phys_kernelend; availmem_regions[cnt++].mr_size = e - phys_kernelend; e = kernload; } /* Look whether this regions starts within the kernel. */ if (s >= kernload && s < phys_kernelend) { if (e <= phys_kernelend) goto empty; s = phys_kernelend; } /* Now look whether this region ends within the kernel. */ if (e > kernload && e <= phys_kernelend) { if (s >= kernload) goto empty; e = kernload; } /* Now page align the start and size of the region. */ s = round_page(s); e = trunc_page(e); if (e < s) e = s; sz = e - s; debugf("%09jx-%09jx = %jx\n", (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz); /* Check whether some memory is left here. */ if (sz == 0) { empty: memmove(mp, mp + 1, (cnt - (mp - availmem_regions)) * sizeof(*mp)); cnt--; mp--; continue; } /* Do an insertion sort. */ for (mp1 = availmem_regions; mp1 < mp; mp1++) if (s < mp1->mr_start) break; if (mp1 < mp) { memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); mp1->mr_start = s; mp1->mr_size = sz; } else { mp->mr_start = s; mp->mr_size = sz; } } availmem_regions_sz = cnt; /*******************************************************/ /* Steal physical memory for kernel stack from the end */ /* of the first avail region */ /*******************************************************/ kstack0_sz = kstack_pages * PAGE_SIZE; kstack0_phys = availmem_regions[0].mr_start + availmem_regions[0].mr_size; kstack0_phys -= kstack0_sz; availmem_regions[0].mr_size -= kstack0_sz; /*******************************************************/ /* Fill in phys_avail table, based on availmem_regions */ /*******************************************************/ phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); debugf("fill in phys_avail:\n"); for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { debugf(" region: 0x%jx - 0x%jx (0x%jx)\n", (uintmax_t)availmem_regions[i].mr_start, (uintmax_t)availmem_regions[i].mr_start + availmem_regions[i].mr_size, (uintmax_t)availmem_regions[i].mr_size); if (hwphyssz != 0 && (physsz + availmem_regions[i].mr_size) >= hwphyssz) { debugf(" hw.physmem adjust\n"); if (physsz < hwphyssz) { phys_avail[j] = availmem_regions[i].mr_start; phys_avail[j + 1] = availmem_regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; } break; } phys_avail[j] = availmem_regions[i].mr_start; phys_avail[j + 1] = availmem_regions[i].mr_start + availmem_regions[i].mr_size; phys_avail_count++; physsz += availmem_regions[i].mr_size; } physmem = btoc(physsz); /* Calculate the last available physical address. */ for (i = 0; phys_avail[i + 2] != 0; i += 2) ; Maxmem = powerpc_btop(phys_avail[i + 1]); debugf("Maxmem = 0x%08lx\n", Maxmem); debugf("phys_avail_count = %d\n", phys_avail_count); debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n", (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem); /*******************************************************/ /* Initialize (statically allocated) kernel pmap. */ /*******************************************************/ PMAP_LOCK_INIT(kernel_pmap); kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap); debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls); debugf("kernel pdir range: 0x%08x - 0x%08x\n", kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1); kernel_pte_alloc(data_end, kernstart, kernel_pdir); for (i = 0; i < MAXCPU; i++) { kernel_pmap->pm_tid[i] = TID_KERNEL; /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ tidbusy[i][TID_KERNEL] = kernel_pmap; } /* Mark kernel_pmap active on all CPUs */ CPU_FILL(&kernel_pmap->pm_active); /* * Initialize the global pv list lock. */ rw_init(&pvh_global_lock, "pmap pv global"); /*******************************************************/ /* Final setup */ /*******************************************************/ /* Enter kstack0 into kernel map, provide guard page */ kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; thread0.td_kstack = kstack0; thread0.td_kstack_pages = kstack_pages; debugf("kstack_sz = 0x%08x\n", kstack0_sz); debugf("kstack0_phys at 0x%09llx - 0x%09llx\n", kstack0_phys, kstack0_phys + kstack0_sz); debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz); virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; for (i = 0; i < kstack_pages; i++) { mmu_booke_kenter(mmu, kstack0, kstack0_phys); kstack0 += PAGE_SIZE; kstack0_phys += PAGE_SIZE; } pmap_bootstrapped = 1; debugf("virtual_avail = %08x\n", virtual_avail); debugf("virtual_end = %08x\n", virtual_end); debugf("mmu_booke_bootstrap: exit\n"); } #ifdef SMP void tlb1_ap_prep(void) { tlb_entry_t *e, tmp; unsigned int i; /* Prepare TLB1 image for AP processors */ e = __boot_tlb1; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&tmp, i); if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED)) memcpy(e++, &tmp, sizeof(tmp)); } } void pmap_bootstrap_ap(volatile uint32_t *trcp __unused) { int i; /* * Finish TLB1 configuration: the BSP already set up its TLB1 and we * have the snapshot of its contents in the s/w __boot_tlb1[] table * created by tlb1_ap_prep(), so use these values directly to * (re)program AP's TLB1 hardware. * * Start at index 1 because index 0 has the kernel map. */ for (i = 1; i < TLB1_ENTRIES; i++) { if (__boot_tlb1[i].mas1 & MAS1_VALID) tlb1_write_entry(&__boot_tlb1[i], i); } set_mas4_defaults(); } #endif static void booke_pmap_init_qpages(void) { struct pcpu *pc; int i; CPU_FOREACH(i) { pc = pcpu_find(i); pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); if (pc->pc_qmap_addr == 0) panic("pmap_init_qpages: unable to allocate KVA"); } } SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL); /* * Get the physical page address for the given pmap/virtual address. */ static vm_paddr_t mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) { vm_paddr_t pa; PMAP_LOCK(pmap); pa = pte_vatopa(mmu, pmap, va); PMAP_UNLOCK(pmap); return (pa); } /* * Extract the physical page address associated with the given * kernel virtual address. */ static vm_paddr_t mmu_booke_kextract(mmu_t