/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2018 Matthew Macy * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INVARIANTS #include #endif #define PPC_BITLSHIFT(bit) (sizeof(long)*NBBY - 1 - (bit)) #define PPC_BIT(bit) (1UL << PPC_BITLSHIFT(bit)) #define PPC_BITLSHIFT_VAL(val, bit) ((val) << PPC_BITLSHIFT(bit)) #include "opt_ddb.h" #ifdef DDB static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va); #endif #define PG_W RPTE_WIRED #define PG_V RPTE_VALID #define PG_MANAGED RPTE_MANAGED #define PG_PROMOTED RPTE_PROMOTED #define PG_M RPTE_C #define PG_A RPTE_R #define PG_X RPTE_EAA_X #define PG_RW RPTE_EAA_W #define PG_PTE_CACHE RPTE_ATTR_MASK #define RPTE_SHIFT 9 #define NLS_MASK ((1UL<<5)-1) #define RPTE_ENTRIES (1UL<> L3_PAGE_SIZE_SHIFT); } static __inline vm_pindex_t pmap_pml3e_index(vm_offset_t va) { return ((va >> L3_PAGE_SIZE_SHIFT) & RPTE_MASK); } static __inline vm_pindex_t pmap_pml2e_index(vm_offset_t va) { return ((va >> L2_PAGE_SIZE_SHIFT) & RPTE_MASK); } static __inline vm_pindex_t pmap_pml1e_index(vm_offset_t va) { return ((va & PG_FRAME) >> L1_PAGE_SIZE_SHIFT); } /* Return various clipped indexes for a given VA */ static __inline vm_pindex_t pmap_pte_index(vm_offset_t va) { return ((va >> PAGE_SHIFT) & RPTE_MASK); } /* Return a pointer to the PT slot that corresponds to a VA */ static __inline pt_entry_t * pmap_l3e_to_pte(pt_entry_t *l3e, vm_offset_t va) { pt_entry_t *pte; vm_paddr_t ptepa; ptepa = (be64toh(*l3e) & NLB_MASK); pte = (pt_entry_t *)PHYS_TO_DMAP(ptepa); return (&pte[pmap_pte_index(va)]); } /* Return a pointer to the PD slot that corresponds to a VA */ static __inline pt_entry_t * pmap_l2e_to_l3e(pt_entry_t *l2e, vm_offset_t va) { pt_entry_t *l3e; vm_paddr_t l3pa; l3pa = (be64toh(*l2e) & NLB_MASK); l3e = (pml3_entry_t *)PHYS_TO_DMAP(l3pa); return (&l3e[pmap_pml3e_index(va)]); } /* Return a pointer to the PD slot that corresponds to a VA */ static __inline pt_entry_t * pmap_l1e_to_l2e(pt_entry_t *l1e, vm_offset_t va) { pt_entry_t *l2e; vm_paddr_t l2pa; l2pa = (be64toh(*l1e) & NLB_MASK); l2e = (pml2_entry_t *)PHYS_TO_DMAP(l2pa); return (&l2e[pmap_pml2e_index(va)]); } static __inline pml1_entry_t * pmap_pml1e(pmap_t pmap, vm_offset_t va) { return (&pmap->pm_pml1[pmap_pml1e_index(va)]); } static pt_entry_t * pmap_pml2e(pmap_t pmap, vm_offset_t va) { pt_entry_t *l1e; l1e = pmap_pml1e(pmap, va); if (l1e == NULL || (be64toh(*l1e) & RPTE_VALID) == 0) return (NULL); return (pmap_l1e_to_l2e(l1e, va)); } static __inline pt_entry_t * pmap_pml3e(pmap_t pmap, vm_offset_t va) { pt_entry_t *l2e; l2e = pmap_pml2e(pmap, va); if (l2e == NULL || (be64toh(*l2e) & RPTE_VALID) == 0) return (NULL); return (pmap_l2e_to_l3e(l2e, va)); } static __inline pt_entry_t * pmap_pte(pmap_t pmap, vm_offset_t va) { pt_entry_t *l3e; l3e = pmap_pml3e(pmap, va); if (l3e == NULL || (be64toh(*l3e) & RPTE_VALID) == 0) return (NULL); return (pmap_l3e_to_pte(l3e, va)); } int nkpt = 64; SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0, "Number of kernel page table pages allocated on bootup"); vm_paddr_t dmaplimit; SYSCTL_DECL(_vm_pmap); #ifdef INVARIANTS #define VERBOSE_PMAP 0 #define VERBOSE_PROTECT 0 static int pmap_logging; SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_logging, CTLFLAG_RWTUN, &pmap_logging, 0, "verbose debug logging"); #endif static u_int64_t KPTphys; /* phys addr of kernel level 1 */ //static vm_paddr_t KERNend; /* phys addr of end of bootstrap data */ static vm_offset_t qframe = 0; static struct mtx qframe_mtx; void mmu_radix_activate(struct thread *); void mmu_radix_advise(pmap_t, vm_offset_t, vm_offset_t, int); void mmu_radix_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t); void mmu_radix_clear_modify(vm_page_t); void mmu_radix_copy(pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t); int mmu_radix_decode_kernel_ptr(vm_offset_t, int *, vm_offset_t *); int mmu_radix_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t); void mmu_radix_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); void mmu_radix_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t); vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va); vm_page_t mmu_radix_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t); void mmu_radix_kenter(vm_offset_t, vm_paddr_t); vm_paddr_t mmu_radix_kextract(vm_offset_t); void mmu_radix_kremove(vm_offset_t); boolean_t mmu_radix_is_modified(vm_page_t); boolean_t mmu_radix_is_prefaultable(pmap_t, vm_offset_t); boolean_t mmu_radix_is_referenced(vm_page_t); void mmu_radix_object_init_pt(pmap_t, vm_offset_t, vm_object_t, vm_pindex_t, vm_size_t); boolean_t mmu_radix_page_exists_quick(pmap_t, vm_page_t); void mmu_radix_page_init(vm_page_t); boolean_t mmu_radix_page_is_mapped(vm_page_t m); void mmu_radix_page_set_memattr(vm_page_t, vm_memattr_t); int mmu_radix_page_wired_mappings(vm_page_t); int mmu_radix_pinit(pmap_t); void mmu_radix_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); bool mmu_radix_ps_enabled(pmap_t); void mmu_radix_qenter(vm_offset_t, vm_page_t *, int); void mmu_radix_qremove(vm_offset_t, int); vm_offset_t mmu_radix_quick_enter_page(vm_page_t); void mmu_radix_quick_remove_page(vm_offset_t); boolean_t mmu_radix_ts_referenced(vm_page_t); void mmu_radix_release(pmap_t); void mmu_radix_remove(pmap_t, vm_offset_t, vm_offset_t); void mmu_radix_remove_all(vm_page_t); void mmu_radix_remove_pages(pmap_t); void mmu_radix_remove_write(vm_page_t); void mmu_radix_unwire(pmap_t, vm_offset_t, vm_offset_t); void mmu_radix_zero_page(vm_page_t); void mmu_radix_zero_page_area(vm_page_t, int, int); int mmu_radix_change_attr(vm_offset_t, vm_size_t, vm_memattr_t); void mmu_radix_page_array_startup(long pages); #include "mmu_oea64.h" /* * Kernel MMU interface */ static void mmu_radix_bootstrap(vm_offset_t, vm_offset_t); static void mmu_radix_copy_page(vm_page_t, vm_page_t); static void mmu_radix_copy_pages(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize); static void mmu_radix_growkernel(vm_offset_t); static void mmu_radix_init(void); static int mmu_radix_mincore(pmap_t, vm_offset_t, vm_paddr_t *); static vm_offset_t mmu_radix_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int); static void mmu_radix_pinit0(pmap_t); static void *mmu_radix_mapdev(vm_paddr_t, vm_size_t); static void *mmu_radix_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t); static void mmu_radix_unmapdev(vm_offset_t, vm_size_t); static void mmu_radix_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma); static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t, vm_size_t); static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va); static void mmu_radix_scan_init(void); static void mmu_radix_cpu_bootstrap(int ap); static void mmu_radix_tlbie_all(void); static struct pmap_funcs mmu_radix_methods = { .bootstrap = mmu_radix_bootstrap, .copy_page = mmu_radix_copy_page, .copy_pages = mmu_radix_copy_pages, .cpu_bootstrap = mmu_radix_cpu_bootstrap, .growkernel = mmu_radix_growkernel, .init = mmu_radix_init, .map = mmu_radix_map, .mincore = mmu_radix_mincore, .pinit = mmu_radix_pinit, .pinit0 = mmu_radix_pinit0, .mapdev = mmu_radix_mapdev, .mapdev_attr = mmu_radix_mapdev_attr, .unmapdev = mmu_radix_unmapdev, .kenter_attr = mmu_radix_kenter_attr, .dev_direct_mapped = mmu_radix_dev_direct_mapped, .dumpsys_pa_init = mmu_radix_scan_init, .dumpsys_map_chunk = mmu_radix_dumpsys_map, .page_is_mapped = mmu_radix_page_is_mapped, .ps_enabled = mmu_radix_ps_enabled, .object_init_pt = mmu_radix_object_init_pt, .protect = mmu_radix_protect, /* pmap dispatcher interface */ .clear_modify = mmu_radix_clear_modify, .copy = mmu_radix_copy, .enter = mmu_radix_enter, .enter_object = mmu_radix_enter_object, .enter_quick = mmu_radix_enter_quick, .extract = mmu_radix_extract, .extract_and_hold = mmu_radix_extract_and_hold, .is_modified = mmu_radix_is_modified, .is_prefaultable = mmu_radix_is_prefaultable, .is_referenced = mmu_radix_is_referenced, .ts_referenced = mmu_radix_ts_referenced, .page_exists_quick = mmu_radix_page_exists_quick, .page_init = mmu_radix_page_init, .page_wired_mappings = mmu_radix_page_wired_mappings, .qenter = mmu_radix_qenter, .qremove = mmu_radix_qremove, .release = mmu_radix_release, .remove = mmu_radix_remove, .remove_all = mmu_radix_remove_all, .remove_write = mmu_radix_remove_write, .unwire = mmu_radix_unwire, .zero_page = mmu_radix_zero_page, .zero_page_area = mmu_radix_zero_page_area, .activate = mmu_radix_activate, .quick_enter_page = mmu_radix_quick_enter_page, .quick_remove_page = mmu_radix_quick_remove_page, .page_set_memattr = mmu_radix_page_set_memattr, .page_array_startup = mmu_radix_page_array_startup, /* Internal interfaces */ .kenter = mmu_radix_kenter, .kextract = mmu_radix_kextract, .kremove = mmu_radix_kremove, .change_attr = mmu_radix_change_attr, .decode_kernel_ptr = mmu_radix_decode_kernel_ptr, .tlbie_all = mmu_radix_tlbie_all, }; MMU_DEF(mmu_radix, MMU_TYPE_RADIX, mmu_radix_methods); static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va, struct rwlock **lockp); static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va); static int pmap_unuse_pt(pmap_t, vm_offset_t, pml3_entry_t, struct spglist *); static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva, struct spglist *free, struct rwlock **lockp); static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva, pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp); static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va); static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *pde, struct spglist *free); static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp); static bool pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e, u_int flags, struct rwlock **lockp); #if VM_NRESERVLEVEL > 0 static void pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, struct rwlock **lockp); #endif static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va); static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte); static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate); static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, struct rwlock **lockp); static int pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags, vm_page_t m, struct rwlock **lockp); static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp); static void free_pv_chunk(struct pv_chunk *pc); static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp); static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp); static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp); static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free); static boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free); static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start); static void pmap_invalidate_all(pmap_t pmap); static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush); /* * Internal flags for pmap_enter()'s helper functions. */ #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */ #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */ #define UNIMPLEMENTED() panic("%s not implemented", __func__) #define UNTESTED() panic("%s not yet tested", __func__) /* Number of supported PID bits */ static unsigned int isa3_pid_bits; /* PID to start allocating from */ static unsigned int isa3_base_pid; #define PROCTAB_SIZE_SHIFT (isa3_pid_bits + 4) #define PROCTAB_ENTRIES (1ul << isa3_pid_bits) /* * Map of physical memory regions. */ static struct mem_region *regions, *pregions; static struct numa_mem_region *numa_pregions; static u_int phys_avail_count; static int regions_sz, pregions_sz, numa_pregions_sz; static struct pate *isa3_parttab; static struct prte *isa3_proctab; static vmem_t *asid_arena; extern void bs_remap_earlyboot(void); #define RADIX_PGD_SIZE_SHIFT 16 #define RADIX_PGD_SIZE (1UL << RADIX_PGD_SIZE_SHIFT) #define RADIX_PGD_INDEX_SHIFT (RADIX_PGD_SIZE_SHIFT-3) #define NL2EPG (PAGE_SIZE/sizeof(pml2_entry_t)) #define NL3EPG (PAGE_SIZE/sizeof(pml3_entry_t)) #define NUPML1E (RADIX_PGD_SIZE/sizeof(uint64_t)) /* number of userland PML1 pages */ #define NUPDPE (NUPML1E * NL2EPG)/* number of userland PDP pages */ #define NUPDE (NUPDPE * NL3EPG) /* number of userland PD entries */ /* POWER9 only permits a 64k partition table size. */ #define PARTTAB_SIZE_SHIFT 16 #define PARTTAB_SIZE (1UL << PARTTAB_SIZE_SHIFT) #define PARTTAB_HR (1UL << 63) /* host uses radix */ #define PARTTAB_GR (1UL << 63) /* guest uses radix must match host */ /* TLB flush actions. Used as argument to tlbiel_all() */ enum { TLB_INVAL_SCOPE_LPID = 0, /* invalidate TLBs for current LPID */ TLB_INVAL_SCOPE_GLOBAL = 1, /* invalidate all TLBs */ }; #define NPV_LIST_LOCKS MAXCPU static int pmap_initialized; static vm_paddr_t proctab0pa; static vm_paddr_t parttab_phys; CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE); /* * Data for the pv entry allocation mechanism. * Updates to pv_invl_gen are protected by the pv_list_locks[] * elements, but reads are not. */ static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks); static struct mtx __exclusive_cache_line pv_chunks_mutex; static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS]; static struct md_page *pv_table; static struct md_page pv_dummy; #ifdef PV_STATS #define PV_STAT(x) do { x ; } while (0) #else #define PV_STAT(x) do { } while (0) #endif #define pa_radix_index(pa) ((pa) >> L3_PAGE_SIZE_SHIFT) #define pa_to_pvh(pa) (&pv_table[pa_radix_index(pa)]) #define PHYS_TO_PV_LIST_LOCK(pa) \ (&pv_list_locks[pa_radix_index(pa) % NPV_LIST_LOCKS]) #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \ struct rwlock **_lockp = (lockp); \ struct rwlock *_new_lock; \ \ _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \ if (_new_lock != *_lockp) { \ if (*_lockp != NULL) \ rw_wunlock(*_lockp); \ *_lockp = _new_lock; \ rw_wlock(*_lockp); \ } \ } while (0) #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \ CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m)) #define