/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-4-Clause * * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of Allegro Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ */ /*- * Copyright (C) 2001 Benno Rice. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Native 64-bit page table operations for running without a hypervisor. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_oea64.h" #define PTESYNC() __asm __volatile("ptesync"); #define TLBSYNC() __asm __volatile("tlbsync; ptesync"); #define SYNC() __asm __volatile("sync"); #define EIEIO() __asm __volatile("eieio"); #define VSID_HASH_MASK 0x0000007fffffffffULL /* POWER9 only permits a 64k partition table size. */ #define PART_SIZE 0x10000 /* Actual page sizes (to be used with tlbie, when L=0) */ #define AP_4K 0x00 #define AP_16M 0x80 #define LPTE_KERNEL_VSID_BIT (KERNEL_VSID_BIT << \ (16 - (ADDR_API_SHFT64 - ADDR_PIDX_SHFT))) /* Abbreviated Virtual Address Page - high bits */ #define LPTE_AVA_PGNHI_MASK 0x0000000000000F80ULL #define LPTE_AVA_PGNHI_SHIFT 7 /* Effective Address Page - low bits */ #define EA_PAGELO_MASK 0x7ffULL #define EA_PAGELO_SHIFT 11 static bool moea64_crop_tlbie; static bool moea64_need_lock; /* * The tlbie instruction has two forms: an old one used by PowerISA * 2.03 and prior, and a newer one used by PowerISA 2.06 and later. * We need to support both. */ static __inline void TLBIE(uint64_t vpn, uint64_t oldptehi) { #ifndef __powerpc64__ register_t vpn_hi, vpn_lo; register_t msr; register_t scratch, intr; #endif static volatile u_int tlbie_lock = 0; bool need_lock = moea64_need_lock; vpn <<= ADDR_PIDX_SHFT; /* Hobo spinlock: we need stronger guarantees than mutexes provide */ if (need_lock) { while (!atomic_cmpset_int(&tlbie_lock, 0, 1)); isync(); /* Flush instruction queue once lock acquired */ if (moea64_crop_tlbie) { vpn &= ~(0xffffULL << 48); #ifdef __powerpc64__ if ((oldptehi & LPTE_BIG) != 0) __asm __volatile("tlbie %0, 1" :: "r"(vpn) : "memory"); else __asm __volatile("tlbie %0, 0" :: "r"(vpn) : "memory"); __asm __volatile("eieio; tlbsync; ptesync" ::: "memory"); goto done; #endif } } #ifdef __powerpc64__ /* * If this page has LPTE_BIG set and is from userspace, then * it must be a superpage with 4KB base/16MB actual page size. */ if ((oldptehi & LPTE_BIG) != 0 && (oldptehi & LPTE_KERNEL_VSID_BIT) == 0) vpn |= AP_16M; /* * Explicitly clobber r0. The tlbie instruction has two forms: an old * one used by PowerISA 2.03 and prior, and a newer one used by PowerISA * 2.06 (maybe 2.05?) and later. We need to support both, and it just * so happens that since we use 4k pages we can simply zero out r0, and * clobber it, and the assembler will interpret the single-operand form * of tlbie as having RB set, and everything else as 0. The RS operand * in the newer form is in the same position as the L(page size) bit of * the old form, so a slong as RS is 0, we're good on both sides. */ __asm __volatile("li 0, 0 \n tlbie %0, 0" :: "r"(vpn) : "r0", "memory"); __asm __volatile("eieio; tlbsync; ptesync" ::: "memory"); done: #else vpn_hi = (uint32_t)(vpn >> 32); vpn_lo = (uint32_t)vpn; intr = intr_disable(); __asm __volatile("\ mfmsr %0; \ mr %1, %0; \ insrdi %1,%5,1,0; \ mtmsrd %1; isync; \ \ sld %1,%2,%4; \ or %1,%1,%3; \ tlbie %1; \ \ mtmsrd %0; isync; \ eieio; \ tlbsync; \ ptesync;" : "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32), "r"(1) : "memory"); intr_restore(intr); #endif /* No barriers or special ops -- taken care of by ptesync above */ if (need_lock) tlbie_lock = 0; } #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) #define ENABLE_TRANS(msr) mtmsr(msr) /* * PTEG data. */ static volatile struct lpte *moea64_pteg_table; static struct rwlock moea64_eviction_lock; static volatile struct pate *moea64_part_table; /* * Dump function. */ static void *moea64_dump_pmap_native(void *ctx, void *buf, u_long *nbytes); /* * PTE calls. */ static int64_t moea64_pte_insert_native(struct pvo_entry *); static int64_t moea64_pte_synch_native(struct pvo_entry *); static int64_t moea64_pte_clear_native(struct pvo_entry *, uint64_t); static int64_t moea64_pte_replace_native(struct pvo_entry *, int); static int64_t moea64_pte_unset_native(struct pvo_entry *); static int64_t moea64_pte_insert_sp_native(struct pvo_entry *); static int64_t moea64_pte_unset_sp_native(struct pvo_entry *); static int64_t moea64_pte_replace_sp_native(struct pvo_entry *); /* * Utility routines. */ static void moea64_bootstrap_native( vm_offset_t kernelstart, vm_offset_t kernelend); static void moea64_cpu_bootstrap_native(int ap); static void tlbia(void); static void moea64_install_native(void); static struct pmap_funcs moea64_native_methods = { .install = moea64_install_native, /* Internal interfaces */ .bootstrap = moea64_bootstrap_native, .cpu_bootstrap = moea64_cpu_bootstrap_native, .dumpsys_dump_pmap = moea64_dump_pmap_native, }; static struct moea64_funcs moea64_native_funcs = { .pte_synch = moea64_pte_synch_native, .pte_clear = moea64_pte_clear_native, .pte_unset = moea64_pte_unset_native, .pte_replace = moea64_pte_replace_native, .pte_insert = moea64_pte_insert_native, .pte_insert_sp = moea64_pte_insert_sp_native, .pte_unset_sp = moea64_pte_unset_sp_native, .pte_replace_sp = moea64_pte_replace_sp_native, }; MMU_DEF_INHERIT(oea64_mmu_native, MMU_TYPE_G5, moea64_native_methods, oea64_mmu); static void moea64_install_native() { /* Install the MOEA64 ops. */ moea64_ops = &moea64_native_funcs; moea64_install(); } static int64_t moea64_pte_synch_native(struct pvo_entry *pvo) { volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot; uint64_t ptelo, pvo_ptevpn; PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo); rw_rlock(&moea64_eviction_lock); if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != pvo_ptevpn) { /* Evicted */ rw_runlock(&moea64_eviction_lock); return (-1); } PTESYNC(); ptelo = be64toh(pt->pte_lo); rw_runlock(&moea64_eviction_lock); return (ptelo & (LPTE_REF | LPTE_CHG)); } static int64_t moea64_pte_clear_native(struct pvo_entry *pvo, uint64_t ptebit) { volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot; struct lpte properpt; uint64_t ptelo; PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); moea64_pte_from_pvo(pvo, &properpt); rw_rlock(&moea64_eviction_lock); if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != (properpt.pte_hi & LPTE_AVPN_MASK)) { /* Evicted */ rw_runlock(&moea64_eviction_lock); return (-1); } if (ptebit == LPTE_REF) { /* See "Resetting the Reference Bit" in arch manual */ PTESYNC(); /* 2-step here safe: precision is not guaranteed */ ptelo = be64toh(pt->pte_lo); /* One-byte store to avoid touching the C bit */ ((volatile uint8_t *)(&pt->pte_lo))[6] = #if BYTE_ORDER == BIG_ENDIAN ((uint8_t *)(&properpt.pte_lo))[6]; #else ((uint8_t *)(&properpt.pte_lo))[1]; #endif rw_runlock(&moea64_eviction_lock); critical_enter(); TLBIE(pvo->pvo_vpn, properpt.pte_hi); critical_exit(); } else { rw_runlock(&moea64_eviction_lock); ptelo = moea64_pte_unset_native(pvo); moea64_pte_insert_native(pvo); } return (ptelo & (LPTE_REF | LPTE_CHG)); } static __always_inline int64_t moea64_pte_unset_locked(volatile struct lpte *pt, uint64_t vpn) { uint64_t ptelo, ptehi; /* * Invalidate the pte, briefly locking it to collect RC bits. No * atomics needed since this is protected against eviction by the lock. */ isync(); critical_enter(); ptehi = (be64toh(pt->pte_hi) & ~LPTE_VALID) | LPTE_LOCKED; pt->pte_hi = htobe64(ptehi); PTESYNC(); TLBIE(vpn, ptehi); ptelo = be64toh(pt->pte_lo); *((volatile int32_t *)(&pt->pte_hi) + 1) = 0; /* Release lock */ critical_exit(); /* Keep statistics */ STAT_MOEA64(moea64_pte_valid--); return (ptelo & (LPTE_CHG | LPTE_REF)); } static int64_t moea64_pte_unset_native(struct pvo_entry *pvo) { volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot; int64_t ret; uint64_t pvo_ptevpn; pvo_ptevpn = moea64_pte_vpn_from_pvo_vpn(pvo); rw_rlock(&moea64_eviction_lock); if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != pvo_ptevpn) { /* Evicted */ STAT_MOEA64(moea64_pte_overflow--); ret = -1; } else ret = moea64_pte_unset_locked(pt, pvo->pvo_vpn); rw_runlock(&moea64_eviction_lock); return (ret); } static int64_t moea64_pte_replace_inval_native(struct pvo_entry *pvo, volatile struct lpte *pt) { struct lpte properpt; uint64_t ptelo, ptehi; moea64_pte_from_pvo(pvo, &properpt); rw_rlock(&moea64_eviction_lock); if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != (properpt.pte_hi & LPTE_AVPN_MASK)) { /* Evicted */ STAT_MOEA64(moea64_pte_overflow--); rw_runlock(&moea64_eviction_lock); return (-1); } /* * Replace the pte, briefly locking it to collect RC bits. No * atomics needed since this is protected against eviction by the lock. */ isync(); critical_enter(); ptehi = (be64toh(pt->pte_hi) & ~LPTE_VALID) | LPTE_LOCKED; pt->pte_hi = htobe64(ptehi); PTESYNC(); TLBIE(pvo->pvo_vpn, ptehi); ptelo = be64toh(pt->pte_lo); EIEIO(); pt->pte_lo = htobe64(properpt.pte_lo); EIEIO(); pt->pte_hi = htobe64(properpt.pte_hi); /* Release lock */ PTESYNC(); critical_exit(); rw_runlock(&moea64_eviction_lock); return (ptelo & (LPTE_CHG | LPTE_REF)); } static int64_t moea64_pte_replace_native(struct pvo_entry *pvo, int flags) { volatile struct lpte *pt = moea64_pteg_table + pvo->pvo_pte.slot; struct lpte properpt; int64_t ptelo; if (flags == 0) { /* Just some software bits changing. */ moea64_pte_from_pvo(pvo, &properpt); rw_rlock(&moea64_eviction_lock); if ((be64toh(pt->pte_hi) & LPTE_AVPN_MASK) != (properpt.pte_hi & LPTE_AVPN_MASK)) { rw_runlock(&moea64_eviction_lock); return (-1); } pt->pte_hi = htobe64(properpt.pte_hi); ptelo = be64toh(pt->pte_lo); rw_runlock(&moea64_eviction_lock); } else { /* Otherwise, need reinsertion and deletion */ ptelo = moea64_pte_replace_inval_native(pvo, pt); } return (ptelo); } static void moea64_cpu_bootstrap_native(int ap) { int i = 0; #ifdef __powerpc64__ struct slb *slb = PCPU_GET(aim.slb); register_t seg0; #endif /* * Initialize segment registers and MMU */ mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); switch(mfpvr() >> 16) { case IBMPOWER9: mtspr(SPR_HID0, mfspr(SPR_HID0) & ~HID0_RADIX); break; } /* * Install kernel SLB entries */ #ifdef __powerpc64__ __asm __volatile ("slbia"); __asm __volatile ("slbmfee %0,%1; slbie %0;" : "=r"(seg0) : "r"(0)); for (i = 0; i < n_slbs; i++) { if (!(slb[i].slbe & SLBE_VALID)) continue; __asm __volatile ("slbmte %0, %1" :: "r"(slb[i].slbv), "r"(slb[i].slbe)); } #else for (i = 0; i < 16; i++) mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]); #endif /* * Install page table */ if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) mtspr(SPR_PTCR, ((uintptr_t)moea64_part_table & ~DMAP_BASE_ADDRESS) | flsl((PART_SIZE >> 12) - 1)); else __asm __volatile ("ptesync; mtsdr1 %0; isync" :: "r"(((uintptr_t)moea64_pteg_table & ~DMAP_BASE_ADDRESS) | (uintptr_t)(flsl(moea64_pteg_mask >> 11)))); tlbia(); } static void moea64_bootstrap_native(vm_offset_t kernelstart, vm_offset_t kernelend) { vm_size_t size; vm_offset_t off; vm_paddr_t pa; register_t msr; moea64_early_bootstrap(kernelstart, kernelend); switch (mfpvr() >> 16) { case IBMPOWER9: moea64_need_lock = false; break; case IBMPOWER4: case IBMPOWER4PLUS: case IBM970: case IBM970FX: case IBM970GX: case IBM970MP: moea64_crop_tlbie = true; default: moea64_need_lock = true; } /* * Allocate PTEG table. */ size = moea64_pteg_count * sizeof(struct lpteg); CTR2(KTR_PMAP, "moea64_bootstrap: %lu PTEGs, %lu bytes", moea64_pteg_count, size); rw_init(&moea64_eviction_lock, "pte eviction"); /* * We now need to allocate memory. This memory, to be allocated, * has to reside in a page table. The page table we are about to * allocate. We don't have BAT. So drop to data real mode for a minute * as a measure of last resort. We do this a couple times. */ /* * PTEG table must be aligned on a 256k boundary, but can be placed * anywhere with that alignment on POWER ISA 3+ systems. On earlier * systems, offset addition is done by the CPU with bitwise OR rather * than addition, so the table must also be aligned on a boundary of * its own size. Pick the larger of the two, which works on all * systems. */ moea64_pteg_table = (struct lpte *)moea64_bootstrap_alloc(size, MAX(256*1024, size)); if (hw_direct_map) moea64_pteg_table = (struct lpte *)PHYS_TO_DMAP((vm_offset_t)moea64_pteg_table); /* Allocate partition table (ISA 3.0). */ if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) { moea64_part_table = (struct pate *)moea64_bootstrap_alloc(PART_SIZE, PART_SIZE); moea64_part_table = (struct pate *)PHYS_TO_DMAP((vm_offset_t)moea64_part_table); } DISABLE_TRANS(msr); bzero(__DEVOLATILE(void *, moea64_pteg_table), moea64_pteg_count * sizeof(struct lpteg)); if (cpu_features2 & PPC_FEATURE2_ARCH_3_00) { bzero(__DEVOLATILE(void *, moea64_part_table), PART_SIZE); moea64_part_table[0].pagetab = htobe64( (DMAP_TO_PHYS((vm_offset_t)moea64_pteg_table)) | (uintptr_t)(flsl((moea64_pteg_count - 1) >> 11))); } ENABLE_TRANS(msr); CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table); moea64_mid_bootstrap(kernelstart, kernelend); /* * Add a mapping for the page table itself if there is no direct map. */ if (!hw_direct_map) { size = moea64_pteg_count * sizeof(struct lpteg); off = (vm_offset_t)(moea64_pteg_table); DISABLE_TRANS(msr); for (pa = off; pa < off + size; pa += PAGE_SIZE) pmap_kenter(pa, pa); ENABLE_TRANS(msr); } /* Bring up virtual memory */ moea64_late_bootstrap(kernelstart, kernelend); } static void tlbia(void) { vm_offset_t i; #ifndef __powerpc64__ register_t msr, scratch; #endif i = 0xc00; /* IS = 11 */ switch (mfpvr() >> 16) { case IBM970: case IBM970FX: case IBM970MP: case IBM970GX: case IBMPOWER4: case IBMPOWER4PLUS: case IBMPOWER5: case IBMPOWER5PLUS: i = 0; /* IS not supported */ break; } TLBSYNC(); for (; i < 0x400000; i += 0x00001000) { #ifdef __powerpc64__ __asm __volatile("tlbiel %0" :: "r"(i)); #else __asm __volatile("\ mfmsr %0; \ mr %1, %0; \ insrdi %1,%3,1,0; \ mtmsrd %1; \ isync; \ \ tlbiel %2; \ \ mtmsrd %0; \ isync;" : "=r"(msr), "=r"(scratch) : "r"(i), "r"(1)); #endif } EIEIO(); TLBSYNC(); } static int atomic_pte_lock(volatile struct lpte *pte, uint64_t bitmask, uint64_t *oldhi) { int ret; #ifdef __powerpc64__ uint64_t temp; #else uint32_t oldhihalf; #endif /* * Note: in principle, if just the locked bit were set here, we * could avoid needing the eviction lock. However, eviction occurs * so rarely that it isn't worth bothering about in practice. */ #ifdef __powerpc64__ /* * Note: Success of this sequence has the side effect of invalidating * the PTE, as we are setting it to LPTE_LOCKED and discarding the * other bits, including LPTE_V. */ __asm __volatile ( "1:\tldarx %1, 0, %3\n\t" /* load old value */ "and. %0,%1,%4\n\t" /* check if any bits set */ "bne 2f\n\t" /* exit if any set */ "stdcx. %5, 0, %3\n\t" /* attempt to store */ "bne- 1b\n\t" /* spin if failed */ "li %0, 1\n\t" /* success - retval = 1 */ "b 3f\n\t" /* we've succeeded */ "2:\n\t" "stdcx. %1, 0, %3\n\t" /* clear reservation (74xx) */ "li %0, 0\n\t" /* failure - retval = 0 */ "3:\n\t" : "=&r" (ret), "=&r"(temp), "=m" (pte->pte_hi) : "r" ((volatile char *)&pte->pte_hi), "r" (htobe64(bitmask)), "r" (htobe64(LPTE_LOCKED)), "m" (pte->pte_hi) : "cr0", "cr1", "cr2", "memory"); *oldhi = be64toh(temp); #else /* * This code is used on bridge mode only. */ __asm __volatile ( "1:\tlwarx %1, 0, %3\n\t" /* load old value */ "and. %0,%1,%4\n\t" /* check if any bits set */ "bne 2f\n\t" /* exit if any set */ "stwcx. %5, 0, %3\n\t" /* attempt to store */ "bne- 1b\n\t" /* spin if failed */ "li %0, 1\n\t" /* success - retval = 1 */ "b 3f\n\t" /* we've succeeded */ "2:\n\t" "stwcx. %1, 0, %3\n\t" /* clear reservation (74xx) */ "li %0, 0\n\t" /* failure - retval = 0 */ "3:\n\t" : "=&r" (ret), "=&r"(oldhihalf), "=m" (pte->pte_hi) : "r" ((volatile char *)&pte->pte_hi + 4), "r" ((uint32_t)bitmask), "r" ((uint32_t)LPTE_LOCKED), "m" (pte->pte_hi) : "cr0", "cr1", "cr2", "memory"); *oldhi = (pte->pte_hi & 0xffffffff00000000ULL) | oldhihalf; #endif return (ret); } static uintptr_t moea64_insert_to_pteg_native(struct lpte *pvo_pt, uintptr_t slotbase, uint64_t mask) { volatile struct lpte *pt; uint64_t oldptehi, va; uintptr_t k; int i, j; /* Start at a random slot */ i = mftb() % 8; for (j = 0; j < 8; j++) { k = slotbase + (i + j) % 8; pt = &moea64_pteg_table[k]; /* Invalidate and seize lock only if no bits in mask set */ if (atomic_pte_lock(pt, mask, &oldptehi)) /* Lock obtained */ break; } if (j == 8) return (-1); if (oldptehi & LPTE_VALID) { KASSERT(!(oldptehi & LPTE_WIRED), ("Unmapped wired entry")); /* * Need to invalidate old entry completely: see * "Modifying a Page Table Entry". Need to reconstruct * the virtual address for the outgoing entry to do that. */ va = oldptehi >> (ADDR_SR_SHFT - ADDR_API_SHFT64); if (oldptehi & LPTE_HID) va = (((k >> 3) ^ moea64_pteg_mask) ^ va) & (ADDR_PIDX >> ADDR_PIDX_SHFT); else va = ((k >> 3) ^ va) & (ADDR_PIDX >> ADDR_PIDX_SHFT); va |= (oldptehi & LPTE_AVPN_MASK) << (ADDR_API_SHFT64 - ADDR_PIDX_SHFT); PTESYNC(); TLBIE(va, oldptehi); STAT_MOEA64(moea64_pte_valid--); STAT_MOEA64(moea64_pte_overflow++); } /* * Update the PTE as per "Adding a Page Table Entry". Lock is released * by setting the high doubleworld. */ pt->pte_lo = htobe64(pvo_pt->pte_lo); EIEIO(); pt->pte_hi = htobe64(pvo_pt->pte_hi); PTESYNC(); /* Keep statistics */ STAT_MOEA64(moea64_pte_valid++); return (k); } static __always_inline int64_t moea64_pte_insert_locked(struct pvo_entry *pvo, struct lpte *insertpt, uint64_t mask) { uintptr_t slot; /* * First try primary hash. */ slot = moea64_insert_to_pteg_native(insertpt, pvo->pvo_pte.slot, mask | LPTE_WIRED | LPTE_LOCKED); if (slot != -1) { pvo->pvo_pte.slot = slot; return (0); } /* * Now try secondary hash. */ pvo->pvo_vaddr ^= PVO_HID; insertpt->pte_hi ^= LPTE_HID; pvo->pvo_pte.slot ^= (moea64_pteg_mask << 3); slot = moea64_insert_to_pteg_native(insertpt, pvo->pvo_pte.slot, mask | LPTE_WIRED | LPTE_LOCKED); if (slot != -1) { pvo->pvo_pte.slot = slot; return (0); } return (-1); } static int64_t moea64_pte_insert_native(struct pvo_entry *pvo) { struct lpte insertpt; int64_t ret; /* Initialize PTE */ moea64_pte_from_pvo(pvo, &insertpt); /* Make sure further insertion is locked out during evictions */ rw_rlock(&moea64_eviction_lock); pvo->pvo_pte.slot &= ~7ULL; /* Base slot address */ ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_VALID); if (ret == -1) { /* * Out of luck. Find a PTE to sacrifice. */ /* Lock out all insertions for a bit */ if (!rw_try_upgrade(&moea64_eviction_lock)) { rw_runlock(&moea64_eviction_lock); rw_wlock(&moea64_eviction_lock); } /* Don't evict large pages */ ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_BIG); rw_wunlock(&moea64_eviction_lock); /* No freeable slots in either PTEG? We're hosed. */ if (ret == -1) panic("moea64_pte_insert: overflow"); } else rw_runlock(&moea64_eviction_lock); return (0); } static void * moea64_dump_pmap_native(void *ctx, void *buf, u_long *nbytes) { struct dump_context *dctx; u_long ptex, ptex_end; dctx = (struct dump_context *)ctx; ptex = dctx->ptex; ptex_end = ptex + dctx->blksz / sizeof(struct lpte); ptex_end = MIN(ptex_end, dctx->ptex_end); *nbytes = (ptex_end - ptex) * sizeof(struct lpte); if (*nbytes == 0) return (NULL); dctx->ptex = ptex_end; return (__DEVOLATILE(struct lpte *, moea64_pteg_table) + ptex); } static __always_inline uint64_t moea64_vpn_from_pte(uint64_t ptehi, uintptr_t slot) { uint64_t pgn, pgnlo, vsid; vsid = (ptehi & LPTE_AVA_MASK) >> LPTE_VSID_SHIFT; if ((ptehi & LPTE_HID) != 0) slot ^= (moea64_pteg_mask << 3); pgnlo = ((vsid & VSID_HASH_MASK) ^ (slot >> 3)) & EA_PAGELO_MASK; pgn = ((ptehi & LPTE_AVA_PGNHI_MASK) << (EA_PAGELO_SHIFT - LPTE_AVA_PGNHI_SHIFT)) | pgnlo; return ((vsid << 16) | pgn); } static __always_inline int64_t moea64_pte_unset_sp_locked(struct pvo_entry *pvo) { volatile struct lpte *pt; uint64_t ptehi, refchg, vpn; vm_offset_t eva; refchg = 0; eva = PVO_VADDR(pvo) + HPT_SP_SIZE; for (; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo)) { pt = moea64_pteg_table + pvo->pvo_pte.slot; ptehi = be64toh(pt->pte_hi); if ((ptehi & LPTE_AVPN_MASK) != moea64_pte_vpn_from_pvo_vpn(pvo)) { /* Evicted: invalidate new entry */ STAT_MOEA64(moea64_pte_overflow--); vpn = moea64_vpn_from_pte(ptehi, pvo->pvo_pte.slot); CTR1(KTR_PMAP, "Evicted page in pte_unset_sp: vpn=%jx", (uintmax_t)vpn); /* Assume evicted page was modified */ refchg |= LPTE_CHG; } else vpn = pvo->pvo_vpn; refchg |= moea64_pte_unset_locked(pt, vpn); } return (refchg); } static int64_t moea64_pte_unset_sp_native(struct pvo_entry *pvo) { uint64_t refchg; PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo))); rw_rlock(&moea64_eviction_lock); refchg = moea64_pte_unset_sp_locked(pvo); rw_runlock(&moea64_eviction_lock); return (refchg); } static __always_inline int64_t moea64_pte_insert_sp_locked(struct pvo_entry *pvo) { struct lpte insertpt; int64_t ret; vm_offset_t eva; eva = PVO_VADDR(pvo) + HPT_SP_SIZE; for (; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo)) { moea64_pte_from_pvo(pvo, &insertpt); pvo->pvo_pte.slot &= ~7ULL; /* Base slot address */ ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_VALID); if (ret == -1) { /* Lock out all insertions for a bit */ if (!rw_try_upgrade(&moea64_eviction_lock)) { rw_runlock(&moea64_eviction_lock); rw_wlock(&moea64_eviction_lock); } /* Don't evict large pages */ ret = moea64_pte_insert_locked(pvo, &insertpt, LPTE_BIG); rw_downgrade(&moea64_eviction_lock); /* No freeable slots in either PTEG? We're hosed. */ if (ret == -1) panic("moea64_pte_insert_sp: overflow"); } } return (0); } static int64_t moea64_pte_insert_sp_native(struct pvo_entry *pvo) { PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo))); rw_rlock(&moea64_eviction_lock); moea64_pte_insert_sp_locked(pvo); rw_runlock(&moea64_eviction_lock); return (0); } static int64_t moea64_pte_replace_sp_native(struct pvo_entry *pvo) { uint64_t refchg; PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); KASSERT((PVO_VADDR(pvo) & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned", __func__, (uintmax_t)PVO_VADDR(pvo))); rw_rlock(&moea64_eviction_lock); refchg = moea64_pte_unset_sp_locked(pvo); moea64_pte_insert_sp_locked(pvo); rw_runlock(&moea64_eviction_lock); return (refchg); }