mmu, vm_offset_t va) { tlb_entry_t e; int i; /* Check TLB1 mappings */ for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (va >= e.virt && va < e.virt + e.size) return (e.phys + (va - e.virt)); } return (pte_vatopa(mmu, kernel_pmap, va)); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ static void mmu_booke_init(mmu_t mmu) { int shpgperproc = PMAP_SHPGPERPROC; /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); pv_entry_high_water = 9 * (pv_entry_max / 10); uma_zone_reserve_kva(pvzone, pv_entry_max); /* Pre-fill pvzone with initial number of pv entries. */ uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); /* Initialize ptbl allocation. */ ptbl_init(); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ static void mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) { vm_offset_t va; va = sva; while (count-- > 0) { mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by mmu_booke_qenter. */ static void mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) { vm_offset_t va; va = sva; while (count-- > 0) { mmu_booke_kremove(mmu, va); va += PAGE_SIZE; } } /* * Map a wired page into kernel virtual address space. */ static void mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) { mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); } static void mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) { uint32_t flags; pte_t *pte; KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT; flags |= PTE_PS_4KB; pte = pte_find(mmu, kernel_pmap, va); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); if (PTE_ISVALID(pte)) { CTR1(KTR_PMAP, "%s: replacing entry!", __func__); /* Flush entry from TLB0 */ tlb0_flush_entry(va); } *pte = PTE_RPN_FROM_PA(pa) | flags; //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); /* Flush the real memory from the instruction cache. */ if ((flags & (PTE_I | PTE_G)) == 0) __syncicache((void *)va, PAGE_SIZE); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } /* * Remove a page from kernel page table. */ static void mmu_booke_kremove(mmu_t mmu, vm_offset_t va) { pte_t *pte; CTR2(KTR_PMAP,"%s: s (va = 0x%08x)\n", __func__, va); KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kremove: invalid va")); pte = pte_find(mmu, kernel_pmap, va); if (!PTE_ISVALID(pte)) { CTR1(KTR_PMAP, "%s: invalid pte", __func__); return; } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Invalidate entry in TLB0, update PTE. */ tlb0_flush_entry(va); *pte = 0; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } /* * Initialize pmap associated with process 0. */ static void mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) { PMAP_LOCK_INIT(pmap); mmu_booke_pinit(mmu, pmap); PCPU_SET(curpmap, pmap); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ static void mmu_booke_pinit(mmu_t mmu, pmap_t pmap) { int i; CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, curthread->td_proc->p_pid, curthread->td_proc->p_comm); KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); for (i = 0; i < MAXCPU; i++) pmap->pm_tid[i] = TID_NONE; CPU_ZERO(&kernel_pmap->pm_active); bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); TAILQ_INIT(&pmap->pm_ptbl_list); } /* * Release any resources held by the given physical map. * Called when a pmap initialized by mmu_booke_pinit is being released. * Should only be called if the map contains no valid mappings. */ static void mmu_booke_release(mmu_t mmu, pmap_t pmap) { KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); } /* * Insert the given physical page at the specified virtual address in the * target physical map with the protection requested. If specified the page * will be wired down. */ static int mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { int error; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); return (error); } static int mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int pmap_flags, int8_t psind __unused) { pte_t *pte; vm_paddr_t pa; uint32_t flags; int error, su, sync; pa = VM_PAGE_TO_PHYS(m); su = (pmap == kernel_pmap); sync = 0; //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " // "pa=0x%08x prot=0x%08x flags=%#x)\n", // (u_int32_t)pmap, su, pmap->pm_tid, // (u_int32_t)m, va, pa, prot, flags); if (su) { KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_enter_locked: kernel pmap, non kernel va")); } else { KASSERT((va <= VM_MAXUSER_ADDRESS), ("mmu_booke_enter_locked: user pmap, non user va")); } if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) VM_OBJECT_ASSERT_LOCKED(m->object); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * If there is an existing mapping, and the physical address has not * changed, must be protection or wiring change. */ if (((pte = pte_find(mmu, pmap, va)) != NULL) && (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { /* * Before actually updating pte->flags we calculate and * prepare its new value in a helper var. */ flags = *pte; flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); /* Wiring change, just update stats. */ if ((pmap_flags & PMAP_ENTER_WIRED) != 0) { if (!PTE_ISWIRED(pte)) { flags |= PTE_WIRED; pmap->pm_stats.wired_count++; } } else { if (PTE_ISWIRED(pte)) { flags &= ~PTE_WIRED; pmap->pm_stats.wired_count--; } } if (prot & VM_PROT_WRITE) { /* Add write permissions. */ flags |= PTE_SW; if (!su) flags |= PTE_UW; if ((flags & PTE_MANAGED) != 0) vm_page_aflag_set(m, PGA_WRITEABLE); } else { /* Handle modified pages, sense modify status. */ /* * The PTE_MODIFIED flag could be set by underlying * TLB misses since we last read it (above), possibly * other CPUs could update it so we check in the PTE * directly rather than rely on that saved local flags * copy. */ if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); } if (prot & VM_PROT_EXECUTE) { flags |= PTE_SX; if (!su) flags |= PTE_UX; /* * Check existing flags for execute permissions: if we * are turning execute permissions on, icache should * be flushed. */ if ((*pte & (PTE_UX | PTE_SX)) == 0) sync++; } flags &= ~PTE_REFERENCED; /* * The new flags value is all calculated -- only now actually * update the PTE. */ mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); *pte &= ~PTE_FLAGS_MASK; *pte |= flags; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } else { /* * If there is an existing mapping, but it's for a different * physical address, pte_enter() will delete the old mapping. */ //if ((pte != NULL) && PTE_ISVALID(pte)) // debugf("mmu_booke_enter_locked: replace\n"); //else // debugf("mmu_booke_enter_locked: new\n"); /* Now set up the flags and install the new mapping. */ flags = (PTE_SR | PTE_VALID); flags |= PTE_M; if (!su) flags |= PTE_UR; if (prot & VM_PROT_WRITE) { flags |= PTE_SW; if (!su) flags |= PTE_UW; if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); } if (prot & VM_PROT_EXECUTE) { flags |= PTE_SX; if (!su) flags |= PTE_UX; } /* If its wired update stats. */ if ((pmap_flags & PMAP_ENTER_WIRED) != 0) flags |= PTE_WIRED; error = pte_enter(mmu, pmap, m, va, flags, (pmap_flags & PMAP_ENTER_NOSLEEP) != 0); if (error != 0) return (KERN_RESOURCE_SHORTAGE); if ((flags & PMAP_ENTER_WIRED) != 0) pmap->pm_stats.wired_count++; /* Flush the real memory from the instruction cache. */ if (prot & VM_PROT_EXECUTE) sync++; } if (sync && (su || pmap == PCPU_GET(curpmap))) { __syncicache((void *)va, PAGE_SIZE); sync = 0; } return (KERN_SUCCESS); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ static void mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); m = m_start; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0); m = TAILQ_NEXT(m, listq); } rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } static void mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); mmu_booke_enter_locked(mmu, pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly rounded to the page size. */ static void mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) { pte_t *pte; uint8_t hold_flag; int su = (pmap == kernel_pmap); //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); if (su) { KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_remove: kernel pmap, non kernel va")); } else { KASSERT((va <= VM_MAXUSER_ADDRESS), ("mmu_booke_remove: user pmap, non user va")); } if (PMAP_REMOVE_DONE(pmap)) { //debugf("mmu_booke_remove: e (empty)\n"); return; } hold_flag = PTBL_HOLD_FLAG(pmap); //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); for (; va < endva; va += PAGE_SIZE) { pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) pte_remove(mmu, pmap, va, hold_flag); } PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); //debugf("mmu_booke_remove: e\n"); } /* * Remove physical page from all pmaps in which it resides. */ static void mmu_booke_remove_all(mmu_t mmu, vm_page_t m) { pv_entry_t pv, pvn; uint8_t hold_flag; rw_wlock(&pvh_global_lock); for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { pvn = TAILQ_NEXT(pv, pv_link); PMAP_LOCK(pv->pv_pmap); hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); PMAP_UNLOCK(pv->pv_pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } /* * Map a range of physical addresses into kernel virtual address space. */ static vm_offset_t mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, vm_paddr_t pa_end, int prot) { vm_offset_t sva = *virt; vm_offset_t va = sva; //debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n", // sva, pa_start, pa_end); while (pa_start < pa_end) { mmu_booke_kenter(mmu, va, pa_start); va += PAGE_SIZE; pa_start += PAGE_SIZE; } *virt = va; //debugf("mmu_booke_map: e (va = 0x%08x)\n", va); return (sva); } /* * The pmap must be activated before it's address space can be accessed in any * way. */ static void mmu_booke_activate(mmu_t mmu, struct thread *td) { pmap_t pmap; u_int cpuid; pmap = &td->td_proc->p_vmspace->vm_pmap; CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)", __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); sched_pin(); cpuid = PCPU_GET(cpuid); CPU_SET_ATOMIC(cpuid, &pmap->pm_active); PCPU_SET(curpmap, pmap); if (pmap->pm_tid[cpuid] == TID_NONE) tid_alloc(pmap); /* Load PID0 register with pmap tid value. */ mtspr(SPR_PID0, pmap->pm_tid[cpuid]); __asm __volatile("isync"); mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0); sched_unpin(); CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); } /* * Deactivate the specified process's address space. */ static void mmu_booke_deactivate(mmu_t mmu, struct thread *td) { pmap_t pmap; pmap = &td->td_proc->p_vmspace->vm_pmap; CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x", __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0); CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); PCPU_SET(curpmap, NULL); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ static void mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { } /* * Set the physical protection on the specified range of this map as requested. */ static void mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { vm_offset_t va; vm_page_t m; pte_t *pte; if ((prot & VM_PROT_READ) == VM_PROT_NONE) { mmu_booke_remove(mmu, pmap, sva, eva); return; } if (prot & VM_PROT_WRITE) return; PMAP_LOCK(pmap); for (va = sva; va < eva; va += PAGE_SIZE) { if ((pte = pte_find(mmu, pmap, va)) != NULL) { if (PTE_ISVALID(pte)) { m = PHYS_TO_VM_PAGE(PTE_PA(pte)); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Handle modified pages. */ if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) vm_page_dirty(m); tlb0_flush_entry(va); *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } } } PMAP_UNLOCK(pmap); } /* * Clear the write and modified bits in each of the given page's mappings. */ static void mmu_booke_remove_write(mmu_t mmu, vm_page_t m) { pv_entry_t pv; pte_t *pte; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_remove_write: page %p is not managed", m)); /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * set by another thread while the object is locked. Thus, * if PGA_WRITEABLE is clear, no page table entries need updating. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { if (PTE_ISVALID(pte)) { m = PHYS_TO_VM_PAGE(PTE_PA(pte)); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Handle modified pages. */ if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); /* Flush mapping from TLB0. */ *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } } PMAP_UNLOCK(pv->pv_pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } static void mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) { pte_t *pte; pmap_t pmap; vm_page_t m; vm_offset_t addr; vm_paddr_t pa = 0; int active, valid; va = trunc_page(va); sz = round_page(sz); rw_wlock(&pvh_global_lock); pmap = PCPU_GET(curpmap); active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; while (sz > 0) { PMAP_LOCK(pm); pte = pte_find(mmu, pm, va); valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; if (valid) pa = PTE_PA(pte); PMAP_UNLOCK(pm); if (valid) { if (!active) { /* Create a mapping in the active pmap. */ addr = 0; m = PHYS_TO_VM_PAGE(pa); PMAP_LOCK(pmap); pte_enter(mmu, pmap, m, addr, PTE_SR | PTE_VALID | PTE_UR, FALSE); __syncicache((void *)addr, PAGE_SIZE); pte_remove(mmu, pmap, addr, PTBL_UNHOLD); PMAP_UNLOCK(pmap); } else __syncicache((void *)va, PAGE_SIZE); } va += PAGE_SIZE; sz -= PAGE_SIZE; } rw_wunlock(&pvh_global_lock); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ static vm_page_t mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pte_t *pte; vm_page_t m; uint32_t pte_wbit; vm_paddr_t pa; m = NULL; pa = 0; PMAP_LOCK(pmap); retry: pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) { if (pmap == kernel_pmap) pte_wbit = PTE_SW; else pte_wbit = PTE_UW; if ((*pte & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) { if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa)) goto retry; m = PHYS_TO_VM_PAGE(PTE_PA(pte)); vm_page_hold(m); } } PA_UNLOCK_COND(pa); PMAP_UNLOCK(pmap); return (m); } /* * Initialize a vm_page's machine-dependent fields. */ static void mmu_booke_page_init(mmu_t mmu, vm_page_t m) { TAILQ_INIT(&m->md.pv_list); } /* * mmu_booke_zero_page_area zeros the specified hardware page by * mapping it into virtual memory and using bzero to clear * its contents. * * off and size must reside within a single page. */ static void mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) { vm_offset_t va; /* XXX KASSERT off and size are within a single page? */ mtx_lock(&zero_page_mutex); va = zero_page_va; mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); bzero((caddr_t)va + off, size); mmu_booke_kremove(mmu, va); mtx_unlock(&zero_page_mutex); } /* * mmu_booke_zero_page zeros the specified hardware page. */ static void mmu_booke_zero_page(mmu_t mmu, vm_page_t m) { vm_offset_t off, va; mtx_lock(&zero_page_mutex); va = zero_page_va; mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(va + off)); mmu_booke_kremove(mmu, va); mtx_unlock(&zero_page_mutex); } /* * mmu_booke_copy_page copies the specified (machine independent) page by * mapping the page into virtual memory and using memcopy to copy the page, * one machine dependent page at a time. */ static void mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) { vm_offset_t sva, dva; sva = copy_page_src_va; dva = copy_page_dst_va; mtx_lock(©_page_mutex); mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); mmu_booke_kremove(mmu, dva); mmu_booke_kremove(mmu, sva); mtx_unlock(©_page_mutex); } static inline void mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; mtx_lock(©_page_mutex); while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); mmu_booke_kenter(mmu, copy_page_src_va, VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); a_cp = (char *)copy_page_src_va + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); mmu_booke_kenter(mmu, copy_page_dst_va, VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); b_cp = (char *)copy_page_dst_va + b_pg_offset; bcopy(a_cp, b_cp, cnt); mmu_booke_kremove(mmu, copy_page_dst_va); mmu_booke_kremove(mmu, copy_page_src_va); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } mtx_unlock(©_page_mutex); } static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) { vm_paddr_t paddr; vm_offset_t qaddr; uint32_t flags; pte_t *pte; paddr = VM_PAGE_TO_PHYS(m); flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; flags |= PTE_PS_4KB; critical_enter(); qaddr = PCPU_GET(qmap_addr); pte = pte_find(mmu, kernel_pmap, qaddr); KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); /* * XXX: tlbivax is broadcast to other cores, but qaddr should * not be present in other TLBs. Is there a better instruction * sequence to use? Or just forget it & use mmu_booke_kenter()... */ __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); __asm __volatile("isync; msync"); *pte = PTE_RPN_FROM_PA(paddr) | flags; /* Flush the real memory from the instruction cache. */ if ((flags & (PTE_I | PTE_G)) == 0) __syncicache((void *)qaddr, PAGE_SIZE); return (qaddr); } static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) { pte_t *pte; pte = pte_find(mmu, kernel_pmap, addr); KASSERT(PCPU_GET(qmap_addr) == addr, ("mmu_booke_quick_remove_page: invalid address")); KASSERT(*pte != 0, ("mmu_booke_quick_remove_page: PTE not in use")); *pte = 0; critical_exit(); } /* * Return whether or not the specified physical page was modified * in any of physical maps. */ static boolean_t mmu_booke_is_modified(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_is_modified: page %p is not managed", m)); rv = FALSE; /* * If the page is not exclusive busied, then PGA_WRITEABLE cannot be * concurrently set while the object is locked. Thus, if PGA_WRITEABLE * is clear, no PTEs can be modified. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) return (rv); rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISMODIFIED(pte)) rv = TRUE; } PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Return whether or not the specified virtual address is eligible * for prefault. */ static boolean_t mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) { return (FALSE); } /* * Return whether or not the specified physical page was referenced * in any physical maps. */ static boolean_t mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_is_referenced: page %p is not managed", m)); rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISREFERENCED(pte)) rv = TRUE; } PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Clear the modify bits on the specified physical page. */ static void mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_clear_modify: page %p is not managed", m)); VM_OBJECT_ASSERT_WLOCKED(m->object); KASSERT(!vm_page_xbusied(m), ("mmu_booke_clear_modify: page %p is exclusive busied", m)); /* * If the page is not PG_AWRITEABLE, then no PTEs can be modified. * If the object containing the page is locked and the page is not * exclusive busied, then PG_AWRITEABLE cannot be concurrently set. */ if ((m->aflags & PGA_WRITEABLE) == 0) return; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) { tlb0_flush_entry(pv->pv_va); *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | PTE_REFERENCED); } tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); } /* * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * As an optimization, update the page's dirty field if a modified bit is * found while counting reference bits. This opportunistic update can be * performed at low cost and can eliminate the need for some future calls * to pmap_is_modified(). However, since this function stops after * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some * dirty pages. Those dirty pages will only be detected by a future call * to pmap_is_modified(). */ static int mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; int count; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_ts_referenced: page %p is not managed", m)); count = 0; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); if (PTE_ISREFERENCED(pte)) { mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(pv->pv_va); *pte &= ~PTE_REFERENCED; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); if (++count >= PMAP_TS_REFERENCED_MAX) { PMAP_UNLOCK(pv->pv_pmap); break; } } } PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); return (count); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range must * have the wired attribute set. In contrast, invalid mappings cannot have * the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware feature, so * there is no need to invalidate any TLB entries. */ static void mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t va; pte_t *pte; PMAP_LOCK(pmap); for (va = sva; va < eva; va += PAGE_SIZE) { if ((pte = pte_find(mmu, pmap, va)) != NULL && PTE_ISVALID(pte)) { if (!PTE_ISWIRED(pte)) panic("mmu_booke_unwire: pte %p isn't wired", pte); *pte &= ~PTE_WIRED; pmap->pm_stats.wired_count--; } } PMAP_UNLOCK(pmap); } /* * Return true if the pmap's pv is one of the first 16 pvs linked to from this * page. This count may be changed upwards or downwards in the future; it is * only necessary that true be returned for a small subset of pmaps for proper * page aging. */ static boolean_t mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) { pv_entry_t pv; int loops; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_page_exists_quick: page %p is not managed", m)); loops = 0; rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { if (pv->pv_pmap == pmap) { rv = TRUE; break; } if (++loops >= 16) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Return the number of managed mappings to the given physical page that are * wired. */ static int mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) { pv_entry_t pv; pte_t *pte; int count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) count++; PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); return (count); } static int mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { int i; vm_offset_t va; /* * This currently does not work for entries that * overlap TLB1 entries. */ for (i = 0; i < TLB1_ENTRIES; i ++) { if (tlb1_iomapped(i, pa, size, &va) == 0) return (0); } return (EFAULT); } void mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) { vm_paddr_t ppa; vm_offset_t ofs; vm_size_t gran; /* Minidumps are based on virtual memory addresses. */ if (do_minidump) { *va = (void *)(vm_offset_t)pa; return; } /* Raw physical memory dumps don't have a virtual address. */ /* We always map a 256MB page at 256M. */ gran = 256 * 1024 * 1024; ppa = rounddown2(pa, gran); ofs = pa - ppa; *va = (void *)gran; tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO); if (sz > (gran - ofs)) tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran, _TLB_ENTRY_IO); } void mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va) { vm_paddr_t ppa; vm_offset_t ofs; vm_size_t gran; tlb_entry_t e; int i; /* Minidumps are based on virtual memory addresses. */ /* Nothing to do... */ if (do_minidump) return; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) break; } /* Raw physical memory dumps don't have a virtual address. */ i--; e.mas1 = 0; e.mas2 = 0; e.mas3 = 0; tlb1_write_entry(&e, i); gran = 256 * 1024 * 1024; ppa = rounddown2(pa, gran); ofs = pa - ppa; if (sz > (gran - ofs)) { i--; e.mas1 = 0; e.mas2 = 0; e.mas3 = 0; tlb1_write_entry(&e, i); } } extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; void mmu_booke_scan_init(mmu_t mmu) { vm_offset_t va; pte_t *pte; int i; if (!do_minidump) { /* Initialize phys. segments for dumpsys(). */ memset(&dump_map, 0, sizeof(dump_map)); mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, &availmem_regions_sz); for (i = 0; i < physmem_regions_sz; i++) { dump_map[i].pa_start = physmem_regions[i].mr_start; dump_map[i].pa_size = physmem_regions[i].mr_size; } return; } /* Virtual segments for minidumps: */ memset(&dump_map, 0, sizeof(dump_map)); /* 1st: kernel .data and .bss. */ dump_map[0].pa_start = trunc_page((uintptr_t)_etext); dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start; /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ dump_map[1].pa_start = data_start; dump_map[1].pa_size = data_end - data_start; /* 3rd: kernel VM. */ va = dump_map[1].pa_start + dump_map[1].pa_size; /* Find start of next chunk (from va). */ while (va < virtual_end) { /* Don't dump the buffer cache. */ if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { va = kmi.buffer_eva; continue; } pte = pte_find(mmu, kernel_pmap, va); if (pte != NULL && PTE_ISVALID(pte)) break; va += PAGE_SIZE; } if (va < virtual_end) { dump_map[2].pa_start = va; va += PAGE_SIZE; /* Find last page in chunk. */ while (va < virtual_end) { /* Don't run into the buffer cache. */ if (va == kmi.buffer_sva) break; pte = pte_find(mmu, kernel_pmap, va); if (pte == NULL || !PTE_ISVALID(pte)) break; va += PAGE_SIZE; } dump_map[2].pa_size = va - dump_map[2].pa_start; } } /* * Map a set of physical memory pages into the kernel virtual address space. * Return a pointer to where it is mapped. This routine is intended to be used * for mapping device memory, NOT real memory. */ static void * mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); } static void * mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) { tlb_entry_t e; void *res; uintptr_t va, tmpva; vm_size_t sz; int i; /* * Check if this is premapped in TLB1. Note: this should probably also * check whether a sequence of TLB1 entries exist that match the * requirement, but now only checks the easy case. */ if (ma == VM_MEMATTR_DEFAULT) { for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (pa >= e.phys && (pa + size) <= (e.phys + e.size)) return (void *)(e.virt + (vm_offset_t)(pa - e.phys)); } } size = roundup(size, PAGE_SIZE); /* * The device mapping area is between VM_MAXUSER_ADDRESS and * VM_MIN_KERNEL_ADDRESS. This gives 1GB of device addressing. */ #ifdef SPARSE_MAPDEV /* * With a sparse mapdev, align to the largest starting region. This * could feasibly be optimized for a 'best-fit' alignment, but that * calculation could be very costly. */ do { tmpva = tlb1_map_base; va = roundup(tlb1_map_base, 1 << flsl(size)); } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size)); #else va = atomic_fetchadd_int(&tlb1_map_base, size); #endif res = (void *)va; do { sz = 1 << (ilog2(size) & ~1); if (va % sz != 0) { do { sz >>= 2; } while (va % sz != 0); } if (bootverbose) printf("Wiring VA=%x to PA=%jx (size=%x)\n", va, (uintmax_t)pa, sz); tlb1_set_entry(va, pa, sz, _TLB_ENTRY_SHARED | tlb_calc_wimg(pa, ma)); size -= sz; pa += sz; va += sz; } while (size > 0); return (res); } /* * 'Unmap' a range mapped by mmu_booke_mapdev(). */ static void mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) { #ifdef SUPPORTS_SHRINKING_TLB1 vm_offset_t base, offset; /* * Unmap only if this is inside kernel virtual space. */ if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); kva_free(base, size); } #endif } /* * mmu_booke_object_init_pt preloads the ptes for a given object into the * specified pmap. This eliminates the blast of soft faults on process startup * and immediately after an mmap. */ static void mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("mmu_booke_object_init_pt: non-device object")); } /* * Perform the pmap work for mincore. */ static int mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { /* XXX: this should be implemented at some point */ return (0); } static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, vm_memattr_t mode) { vm_offset_t va; pte_t *pte; int i, j; tlb_entry_t e; /* Check TLB1 mappings */ for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (addr >= e.virt && addr < e.virt + e.size) break; } if (i < TLB1_ENTRIES) { /* Only allow full mappings to be modified for now. */ /* Validate the range. */ for (j = i, va = addr; va < addr + sz; va += e.size, j++) { tlb1_read_entry(&e, j); if (va != e.virt || (sz - (va - addr) < e.size)) return (EINVAL); } for (va = addr; va < addr + sz; va += e.size, i++) { tlb1_read_entry(&e, i); e.mas2 &= ~MAS2_WIMGE_MASK; e.mas2 |= tlb_calc_wimg(e.phys, mode); /* * Write it out to the TLB. Should really re-sync with other * cores. */ tlb1_write_entry(&e, i); } return (0); } /* Not in TLB1, try through pmap */ /* First validate the range. */ for (va = addr; va < addr + sz; va += PAGE_SIZE) { pte = pte_find(mmu, kernel_pmap, va); if (pte == NULL || !PTE_ISVALID(pte)) return (EINVAL); } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); for (va = addr; va < addr + sz; va += PAGE_SIZE) { pte = pte_find(mmu, kernel_pmap, va); *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT); *pte |= tlb_calc_wimg(PTE_PA(pte), mode << PTE_MAS2_SHIFT); tlb0_flush_entry(va); } tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); return (pte_vatopa(mmu, kernel_pmap, va)); } /**************************************************************************/ /* TID handling */ /**************************************************************************/ /* * Allocate a TID. If necessary, steal one from someone else. * The new TID is flushed from the TLB before returning. */ static tlbtid_t tid_alloc(pmap_t pmap) { tlbtid_t tid; int thiscpu; KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); thiscpu = PCPU_GET(cpuid); tid = PCPU_GET(tid_next); if (tid > TID_MAX) tid = TID_MIN; PCPU_SET(tid_next, tid + 1); /* If we are stealing TID then clear the relevant pmap's field */ if (tidbusy[thiscpu][tid] != NULL) { CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; /* Flush all entries from TLB0 matching this TID. */ tid_flush(tid); } tidbusy[thiscpu][tid] = pmap; pmap->pm_tid[thiscpu] = tid; __asm __volatile("msync; isync"); CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, PCPU_GET(tid_next)); return (tid); } /**************************************************************************/ /* TLB0 handling */ /**************************************************************************/ static void tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, uint32_t mas7) { int as; char desc[3]; tlbtid_t tid; vm_size_t size; unsigned int tsize; desc[2] = '\0'; if (mas1 & MAS1_VALID) desc[0] = 'V'; else desc[0] = ' '; if (mas1 & MAS1_IPROT) desc[1] = 'P'; else desc[1] = ' '; as = (mas1 & MAS1_TS_MASK) ? 