RELEASE_PV_LIST_LOCK(lockp) do { \ struct rwlock **_lockp = (lockp); \ \ if (*_lockp != NULL) { \ rw_wunlock(*_lockp); \ *_lockp = NULL; \ } \ } while (0) #define VM_PAGE_TO_PV_LIST_LOCK(m) \ PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m)) /* * We support 52 bits, hence: * bits 52 - 31 = 21, 0b10101 * RTS encoding details * bits 0 - 3 of rts -> bits 6 - 8 unsigned long * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long */ #define RTS_SIZE ((0x2UL << 61) | (0x5UL << 5)) static int powernv_enabled = 1; static __always_inline void tlbiel_radix_set_isa300(uint32_t set, uint32_t is, uint32_t pid, uint32_t ric, uint32_t prs) { uint64_t rb; uint64_t rs; rb = PPC_BITLSHIFT_VAL(set, 51) | PPC_BITLSHIFT_VAL(is, 53); rs = PPC_BITLSHIFT_VAL((uint64_t)pid, 31); __asm __volatile(PPC_TLBIEL(%0, %1, %2, %3, 1) : : "r"(rb), "r"(rs), "i"(ric), "i"(prs) : "memory"); } static void tlbiel_flush_isa3(uint32_t num_sets, uint32_t is) { uint32_t set; __asm __volatile("ptesync": : :"memory"); /* * Flush the first set of the TLB, and the entire Page Walk Cache * and partition table entries. Then flush the remaining sets of the * TLB. */ tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0); for (set = 1; set < num_sets; set++) tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0); /* Do the same for process scoped entries. */ tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1); for (set = 1; set < num_sets; set++) tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1); __asm __volatile("ptesync": : :"memory"); } static void mmu_radix_tlbiel_flush(int scope) { int is; MPASS(scope == TLB_INVAL_SCOPE_LPID || scope == TLB_INVAL_SCOPE_GLOBAL); is = scope + 2; tlbiel_flush_isa3(POWER9_TLB_SETS_RADIX, is); __asm __volatile(PPC_INVALIDATE_ERAT "; isync" : : :"memory"); } static void mmu_radix_tlbie_all() { /* TODO: LPID invalidate */ mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL); } static void mmu_radix_init_amor(void) { /* * In HV mode, we init AMOR (Authority Mask Override Register) so that * the hypervisor and guest can setup IAMR (Instruction Authority Mask * Register), enable key 0 and set it to 1. * * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11) */ mtspr(SPR_AMOR, (3ul << 62)); } static void mmu_radix_init_iamr(void) { /* * Radix always uses key0 of the IAMR to determine if an access is * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction * fetch. */ mtspr(SPR_IAMR, (1ul << 62)); } static void mmu_radix_pid_set(pmap_t pmap) { mtspr(SPR_PID, pmap->pm_pid); isync(); } /* Quick sort callout for comparing physical addresses. */ static int pa_cmp(const void *a, const void *b) { const vm_paddr_t *pa = a, *pb = b; if (*pa < *pb) return (-1); else if (*pa > *pb) return (1); else return (0); } #define pte_load_store(ptep, pte) atomic_swap_long(ptep, pte) #define pte_load_clear(ptep) atomic_swap_long(ptep, 0) #define pte_store(ptep, pte) do { \ MPASS((pte) & (RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_X)); \ *(u_long *)(ptep) = htobe64((u_long)((pte) | PG_V | RPTE_LEAF)); \ } while (0) /* * NB: should only be used for adding directories - not for direct mappings */ #define pde_store(ptep, pa) do { \ *(u_long *)(ptep) = htobe64((u_long)(pa|RPTE_VALID|RPTE_SHIFT)); \ } while (0) #define pte_clear(ptep) do { \ *(u_long *)(ptep) = (u_long)(0); \ } while (0) #define PMAP_PDE_SUPERPAGE (1 << 8) /* supports 2MB superpages */ /* * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB * (PTE) page mappings have identical settings for the following fields: */ #define PG_PTE_PROMOTE (PG_X | PG_MANAGED | PG_W | PG_PTE_CACHE | \ PG_M | PG_A | RPTE_EAA_MASK | PG_V) static __inline void pmap_resident_count_inc(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); pmap->pm_stats.resident_count += count; } static __inline void pmap_resident_count_dec(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(pmap->pm_stats.resident_count >= count, ("pmap %p resident count underflow %ld %d", pmap, pmap->pm_stats.resident_count, count)); pmap->pm_stats.resident_count -= count; } static void pagezero(vm_offset_t va) { va = trunc_page(va); bzero((void *)va, PAGE_SIZE); } static uint64_t allocpages(int n) { u_int64_t ret; ret = moea64_bootstrap_alloc(n * PAGE_SIZE, PAGE_SIZE); for (int i = 0; i < n; i++) pagezero(PHYS_TO_DMAP(ret + i * PAGE_SIZE)); return (ret); } static pt_entry_t * kvtopte(vm_offset_t va) { pt_entry_t *l3e; l3e = pmap_pml3e(kernel_pmap, va); if ((be64toh(*l3e) & RPTE_VALID) == 0) return (NULL); return (pmap_l3e_to_pte(l3e, va)); } void mmu_radix_kenter(vm_offset_t va, vm_paddr_t pa) { pt_entry_t *pte; pte = kvtopte(va); MPASS(pte != NULL); *pte = htobe64(pa | RPTE_VALID | RPTE_LEAF | RPTE_EAA_R | \ RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A); } bool mmu_radix_ps_enabled(pmap_t pmap) { return (superpages_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0); } static pt_entry_t * pmap_nofault_pte(pmap_t pmap, vm_offset_t va, int *is_l3e) { pml3_entry_t *l3e; pt_entry_t *pte; va &= PG_PS_FRAME; l3e = pmap_pml3e(pmap, va); if (l3e == NULL || (be64toh(*l3e) & PG_V) == 0) return (NULL); if (be64toh(*l3e) & RPTE_LEAF) { *is_l3e = 1; return (l3e); } *is_l3e = 0; va &= PG_FRAME; pte = pmap_l3e_to_pte(l3e, va); if (pte == NULL || (be64toh(*pte) & PG_V) == 0) return (NULL); return (pte); } int pmap_nofault(pmap_t pmap, vm_offset_t va, vm_prot_t flags) { pt_entry_t *pte; pt_entry_t startpte, origpte, newpte; vm_page_t m; int is_l3e; startpte = 0; retry: if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL) return (KERN_INVALID_ADDRESS); origpte = newpte = be64toh(*pte); if (startpte == 0) { startpte = origpte; if (((flags & VM_PROT_WRITE) && (startpte & PG_M)) || ((flags & VM_PROT_READ) && (startpte & PG_A))) { pmap_invalidate_all(pmap); #ifdef INVARIANTS if (VERBOSE_PMAP || pmap_logging) printf("%s(%p, %#lx, %#x) (%#lx) -- invalidate all\n", __func__, pmap, va, flags, origpte); #endif return (KERN_FAILURE); } } #ifdef INVARIANTS if (VERBOSE_PMAP || pmap_logging) printf("%s(%p, %#lx, %#x) (%#lx)\n", __func__, pmap, va, flags, origpte); #endif PMAP_LOCK(pmap); if ((pte = pmap_nofault_pte(pmap, va, &is_l3e)) == NULL || be64toh(*pte) != origpte) { PMAP_UNLOCK(pmap); return (KERN_FAILURE); } m = PHYS_TO_VM_PAGE(newpte & PG_FRAME); MPASS(m != NULL); switch (flags) { case VM_PROT_READ: if ((newpte & (RPTE_EAA_R|RPTE_EAA_X)) == 0) goto protfail; newpte |= PG_A; vm_page_aflag_set(m, PGA_REFERENCED); break; case VM_PROT_WRITE: if ((newpte & RPTE_EAA_W) == 0) goto protfail; if (is_l3e) goto protfail; newpte |= PG_M; vm_page_dirty(m); break; case VM_PROT_EXECUTE: if ((newpte & RPTE_EAA_X) == 0) goto protfail; newpte |= PG_A; vm_page_aflag_set(m, PGA_REFERENCED); break; } if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte))) goto retry; ptesync(); PMAP_UNLOCK(pmap); if (startpte == newpte) return (KERN_FAILURE); return (0); protfail: PMAP_UNLOCK(pmap); return (KERN_PROTECTION_FAILURE); } /* * Returns TRUE if the given page is mapped individually or as part of * a 2mpage. Otherwise, returns FALSE. */ boolean_t mmu_radix_page_is_mapped(vm_page_t m) { struct rwlock *lock; boolean_t rv; if ((m->oflags & VPO_UNMANAGED) != 0) return (FALSE); lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); rv = !TAILQ_EMPTY(&m->md.pv_list) || ((m->flags & PG_FICTITIOUS) == 0 && !