/*- * Copyright (c) 2020 Justin Hibbits * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpld.h" /* * A driver for the AmigaOne X5000 "Cyrus+" CPLD. * * This is the interface between the CPU and the "Xena" (XMOS) chip. Since the * XMOS is programmable via a SPI-attached flash memory, there's no direct * driver written for the Xena attachment. Instead, a userspace process would * communicate with the Xena by issuing ioctl()s to this CPLD. */ /* Resource access addresses. */ #define CPLD_MEM_ADDR 0x0000 #define CPLD_MEM_DATA 0x8000 #define CPLD_MAX_DRAM_WORDS 0x800 /* CPLD Registers. */ #define CPLD_REG_SIG1 0x00 #define CPLD_REG_SIG2 0x01 #define CPLD_REG_HWREV 0x02 #define CPLD_REG_MBC2X 0x05 #define CPLD_REG_MBX2C 0x06 #define CPLD_REG_XDEBUG 0x0c #define CPLD_REG_XJTAG 0x0d #define CPLD_REG_FAN_TACHO 0x10 #define CPLD_REG_DATE_LW 0x21 #define CPLD_REG_DATE_UW 0x22 #define CPLD_REG_TIME_LW 0x23 #define CPLD_REG_TIME_UW 0x24 #define CPLD_REG_SCR1 0x30 #define CPLD_REG_SCR2 0x31 #define CPLD_REG_RAM 0x8000 struct cpld_softc { device_t sc_dev; struct resource *sc_mem; struct cdev *sc_cdev; struct mtx sc_mutex; bool sc_isopen; }; static d_open_t cpld_open; static d_close_t cpld_close; static d_ioctl_t cpld_ioctl; static struct cdevsw cpld_cdevsw = { .d_version = D_VERSION, .d_open = cpld_open, .d_close = cpld_close, .d_ioctl = cpld_ioctl, .d_name = "nvram", }; static device_probe_t cpld_probe; static device_attach_t cpld_attach; static int cpld_fan_sysctl(SYSCTL_HANDLER_ARGS); static device_method_t cpld_methods[] = { DEVMETHOD(device_probe, cpld_probe), DEVMETHOD(device_attach, cpld_attach), DEVMETHOD_END }; static driver_t cpld_driver = { "cpld", cpld_methods, sizeof(struct cpld_softc) }; DRIVER_MODULE(cpld, lbc, cpld_driver, 0, 0); static void cpld_write(struct cpld_softc *sc, int addr, int data) { bus_write_2(sc->sc_mem, CPLD_MEM_ADDR, addr); bus_write_2(sc->sc_mem, CPLD_MEM_DATA, data); } static int cpld_read(struct cpld_softc *sc, int addr) { bus_write_2(sc->sc_mem, CPLD_MEM_ADDR, addr); return (bus_read_2(sc->sc_mem, CPLD_MEM_DATA)); } static int cpld_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "aeon,cyrus-cpld")) return (ENXIO); device_set_desc(dev, "AmigaOne Cyrus CPLD"); return (BUS_PROBE_GENERIC); } static int cpld_attach(device_t dev) { struct make_dev_args mda; struct cpld_softc *sc; int rid; int date, time, tmp; int err; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; sc = device_get_softc(dev); sc->sc_dev = dev; rid = 0; sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE|RF_SHAREABLE); if (sc->sc_mem == NULL) { device_printf(dev, "Unable to allocate memory resource.\n"); return (ENXIO); } mtx_init(&sc->sc_mutex, "cpld", NULL, MTX_DEF); if (bootverbose) { date = (cpld_read(sc, CPLD_REG_DATE_UW) << 16) | cpld_read(sc, CPLD_REG_DATE_LW); time = (cpld_read(sc, CPLD_REG_TIME_UW) << 16) | cpld_read(sc, CPLD_REG_TIME_LW); device_printf(dev, "Build date: %04x-%02x-%02x\n", (date >> 16) & 0xffff, (date >> 8) & 0xff, date & 0xff); device_printf(dev, "Build time: %02x:%02x:%02x\n", (time >> 16) & 0xff, (time >> 8) & 0xff, time & 0xff); } tmp = cpld_read(sc, CPLD_REG_HWREV); device_printf(dev, "Hardware revision: %d\n", tmp); ctx = device_get_sysctl_ctx(dev); tree = device_get_sysctl_tree(dev); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "cpu_fan", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, cpld_fan_sysctl, "I", "CPU Fan speed in RPM"); make_dev_args_init(&mda); mda.mda_flags = MAKEDEV_CHECKNAME; mda.mda_devsw = &cpld_cdevsw; mda.mda_uid = UID_ROOT; mda.mda_gid = GID_WHEEL; mda.mda_mode = 0660; mda.mda_si_drv1 = sc; err = make_dev_s(&mda, &sc->sc_cdev, "cpld"); if (err != 0) { device_printf(dev, "Error creating character device: %d\n", err); device_printf(dev, "Only sysctl interfaces will be available.\n"); } return (0); } static int cpld_fan_sysctl(SYSCTL_HANDLER_ARGS) { struct cpld_softc *sc; int error, old, rpm; sc = arg1; mtx_lock(&sc->sc_mutex); /* Read until we get some level of read stability. */ rpm = cpld_read(sc, CPLD_REG_FAN_TACHO); do { old = rpm; rpm = cpld_read(sc, CPLD_REG_FAN_TACHO); } while (abs(rpm - old) > 10); mtx_unlock(&sc->sc_mutex); /* Convert RPS->RPM. */ rpm *= 60; error = sysctl_handle_int(oidp, &rpm, 0, req); return (error); } static int cpld_open(struct cdev *dev, int flags, int fmt, struct thread *td) { struct cpld_softc *sc = dev->si_drv1; if (sc->sc_isopen) return (EBUSY); sc->sc_isopen = 1; return (0); } static int cpld_close(struct cdev *dev, int fflag, int devtype, struct thread *td) { struct cpld_softc *sc = dev->si_drv1; sc->sc_isopen = 0; return (0); } static int cpld_send(device_t dev, struct cpld_cmd_data *d) { struct cpld_softc *sc; uint16_t *word; int i; if (d->cmd > USHRT_MAX) return (EINVAL); sc = device_get_softc(dev); mtx_lock(&sc->sc_mutex); for (i = 0, word = d->words; i < d->len; i++, word++) { if (i == 0) cpld_write(sc, CPLD_REG_RAM, *word); else bus_write_4(sc->sc_mem, CPLD_MEM_DATA, *word); } cpld_write(sc, CPLD_REG_MBC2X, d->cmd); mtx_unlock(&sc->sc_mutex); return (0); } static int cpld_recv(device_t dev, struct cpld_cmd_data *d) { struct cpld_softc *sc; uint16_t *word; int i; sc = device_get_softc(dev); mtx_lock(&sc->sc_mutex); d->cmd = cpld_read(sc, CPLD_REG_MBX2C); for (i = 0, word = d->words; i < d->len; i++, word++) { if (i == 0) *word = cpld_read(sc, CPLD_REG_RAM); else *word = bus_read_4(sc->sc_mem, CPLD_MEM_DATA); } mtx_unlock(&sc->sc_mutex); return (0); } static int cpld_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) { struct cpld_softc *sc; struct cpld_cmd_data *d; void *xfer_data, *tmp; int err; sc = dev->si_drv1; err = 0; d = (struct cpld_cmd_data *)data; if (d->len + d->offset > CPLD_MAX_DRAM_WORDS) { return (EINVAL); } xfer_data = malloc(d->len * sizeof(uint16_t), M_TEMP, M_WAITOK); switch (cmd) { case IOCCPLDSEND: err = copyin(d->words, xfer_data, d->len * sizeof(uint16_t)); d->words = xfer_data; if (err == 0) err = cpld_send(sc->sc_dev, d); break; case IOCCPLDRECV: tmp = d->words; d->words = xfer_data; err = cpld_recv(sc->sc_dev, d); d->words = tmp; if (err == 0) err = copyout(xfer_data, d->words, d->len * sizeof(uint16_t)); break; default: err = ENOTTY; break; } free(xfer_data, M_TEMP); return (err); }