1 : 0; tid = MAS1_GETTID(mas1); tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; size = 0; if (tsize) size = tsize2size(tsize); debugf("%3d: (%s) [AS=%d] " "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x " "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n", i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7); } /* Convert TLB0 va and way number to tlb0[] table index. */ static inline unsigned int tlb0_tableidx(vm_offset_t va, unsigned int way) { unsigned int idx; idx = (way * TLB0_ENTRIES_PER_WAY); idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; return (idx); } /* * Invalidate TLB0 entry. */ static inline void tlb0_flush_entry(vm_offset_t va) { CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); mtx_assert(&tlbivax_mutex, MA_OWNED); __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); __asm __volatile("isync; msync"); __asm __volatile("tlbsync; msync"); CTR1(KTR_PMAP, "%s: e", __func__); } /* Print out contents of the MAS registers for each TLB0 entry */ void tlb0_print_tlbentries(void) { uint32_t mas0, mas1, mas2, mas3, mas7; int entryidx, way, idx; debugf("TLB0 entries:\n"); for (way = 0; way < TLB0_WAYS; way ++) for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); mtspr(SPR_MAS0, mas0); __asm __volatile("isync"); mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; mtspr(SPR_MAS2, mas2); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); idx = tlb0_tableidx(mas2, way); tlb_print_entry(idx, mas1, mas2, mas3, mas7); } } /**************************************************************************/ /* TLB1 handling */ /**************************************************************************/ /* * TLB1 mapping notes: * * TLB1[0] Kernel text and data. * TLB1[1-15] Additional kernel text and data mappings (if required), PCI * windows, other devices mappings. */ /* * Read an entry from given TLB1 slot. */ void tlb1_read_entry(tlb_entry_t *entry, unsigned int slot) { uint32_t mas0; KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__)); mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); entry->mas1 = mfspr(SPR_MAS1); entry->mas2 = mfspr(SPR_MAS2); entry->mas3 = mfspr(SPR_MAS3); switch ((mfpvr() >> 16) & 0xFFFF) { case FSL_E500v2: case FSL_E500mc: case FSL_E5500: case FSL_E6500: entry->mas7 = mfspr(SPR_MAS7); break; default: entry->mas7 = 0; break; } entry->virt = entry->mas2 & MAS2_EPN_MASK; entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) | (entry->mas3 & MAS3_RPN); entry->size = tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT); } /* * Write given entry to TLB1 hardware. * Use 32 bit pa, clear 4 high-order bits of RPN (mas7). */ static void tlb1_write_entry(tlb_entry_t *e, unsigned int idx) { uint32_t mas0; //debugf("tlb1_write_entry: s\n"); /* Select entry */ mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); //debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0); mtspr(SPR_MAS0, mas0); __asm __volatile("isync"); mtspr(SPR_MAS1, e->mas1); __asm __volatile("isync"); mtspr(SPR_MAS2, e->mas2); __asm __volatile("isync"); mtspr(SPR_MAS3, e->mas3); __asm __volatile("isync"); switch ((mfpvr() >> 16) & 0xFFFF) { case FSL_E500mc: case FSL_E5500: case FSL_E6500: mtspr(SPR_MAS8, 0); __asm __volatile("isync"); /* FALLTHROUGH */ case FSL_E500v2: mtspr(SPR_MAS7, e->mas7); __asm __volatile("isync"); break; default: break; } __asm __volatile("tlbwe; isync; msync"); //debugf("tlb1_write_entry: e\n"); } /* * Return the largest uint value log such that 2^log <= num. */ static unsigned int ilog2(unsigned int num) { int lz; __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); return (31 - lz); } /* * Convert TLB TSIZE value to mapped region size. */ static vm_size_t tsize2size(unsigned int tsize) { /* * size = 4^tsize KB * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) */ return ((1 << (2 * tsize)) * 1024); } /* * Convert region size (must be power of 4) to TLB TSIZE value. */ static unsigned int size2tsize(vm_size_t size) { return (ilog2(size) / 2 - 5); } /* * Register permanent kernel mapping in TLB1. * * Entries are created starting from index 0 (current free entry is * kept in tlb1_idx) and are not supposed to be invalidated. */ int tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size, uint32_t flags) { tlb_entry_t e; uint32_t ts, tid; int tsize, index; for (index = 0; index < TLB1_ENTRIES; index++) { tlb1_read_entry(&e, index); if ((e.mas1 & MAS1_VALID) == 0) break; /* Check if we're just updating the flags, and update them. */ if (e.phys == pa && e.virt == va && e.size == size) { e.mas2 = (va & MAS2_EPN_MASK) | flags; tlb1_write_entry(&e, index); return (0); } } if (index >= TLB1_ENTRIES) { printf("tlb1_set_entry: TLB1 full!