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list)); rw_runlock(lock); return (rv); } /* * Determine the appropriate bits to set in a PTE or PDE for a specified * caching mode. */ static int pmap_cache_bits(vm_memattr_t ma) { if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (RPTE_ATTR_GUARDEDIO); case VM_MEMATTR_CACHEABLE: return (RPTE_ATTR_MEM); case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: case VM_MEMATTR_WRITE_COMBINING: return (RPTE_ATTR_UNGUARDEDIO); } } return (0); } static void pmap_invalidate_page(pmap_t pmap, vm_offset_t start) { ptesync(); if (pmap == kernel_pmap) radix_tlbie_invlpg_kernel_4k(start); else radix_tlbie_invlpg_user_4k(pmap->pm_pid, start); ttusync(); } static void pmap_invalidate_page_2m(pmap_t pmap, vm_offset_t start) { ptesync(); if (pmap == kernel_pmap) radix_tlbie_invlpg_kernel_2m(start); else radix_tlbie_invlpg_user_2m(pmap->pm_pid, start); ttusync(); } static void pmap_invalidate_pwc(pmap_t pmap) { ptesync(); if (pmap == kernel_pmap) radix_tlbie_invlpwc_kernel(); else radix_tlbie_invlpwc_user(pmap->pm_pid); ttusync(); } static void pmap_invalidate_range(pmap_t pmap, vm_offset_t start, vm_offset_t end) { if (((start - end) >> PAGE_SHIFT) > 8) { pmap_invalidate_all(pmap); return; } ptesync(); if (pmap == kernel_pmap) { while (start < end) { radix_tlbie_invlpg_kernel_4k(start); start += PAGE_SIZE; } } else { while (start < end) { radix_tlbie_invlpg_user_4k(pmap->pm_pid, start); start += PAGE_SIZE; } } ttusync(); } static void pmap_invalidate_all(pmap_t pmap) { ptesync(); if (pmap == kernel_pmap) radix_tlbie_flush_kernel(); else radix_tlbie_flush_user(pmap->pm_pid); ttusync(); } static void pmap_invalidate_l3e_page(pmap_t pmap, vm_offset_t va, pml3_entry_t l3e) { /* * When the PDE has PG_PROMOTED set, the 2MB page mapping was created * by a promotion that did not invalidate the 512 4KB page mappings * that might exist in the TLB. Consequently, at this point, the TLB * may hold both 4KB and 2MB page mappings for the address range [va, * va + L3_PAGE_SIZE). Therefore, the entire range must be invalidated here. * In contrast, when PG_PROMOTED is clear, the TLB will not hold any * 4KB page mappings for the address range [va, va + L3_PAGE_SIZE), and so a * single INVLPG suffices to invalidate the 2MB page mapping from the * TLB. */ ptesync(); if ((l3e & PG_PROMOTED) != 0) pmap_invalidate_range(pmap, va, va + L3_PAGE_SIZE - 1); else pmap_invalidate_page_2m(pmap, va); pmap_invalidate_pwc(pmap); } static __inline struct pv_chunk * pv_to_chunk(pv_entry_t pv) { return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK)); } #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap) #define PC_FREE0 0xfffffffffffffffful #define PC_FREE1 0x3ffffffffffffffful static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1 }; /* * Ensure that the number of spare PV entries in the specified pmap meets or * exceeds the given count, "needed". * * The given PV list lock may be released. */ static void reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp) { struct pch new_tail; struct pv_chunk *pc; vm_page_t m; int avail, free; bool reclaimed; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL")); /* * Newly allocated PV chunks must be stored in a private list until * the required number of PV chunks have been allocated. Otherwise, * reclaim_pv_chunk() could recycle one of these chunks. In * contrast, these chunks must be added to the pmap upon allocation. */ TAILQ_INIT(&new_tail); retry: avail = 0; TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) { // if ((cpu_feature2 & CPUID2_POPCNT) == 0) bit_count((bitstr_t *)pc->pc_map, 0, sizeof(pc->pc_map) * NBBY, &free); #if 0 free = popcnt_pc_map_pq(pc->pc_map); #endif if (free == 0) break; avail += free; if (avail >= needed) break; } for (reclaimed = false; avail < needed; avail += _NPCPV) { m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (m == NULL) { m = reclaim_pv_chunk(pmap, lockp); if (m == NULL) goto retry; reclaimed = true; } PV_STAT(atomic_add_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_allocs, 1)); dump_add_page(m->phys_addr); pc = (void *)PHYS_TO_DMAP(m->phys_addr); pc->pc_pmap = pmap; pc->pc_map[0] = PC_FREE0; pc->pc_map[1] = PC_FREE1; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru); PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV)); /* * The reclaim might have freed a chunk from the current pmap. * If that chunk contained available entries, we need to * re-count the number of available entries. */ if (reclaimed) goto retry; } if (!TAILQ_EMPTY(&new_tail)) { mtx_lock(&pv_chunks_mutex); TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru); mtx_unlock(&pv_chunks_mutex); } } /* * First find and then remove the pv entry for the specified pmap and virtual * address from the specified pv list. Returns the pv entry if found and NULL * otherwise. This operation can be performed on pv lists for either 4KB or * 2MB page mappings. */ static __inline pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) { #ifdef INVARIANTS if (PV_PMAP(pv) == NULL) { printf("corrupted pv_chunk/pv %p\n", pv); printf("pv_chunk: %64D\n", pv_to_chunk(pv), ":"); } MPASS(PV_PMAP(pv) != NULL); MPASS(pv->pv_va != 0); #endif if (pmap == PV_PMAP(pv) && va == pv->pv_va) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_link); pvh->pv_gen++; break; } } return (pv); } /* * After demotion from a 2MB page mapping to 512 4KB page mappings, * destroy the pv entry for the 2MB page mapping and reinstantiate the pv * entries for each of the 4KB page mappings. */ static void pmap_pv_demote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, struct rwlock **lockp) { struct md_page *pvh; struct pv_chunk *pc; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; int bit, field; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((pa & L3_PAGE_MASK) == 0, ("pmap_pv_demote_pde: pa is not 2mpage aligned")); CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); /* * Transfer the 2mpage's pv entry for this mapping to the first * page's pv list. Once this transfer begins, the pv list lock * must not be released until the last pv entry is reinstantiated. */ pvh = pa_to_pvh(pa); va = trunc_2mpage(va); pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found")); m = PHYS_TO_VM_PAGE(pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; /* Instantiate the remaining NPTEPG - 1 pv entries. */ PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1)); va_last = va + L3_PAGE_SIZE - PAGE_SIZE; for (;;) { pc = TAILQ_FIRST(&pmap->pm_pvchunk); KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 , ("pmap_pv_demote_pde: missing spare")); for (field = 0; field < _NPCM; field++) { while (pc->pc_map[field]) { bit = cnttzd(pc->pc_map[field]); pc->pc_map[field] &= ~(1ul << bit); pv = &pc->pc_pventry[field * 64 + bit]; va += PAGE_SIZE; pv->pv_va = va; m++; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_pv_demote_pde: page %p is not managed", m)); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; if (va == va_last) goto out; } } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } out: if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1)); PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1)); } static void reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap) { if (pmap == NULL) return; pmap_invalidate_all(pmap); if (pmap != locked_pmap) PMAP_UNLOCK(pmap); } /* * We are in a serious low memory condition. Resort to * drastic measures to free some pages so we can allocate * another pv entry chunk. * * Returns NULL if PV entries were reclaimed from the specified pmap. * * We do not, however, unmap 2mpages because subsequent accesses will * allocate per-page pv entries until repromotion occurs, thereby * exacerbating the shortage of free pv entries. */ static int active_reclaims = 0; static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp) { struct pv_chunk *pc, *pc_marker, *pc_marker_end; struct pv_chunk_header pc_marker_b, pc_marker_end_b; struct md_page *pvh; pml3_entry_t *l3e; pmap_t next_pmap, pmap; pt_entry_t *pte, tpte; pv_entry_t pv; vm_offset_t va; vm_page_t m, m_pc; struct spglist free; uint64_t inuse; int bit, field, freed; PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED); KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL")); pmap = NULL; m_pc = NULL; SLIST_INIT(&free); bzero(&pc_marker_b, sizeof(pc_marker_b)); bzero(&pc_marker_end_b, sizeof(pc_marker_end_b)); pc_marker = (struct pv_chunk *)&pc_marker_b; pc_marker_end = (struct pv_chunk *)&pc_marker_end_b; mtx_lock(&pv_chunks_mutex); active_reclaims++; TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru); TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru); while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end && SLIST_EMPTY(&free)) { next_pmap = pc->pc_pmap; if (next_pmap == NULL) { /* * The next chunk is a marker. However, it is * not our marker, so active_reclaims must be * > 1. Consequently, the next_chunk code * will not rotate the pv_chunks list. */ goto next_chunk; } mtx_unlock(&pv_chunks_mutex); /* * A pv_chunk can only be removed from the pc_lru list * when both pc_chunks_mutex is owned and the * corresponding pmap is locked. */ if (pmap != next_pmap) { reclaim_pv_chunk_leave_pmap(pmap, locked_pmap); pmap = next_pmap; /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) { RELEASE_PV_LIST_LOCK(lockp); PMAP_LOCK(pmap); mtx_lock(&pv_chunks_mutex); continue; } else if (pmap != locked_pmap) { if (PMAP_TRYLOCK(pmap)) { mtx_lock(&pv_chunks_mutex); continue; } else { pmap = NULL; /* pmap is not locked */ mtx_lock(&pv_chunks_mutex); pc = TAILQ_NEXT(pc_marker, pc_lru); if (pc == NULL || pc->pc_pmap != next_pmap) continue; goto next_chunk; } } } /* * Destroy every non-wired, 4 KB page mapping in the chunk. */ freed = 0; for (field = 0; field < _NPCM; field++) { for (inuse = ~pc->pc_map[field] & pc_freemask[field]; inuse != 0; inuse &= ~(1UL << bit)) { bit = cnttzd(inuse); pv = &pc->pc_pventry[field * 64 + bit]; va = pv->pv_va; l3e = pmap_pml3e(pmap, va); if ((be64toh(*l3e) & RPTE_LEAF) != 0) continue; pte = pmap_l3e_to_pte(l3e, va); if ((be64toh(*pte) & PG_W) != 0) continue; tpte = be64toh(pte_load_clear(pte)); m = PHYS_TO_VM_PAGE(tpte & PG_FRAME); if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) vm_page_dirty(m); if ((tpte & PG_A) != 0) vm_page_aflag_set(m, PGA_REFERENCED); CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); TAILQ_REMOVE(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) { vm_page_aflag_clear(m, PGA_WRITEABLE); } } pc->pc_map[field] |= 1UL << bit; pmap_unuse_pt(pmap, va, be64toh(*l3e), &free); freed++; } } if (freed == 0) { mtx_lock(&pv_chunks_mutex); goto next_chunk; } /* Every freed mapping is for a 4 KB page. */ pmap_resident_count_dec(pmap, freed); PV_STAT(atomic_add_long(&pv_entry_frees, freed)); PV_STAT(atomic_add_int(&pv_entry_spare, freed)); PV_STAT(atomic_subtract_long(&pv_entry_count, freed)); TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1) { PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV)); PV_STAT(atomic_subtract_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_frees, 1)); /* Entire chunk is free; return it. */ m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc)); dump_drop_page(m_pc->phys_addr); mtx_lock(&pv_chunks_mutex); TAILQ_REMOVE(&pv_chunks, pc, pc_lru); break; } TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); mtx_lock(&pv_chunks_mutex); /* One freed pv entry in locked_pmap is sufficient. */ if (pmap == locked_pmap) break; next_chunk: TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru); TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru); if (active_reclaims == 1 && pmap != NULL) { /* * Rotate the pv chunks list so that we do not * scan the same pv chunks that could not be * freed (because they contained a wired * and/or superpage mapping) on every * invocation of reclaim_pv_chunk(). */ while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) { MPASS(pc->pc_pmap != NULL); TAILQ_REMOVE(&pv_chunks, pc, pc_lru); TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru); } } } TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru); TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru); active_reclaims--; mtx_unlock(&pv_chunks_mutex); reclaim_pv_chunk_leave_pmap(pmap, locked_pmap); if (m_pc == NULL && !SLIST_EMPTY(&free)) { m_pc = SLIST_FIRST(&free); SLIST_REMOVE_HEAD(&free, plinks.s.ss); /* Recycle a freed page table page. */ m_pc->ref_count = 1; } vm_page_free_pages_toq(&free, true); return (m_pc); } /* * free the pv_entry back to the free list */ static void free_pv_entry(pmap_t pmap, pv_entry_t pv) { struct pv_chunk *pc; int idx, field, bit; #ifdef VERBOSE_PV if (pmap != kernel_pmap) printf("%s(%p, %p)\n", __func__, pmap, pv); #endif PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(atomic_add_long(&pv_entry_frees, 1)); PV_STAT(atomic_add_int(&pv_entry_spare, 1)); PV_STAT(atomic_subtract_long(&pv_entry_count, 1)); pc = pv_to_chunk(pv); idx = pv - &pc->pc_pventry[0]; field = idx / 64; bit = idx % 64; pc->pc_map[field] |= 1ul << bit; if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1) { /* 98% of the time, pc is already at the head of the list. */ if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); } return; } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } static void free_pv_chunk(struct pv_chunk *pc) { vm_page_t m; mtx_lock(&pv_chunks_mutex); TAILQ_REMOVE(&pv_chunks, pc, pc_lru); mtx_unlock(&pv_chunks_mutex); PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV)); PV_STAT(atomic_subtract_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_frees, 1)); /* entire chunk is free, return it */ m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc)); dump_drop_page(m->phys_addr); vm_page_unwire_noq(m); vm_page_free(m); } /* * Returns a new PV entry, allocating a new PV chunk from the system when * needed. If this PV chunk allocation fails and a PV list lock pointer was * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is * returned. * * The given PV list lock may be released. */ static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp) { int bit, field; pv_entry_t pv; struct pv_chunk *pc; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(atomic_add_long(&pv_entry_allocs, 1)); retry: pc = TAILQ_FIRST(&pmap->pm_pvchunk); if (pc != NULL) { for (field = 0; field < _NPCM; field++) { if (pc->pc_map[field]) { bit = cnttzd(pc->pc_map[field]); break; } } if (field < _NPCM) { pv = &pc->pc_pventry[field * 64 + bit]; pc->pc_map[field] &= ~(1ul << bit); /* If this was the last item, move it to tail */ if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } PV_STAT(atomic_add_long(&pv_entry_count, 1)); PV_STAT(atomic_subtract_int(&pv_entry_spare, 1)); MPASS(PV_PMAP(pv) != NULL); return (pv); } } /* No free items, allocate another chunk */ m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (m == NULL) { if (lockp == NULL) { PV_STAT(pc_chunk_tryfail++); return (NULL); } m = reclaim_pv_chunk(pmap, lockp); if (m == NULL) goto retry; } PV_STAT(atomic_add_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_allocs, 1)); dump_add_page(m->phys_addr); pc = (void *)PHYS_TO_DMAP(m->phys_addr); pc->pc_pmap = pmap; pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */ pc->pc_map[1] = PC_FREE1; mtx_lock(&pv_chunks_mutex); TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru); mtx_unlock(&pv_chunks_mutex); pv = &pc->pc_pventry[0]; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(atomic_add_long(&pv_entry_count, 1)); PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1)); MPASS(PV_PMAP(pv) != NULL); return (pv); } #if VM_NRESERVLEVEL > 0 /* * After promotion from 512 4KB page mappings to a single 2MB page mapping, * replace the many pv entries for the 4KB page mappings by a single pv entry * for the 2MB page mapping. */ static void pmap_pv_promote_l3e(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, struct rwlock **lockp) { struct md_page *pvh; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; KASSERT((pa & L3_PAGE_MASK) == 0, ("pmap_pv_promote_pde: pa is not 2mpage aligned")); CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); /* * Transfer the first page's pv entry for this mapping to the 2mpage's * pv list. Aside from avoiding the cost of a call to get_pv_entry(), * a transfer avoids the possibility that get_pv_entry() calls * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the * mappings that is being promoted. */ m = PHYS_TO_VM_PAGE(pa); va = trunc_2mpage(va); pv = pmap_pvh_remove(&m->md, pmap, va); KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found")); pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link); pvh->pv_gen++; /* Free the remaining NPTEPG - 1 pv entries. */ va_last = va + L3_PAGE_SIZE - PAGE_SIZE; do { m++; va += PAGE_SIZE; pmap_pvh_free(&m->md, pmap, va); } while (va < va_last); } #endif /* VM_NRESERVLEVEL > 0 */ /* * First find and then destroy the pv entry for the specified pmap and virtual * address. This operation can be performed on pv lists for either 4KB or 2MB * page mappings. */ static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pvh_free: pv not found")); free_pv_entry(pmap, pv); } /* * Conditionally create the PV entry for a 4KB page mapping if the required * memory can be allocated without resorting to reclamation. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m, struct rwlock **lockp) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Pass NULL instead of the lock pointer to disable reclamation. */ if ((pv = get_pv_entry(pmap, NULL)) != NULL) { pv->pv_va = va; CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; return (TRUE); } else return (FALSE); } vm_paddr_t phys_avail_debug[2 * VM_PHYSSEG_MAX]; #ifdef INVARIANTS static void validate_addr(vm_paddr_t addr, vm_size_t size) { vm_paddr_t end = addr + size; bool found = false; for (int i = 0; i < 2 * phys_avail_count; i += 2) { if (addr >= phys_avail_debug[i] && end <= phys_avail_debug[i + 1]) { found = true; break; } } KASSERT(found, ("%#lx-%#lx outside of initial phys_avail array", addr, end)); } #else static void validate_addr(vm_paddr_t addr, vm_size_t size) {} #endif #define DMAP_PAGE_BITS (RPTE_VALID | RPTE_LEAF | RPTE_EAA_MASK | PG_M | PG_A) static vm_paddr_t alloc_pt_page(void) { vm_paddr_t page; page = allocpages(1); pagezero(PHYS_TO_DMAP(page)); return (page); } static void mmu_radix_dmap_range(vm_paddr_t start, vm_paddr_t end) { pt_entry_t *pte, pteval; vm_paddr_t page; if (bootverbose) printf("%s %lx -> %lx\n", __func__, start, end); while (start < end) { pteval = start | DMAP_PAGE_BITS; pte = pmap_pml1e(kernel_pmap, PHYS_TO_DMAP(start)); if ((be64toh(*pte) & RPTE_VALID) == 0) { page = alloc_pt_page(); pde_store(pte, page); } pte = pmap_l1e_to_l2e(pte, PHYS_TO_DMAP(start)); if ((start & L2_PAGE_MASK) == 0 && end - start >= L2_PAGE_SIZE) { start += L2_PAGE_SIZE; goto done; } else if ((be64toh(*pte) & RPTE_VALID) == 0) { page = alloc_pt_page(); pde_store(pte, page); } pte = pmap_l2e_to_l3e(pte, PHYS_TO_DMAP(start)); if ((start & L3_PAGE_MASK) == 0 && end - start >= L3_PAGE_SIZE) { start += L3_PAGE_SIZE; goto done; } else if ((be64toh(*pte) & RPTE_VALID) == 0) { page = alloc_pt_page(); pde_store(pte, page); } pte = pmap_l3e_to_pte(pte, PHYS_TO_DMAP(start)); start += PAGE_SIZE; done: pte_store(pte, pteval); } } static void mmu_radix_dmap_populate(vm_size_t hwphyssz) { vm_paddr_t start, end; for (int i = 0; i < pregions_sz; i++) { start = pregions[i].mr_start; end = start + pregions[i].mr_size; if (hwphyssz && start >= hwphyssz) break; if (hwphyssz && hwphyssz < end) end = hwphyssz; mmu_radix_dmap_range(start, end); } } static void mmu_radix_setup_pagetables(vm_size_t hwphyssz) { vm_paddr_t ptpages, pages; pt_entry_t *pte; vm_paddr_t l1phys; bzero(kernel_pmap, sizeof(struct pmap)); PMAP_LOCK_INIT(kernel_pmap); ptpages = allocpages(3); l1phys = moea64_bootstrap_alloc(RADIX_PGD_SIZE, RADIX_PGD_SIZE); validate_addr(l1phys, RADIX_PGD_SIZE); if (bootverbose) printf("l1phys=%lx\n", l1phys); MPASS((l1phys & (RADIX_PGD_SIZE-1)) == 0); for (int i = 0; i < RADIX_PGD_SIZE/PAGE_SIZE; i++) pagezero(PHYS_TO_DMAP(l1phys + i * PAGE_SIZE)); kernel_pmap->pm_pml1 = (pml1_entry_t *)PHYS_TO_DMAP(l1phys); mmu_radix_dmap_populate(hwphyssz); /* * Create page tables for first 128MB of KVA */ pages = ptpages; pte = pmap_pml1e(kernel_pmap, VM_MIN_KERNEL_ADDRESS); *pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT); pages += PAGE_SIZE; pte = pmap_l1e_to_l2e(pte, VM_MIN_KERNEL_ADDRESS); *pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT); pages += PAGE_SIZE; pte = pmap_l2e_to_l3e(pte, VM_MIN_KERNEL_ADDRESS); /* * the kernel page table pages need to be preserved in * phys_avail and not overlap with previous allocations */ pages = allocpages(nkpt); if (bootverbose) { printf("phys_avail after dmap populate and nkpt allocation\n"); for (int j = 0; j < 2 * phys_avail_count; j+=2) printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n", j, phys_avail[j], j + 1, phys_avail[j + 1]); } KPTphys = pages; for (int i = 0; i < nkpt; i++, pte++, pages += PAGE_SIZE) *pte = htobe64(pages | RPTE_VALID | RPTE_SHIFT); kernel_vm_end = VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE; if (bootverbose) printf("kernel_pmap pml1 %p\n", kernel_pmap->pm_pml1); /* * Add a physical memory segment (vm_phys_seg) corresponding to the * preallocated kernel page table pages so that vm_page structures * representing these pages will be created. The vm_page structures * are required for promotion of the corresponding kernel virtual * addresses to superpage mappings. */ vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt)); } static void mmu_radix_early_bootstrap(vm_offset_t start, vm_offset_t end) { vm_paddr_t kpstart, kpend; vm_size_t physsz, hwphyssz; //uint64_t l2virt; int rm_pavail, proctab_size; int i, j; kpstart = start & ~DMAP_BASE_ADDRESS; kpend = end & ~DMAP_BASE_ADDRESS; /* Get physical memory regions from firmware */ mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); CTR0(KTR_PMAP, "mmu_radix_early_bootstrap: physical memory"); if (2 * VM_PHYSSEG_MAX < regions_sz) panic("mmu_radix_early_bootstrap: phys_avail too small"); if (bootverbose) for (int i = 0; i < regions_sz; i++) printf("regions[%d].mr_start=%lx regions[%d].mr_size=%lx\n", i, regions[i].mr_start, i, regions[i].mr_size); /* * XXX workaround a simulator bug */ for (int i = 0; i < regions_sz; i++) if (regions[i].mr_start & PAGE_MASK) { regions[i].mr_start += PAGE_MASK; regions[i].mr_start &= ~PAGE_MASK; regions[i].mr_size &= ~PAGE_MASK; } if (bootverbose) for (int i = 0; i < pregions_sz; i++) printf("pregions[%d].mr_start=%lx pregions[%d].mr_size=%lx\n", i, pregions[i].mr_start, i, pregions[i].mr_size); phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); for (i = 0, j = 0; i < regions_sz; i++) { if (bootverbose) printf("regions[%d].mr_start=%016lx regions[%d].mr_size=%016lx\n", i, regions[i].mr_start, i, regions[i].mr_size); if (regions[i].mr_size < PAGE_SIZE) continue; if (hwphyssz != 0 && (physsz + regions[i].mr_size) >= hwphyssz) { if (physsz < hwphyssz) { phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + (hwphyssz - physsz); physsz = hwphyssz; phys_avail_count++; dump_avail[j] = phys_avail[j]; dump_avail[j + 1] = phys_avail[j + 1]; } break; } phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; dump_avail[j] = phys_avail[j]; dump_avail[j + 1] = phys_avail[j + 1]; phys_avail_count++; physsz += regions[i].mr_size; j += 2; } /* Check for overlap with the kernel and exception vectors */ rm_pavail = 0; for (j = 0; j < 2 * phys_avail_count; j+=2) { if (phys_avail[j] < EXC_LAST) phys_avail[j] += EXC_LAST; if (phys_avail[j] >= kpstart && phys_avail[j + 1] <= kpend) { phys_avail[j] = phys_avail[j + 1] = ~0; rm_pavail++; continue; } if (kpstart >= phys_avail[j] && kpstart < phys_avail[j + 1]) { if (kpend < phys_avail[j + 1]) { phys_avail[2 * phys_avail_count] = (kpend & ~PAGE_MASK) + PAGE_SIZE; phys_avail[2 * phys_avail_count + 1] = phys_avail[j + 1]; phys_avail_count++; } phys_avail[j + 1] = kpstart & ~PAGE_MASK; } if (kpend >= phys_avail[j] && kpend < phys_avail[j + 1]) { if (kpstart > phys_avail[j]) { phys_avail[2 * phys_avail_count] = phys_avail[j]; phys_avail[2 * phys_avail_count + 1] = kpstart & ~PAGE_MASK; phys_avail_count++; } phys_avail[j] = (kpend & ~PAGE_MASK) + PAGE_SIZE; } } qsort(phys_avail, 2 * phys_avail_count, sizeof(phys_avail[0]), pa_cmp); for (i = 0; i < 2 * phys_avail_count; i++) phys_avail_debug[i] = phys_avail[i]; /* Remove physical available regions marked for removal (~0) */ if (rm_pavail) { phys_avail_count -= rm_pavail; for (i = 2 * phys_avail_count; i < 2*(phys_avail_count + rm_pavail); i+=2) phys_avail[i] = phys_avail[i + 1] = 0; } if (bootverbose) { printf("phys_avail ranges after filtering:\n"); for (j = 0; j < 2 * phys_avail_count; j+=2) printf("phys_avail[%d]=%08lx - phys_avail[%d]=%08lx\n", j, phys_avail[j], j + 1, phys_avail[j + 1]); } physmem = btoc(physsz); /* XXX assume we're running non-virtualized and * we don't support BHYVE */ if (isa3_pid_bits == 0) isa3_pid_bits = 20; parttab_phys = moea64_bootstrap_alloc(PARTTAB_SIZE, PARTTAB_SIZE); validate_addr(parttab_phys, PARTTAB_SIZE); for (int i = 0; i < PARTTAB_SIZE/PAGE_SIZE; i++) pagezero(PHYS_TO_DMAP(parttab_phys + i * PAGE_SIZE)); proctab_size = 1UL << PROCTAB_SIZE_SHIFT; proctab0pa = moea64_bootstrap_alloc(proctab_size, proctab_size); validate_addr(proctab0pa, proctab_size); for (int i = 0; i < proctab_size/PAGE_SIZE; i++) pagezero(PHYS_TO_DMAP(proctab0pa + i * PAGE_SIZE)); mmu_radix_setup_pagetables(hwphyssz); } static void mmu_radix_late_bootstrap(vm_offset_t start, vm_offset_t end) { int i; vm_paddr_t pa; void *dpcpu; vm_offset_t va; /* * Set up the Open Firmware pmap and add its mappings if not in real * mode. */ if (bootverbose) printf("%s enter\n", __func__); /* * Calculate the last available physical address, and reserve the * vm_page_array (upper bound). */ Maxmem = 0; for (i = 0; phys_avail[i + 2] != 0; i += 2) Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1])); /* * Set the start and end of kva. */ virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; /* * Remap any early IO mappings (console framebuffer, etc.) */ bs_remap_earlyboot(); /* * Allocate a kernel stack with a guard page for thread0 and map it * into the kernel page map. */ pa = allocpages(kstack_pages); va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; virtual_avail = va + kstack_pages * PAGE_SIZE; CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); thread0.td_kstack = va; for (i = 0; i < kstack_pages; i++) { mmu_radix_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } thread0.td_kstack_pages = kstack_pages; /* * Allocate virtual address space for the message buffer. */ pa = msgbuf_phys = allocpages((msgbufsize + PAGE_MASK) >> PAGE_SHIFT); msgbufp = (struct msgbuf *)PHYS_TO_DMAP(pa); /* * Allocate virtual address space for the dynamic percpu area. */ pa = allocpages(DPCPU_SIZE >> PAGE_SHIFT); dpcpu = (void *)PHYS_TO_DMAP(pa); dpcpu_init(dpcpu, curcpu); crashdumpmap = (caddr_t)virtual_avail; virtual_avail += MAXDUMPPGS * PAGE_SIZE; /* * Reserve some special page table entries/VA space for temporary * mapping of pages. */ } static void mmu_parttab_init(void) { uint64_t ptcr; isa3_parttab = (struct pate *)PHYS_TO_DMAP(parttab_phys); if (bootverbose) printf("%s