\n"); return (-1); } /* Convert size to TSIZE */ tsize = size2tsize(size); tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; /* XXX TS is hard coded to 0 for now as we only use single address space */ ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; e.phys = pa; e.virt = va; e.size = size; e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); e.mas2 = (va & MAS2_EPN_MASK) | flags; /* Set supervisor RWX permission bits */ e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; e.mas7 = (pa >> 32) & MAS7_RPN; tlb1_write_entry(&e, index); /* * XXX in general TLB1 updates should be propagated between CPUs, * since current design assumes to have the same TLB1 set-up on all * cores. */ return (0); } /* * Map in contiguous RAM region into the TLB1 using maximum of * KERNEL_REGION_MAX_TLB_ENTRIES entries. * * If necessary round up last entry size and return total size * used by all allocated entries. */ vm_size_t tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size) { vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES]; vm_size_t mapped, pgsz, base, mask; int idx, nents; /* Round up to the next 1M */ size = roundup2(size, 1 << 20); mapped = 0; idx = 0; base = va; pgsz = 64*1024*1024; while (mapped < size) { while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) { while (pgsz > (size - mapped)) pgsz >>= 2; pgs[idx++] = pgsz; mapped += pgsz; } /* We under-map. Correct for this. */ if (mapped < size) { while (pgs[idx - 1] == pgsz) { idx--; mapped -= pgsz; } /* XXX We may increase beyond out starting point. */ pgsz <<= 2; pgs[idx++] = pgsz; mapped += pgsz; } } nents = idx; mask = pgs[0] - 1; /* Align address to the boundary */ if (va & mask) { va = (va + mask) & ~mask; pa = (pa + mask) & ~mask; } for (idx = 0; idx < nents; idx++) { pgsz = pgs[idx]; debugf("%u: %llx -> %x, size=%x\n", idx, pa, va, pgsz); tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_SHARED | _TLB_ENTRY_MEM); pa += pgsz; va += pgsz; } mapped = (va - base); #ifdef __powerpc64__ printf("mapped size 0x%016lx (wasted space 0x%16lx)\n", #else printf("mapped size 0x%08x (wasted space 0x%08x)\n", #endif mapped, mapped - size); return (mapped); } /* * TLB1 initialization routine, to be called after the very first * assembler level setup done in locore.S. */ void tlb1_init() { uint32_t mas0, mas1, mas2, mas3, mas7; uint32_t tsz; tlb1_get_tlbconf(); mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); kernload = ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) | (mas3 & MAS3_RPN); tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; kernsize += (tsz > 0) ? tsize2size(tsz) : 0; /* Setup TLB miss defaults */ set_mas4_defaults(); } /* * pmap_early_io_unmap() should be used in short conjunction with * pmap_early_io_map(), as in the following snippet: * * x = pmap_early_io_map(...); * <do something with x> * pmap_early_io_unmap(x, size); * * And avoiding more allocations between. */ void pmap_early_io_unmap(vm_offset_t va, vm_size_t size) { int i; tlb_entry_t e; vm_size_t isize; size = roundup(size, PAGE_SIZE); isize = size; for (i = 0; i < TLB1_ENTRIES && size > 0; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (va <= e.virt && (va + isize) >= (e.virt + e.size)) { size -= e.size; e.mas1 &= ~MAS1_VALID; tlb1_write_entry(&e, i); } } if (tlb1_map_base == va + isize) tlb1_map_base -= isize; } vm_offset_t pmap_early_io_map(vm_paddr_t pa, vm_size_t size) { vm_paddr_t pa_base; vm_offset_t va, sz; int i; tlb_entry_t e; KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!")); for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (pa >= e.phys && (pa + size) <= (e.phys + e.size)) return (e.virt + (pa - e.phys)); } pa_base = rounddown(pa, PAGE_SIZE); size = roundup(size + (pa - pa_base), PAGE_SIZE); tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1)); va = tlb1_map_base + (pa - pa_base); do { sz = 1 << (ilog2(size) & ~1); tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_SHARED | _TLB_ENTRY_IO); size -= sz; pa_base += sz; tlb1_map_base += sz; } while (size > 0); return (va); } /* * Setup MAS4 defaults. * These values are loaded to MAS0-2 on a TLB miss. */ static void set_mas4_defaults(void) { uint32_t mas4; /* Defaults: TLB0, PID0, TSIZED=4K */ mas4 = MAS4_TLBSELD0; mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; #ifdef SMP mas4 |= MAS4_MD; #endif mtspr(SPR_MAS4, mas4); __asm __volatile("isync"); } /* * Print out contents of the MAS registers for each TLB1 entry */ void tlb1_print_tlbentries(void) { uint32_t mas0, mas1, mas2, mas3, mas7; int i; debugf("TLB1 entries:\n"); for (i = 0; i < TLB1_ENTRIES; i++) { mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); tlb_print_entry(i, mas1, mas2, mas3, mas7); } } /* * Return 0 if the physical IO range is encompassed by one of the * the TLB1 entries, otherwise return related error code. */ static int tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) { uint32_t prot; vm_paddr_t pa_start; vm_paddr_t pa_end; unsigned int entry_tsize; vm_size_t entry_size; tlb_entry_t e; *va = (vm_offset_t)NULL; tlb1_read_entry(&e, i); /* Skip invalid entries */ if (!(e.mas1 & MAS1_VALID)) return (EINVAL); /* * The entry must be cache-inhibited, guarded, and r/w * so it can function as an i/o page */ prot = e.mas2 & (MAS2_I | MAS2_G); if (prot != (MAS2_I | MAS2_G)) return (EPERM); prot = e.mas3 & (MAS3_SR | MAS3_SW); if (prot != (MAS3_SR | MAS3_SW)) return (EPERM); /* The address should be within the entry range. */ entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); entry_size = tsize2size(entry_tsize); pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) | (e.mas3 & MAS3_RPN); pa_end = pa_start + entry_size; if ((pa < pa_start) || ((pa + size) > pa_end)) return (ERANGE); /* Return virtual address of this mapping. */ *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start); return (0); } /* * Invalidate all TLB0 entries which match the given TID. Note this is * dedicated for cases when invalidations should NOT be propagated to other * CPUs. */ static void tid_flush(tlbtid_t tid) { register_t msr; uint32_t mas0, mas1, mas2; int entry, way; /* Don't evict kernel translations */ if (tid == TID_KERNEL) return; msr = mfmsr(); __asm __volatile("wrteei 0"); for (way = 0; way < TLB0_WAYS; way++) for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); mtspr(SPR_MAS0, mas0); __asm __volatile("isync"); mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; mtspr(SPR_MAS2, mas2); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); if (!(mas1 & MAS1_VALID)) continue; if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) continue; mas1 &= ~MAS1_VALID; mtspr(SPR_MAS1, mas1); __asm __volatile("isync; tlbwe; isync; msync"); } mtmsr(msr); }