parttab: %p\n", __func__, isa3_parttab); ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12); if (bootverbose) printf("setting ptcr %lx\n", ptcr); mtspr(SPR_PTCR, ptcr); } static void mmu_parttab_update(uint64_t lpid, uint64_t pagetab, uint64_t proctab) { uint64_t prev; if (bootverbose) printf("%s isa3_parttab %p lpid %lx pagetab %lx proctab %lx\n", __func__, isa3_parttab, lpid, pagetab, proctab); prev = be64toh(isa3_parttab[lpid].pagetab); isa3_parttab[lpid].pagetab = htobe64(pagetab); isa3_parttab[lpid].proctab = htobe64(proctab); if (prev & PARTTAB_HR) { __asm __volatile(PPC_TLBIE_5(%0,%1,2,0,1) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); __asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); } else { __asm __volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); } ttusync(); } static void mmu_radix_parttab_init(void) { uint64_t pagetab; mmu_parttab_init(); pagetab = RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | \ RADIX_PGD_INDEX_SHIFT | PARTTAB_HR; mmu_parttab_update(0, pagetab, 0); } static void mmu_radix_proctab_register(vm_paddr_t proctabpa, uint64_t table_size) { uint64_t pagetab, proctab; pagetab = be64toh(isa3_parttab[0].pagetab); proctab = proctabpa | table_size | PARTTAB_GR; mmu_parttab_update(0, pagetab, proctab); } static void mmu_radix_proctab_init(void) { isa3_base_pid = 1; isa3_proctab = (void*)PHYS_TO_DMAP(proctab0pa); isa3_proctab->proctab0 = htobe64(RTS_SIZE | DMAP_TO_PHYS((vm_offset_t)kernel_pmap->pm_pml1) | RADIX_PGD_INDEX_SHIFT); mmu_radix_proctab_register(proctab0pa, PROCTAB_SIZE_SHIFT - 12); __asm __volatile("ptesync" : : : "memory"); __asm __volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : "r" (TLBIEL_INVAL_SET_LPID), "r" (0)); __asm __volatile("eieio; tlbsync; ptesync" : : : "memory"); if (bootverbose) printf("process table %p and kernel radix PDE: %p\n", isa3_proctab, kernel_pmap->pm_pml1); mtmsr(mfmsr() | PSL_DR ); mtmsr(mfmsr() & ~PSL_DR); kernel_pmap->pm_pid = isa3_base_pid; isa3_base_pid++; } void mmu_radix_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice) { struct rwlock *lock; pml1_entry_t *l1e; pml2_entry_t *l2e; pml3_entry_t oldl3e, *l3e; pt_entry_t *pte; vm_offset_t va, va_next; vm_page_t m; boolean_t anychanged; if (advice != MADV_DONTNEED && advice != MADV_FREE) return; anychanged = FALSE; PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l1e = pmap_pml1e(pmap, sva); if ((be64toh(*l1e) & PG_V) == 0) { va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } l2e = pmap_l1e_to_l2e(l1e, sva); if ((be64toh(*l2e) & PG_V) == 0) { va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK; if (va_next < sva) va_next = eva; l3e = pmap_l2e_to_l3e(l2e, sva); oldl3e = be64toh(*l3e); if ((oldl3e & PG_V) == 0) continue; else if ((oldl3e & RPTE_LEAF) != 0) { if ((oldl3e & PG_MANAGED) == 0) continue; lock = NULL; if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) { if (lock != NULL) rw_wunlock(lock); /* * The large page mapping was destroyed. */ continue; } /* * Unless the page mappings are wired, remove the * mapping to a single page so that a subsequent * access may repromote. Since the underlying page * table page is fully populated, this removal never * frees a page table page. */ if ((oldl3e & PG_W) == 0) { pte = pmap_l3e_to_pte(l3e, sva); KASSERT((be64toh(*pte) & PG_V) != 0, ("pmap_advise: invalid PTE")); pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), NULL, &lock); anychanged = TRUE; } if (lock != NULL) rw_wunlock(lock); } if (va_next > eva) va_next = eva; va = va_next; for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++, sva += PAGE_SIZE) { MPASS(pte == pmap_pte(pmap, sva)); if ((be64toh(*pte) & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V)) goto maybe_invlrng; else if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) { if (advice == MADV_DONTNEED) { /* * Future calls to pmap_is_modified() * can be avoided by making the page * dirty now. */ m = PHYS_TO_VM_PAGE(be64toh(*pte) & PG_FRAME); vm_page_dirty(m); } atomic_clear_long(pte, htobe64(PG_M | PG_A)); } else if ((be64toh(*pte) & PG_A) != 0) atomic_clear_long(pte, htobe64(PG_A)); else goto maybe_invlrng; anychanged = TRUE; continue; maybe_invlrng: if (va != va_next) { anychanged = true; va = va_next; } } if (va != va_next) anychanged = true; } if (anychanged) pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); } /* * Routines used in machine-dependent code */ static void mmu_radix_bootstrap(vm_offset_t start, vm_offset_t end) { uint64_t lpcr; if (bootverbose) printf("%s\n", __func__); hw_direct_map = 1; mmu_radix_early_bootstrap(start, end); if (bootverbose) printf("early bootstrap complete\n"); if (powernv_enabled) { lpcr = mfspr(SPR_LPCR); mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR); mmu_radix_parttab_init(); mmu_radix_init_amor(); if (bootverbose) printf("powernv init complete\n"); } mmu_radix_init_iamr(); mmu_radix_proctab_init(); mmu_radix_pid_set(kernel_pmap); /* XXX assume CPU_FTR_HVMODE */ mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL); mmu_radix_late_bootstrap(start, end); numa_mem_regions(&numa_pregions, &numa_pregions_sz); if (bootverbose) printf("%s done\n", __func__); pmap_bootstrapped = 1; dmaplimit = roundup2(powerpc_ptob(Maxmem), L2_PAGE_SIZE); PCPU_SET(flags, PCPU_GET(flags) | PC_FLAG_NOSRS); } static void mmu_radix_cpu_bootstrap(int ap) { uint64_t lpcr; uint64_t ptcr; if (powernv_enabled) { lpcr = mfspr(SPR_LPCR); mtspr(SPR_LPCR, lpcr | LPCR_UPRT | LPCR_HR); ptcr = parttab_phys | (PARTTAB_SIZE_SHIFT-12); mtspr(SPR_PTCR, ptcr); mmu_radix_init_amor(); } mmu_radix_init_iamr(); mmu_radix_pid_set(kernel_pmap); mmu_radix_tlbiel_flush(TLB_INVAL_SCOPE_GLOBAL); } static SYSCTL_NODE(_vm_pmap, OID_AUTO, l3e, CTLFLAG_RD, 0, "2MB page mapping counters"); static u_long pmap_l3e_demotions; SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, demotions, CTLFLAG_RD, &pmap_l3e_demotions, 0, "2MB page demotions"); static u_long pmap_l3e_mappings; SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, mappings, CTLFLAG_RD, &pmap_l3e_mappings, 0, "2MB page mappings"); static u_long pmap_l3e_p_failures; SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, p_failures, CTLFLAG_RD, &pmap_l3e_p_failures, 0, "2MB page promotion failures"); static u_long pmap_l3e_promotions; SYSCTL_ULONG(_vm_pmap_l3e, OID_AUTO, promotions, CTLFLAG_RD, &pmap_l3e_promotions, 0, "2MB page promotions"); static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2e, CTLFLAG_RD, 0, "1GB page mapping counters"); static u_long pmap_l2e_demotions; SYSCTL_ULONG(_vm_pmap_l2e, OID_AUTO, demotions, CTLFLAG_RD, &pmap_l2e_demotions, 0, "1GB page demotions"); void mmu_radix_clear_modify(vm_page_t m) { struct md_page *pvh; pmap_t pmap; pv_entry_t next_pv, pv; pml3_entry_t oldl3e, *l3e; pt_entry_t oldpte, *pte; struct rwlock *lock; vm_offset_t va; int md_gen, pvh_gen; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_modify: page %p is not managed", m)); vm_page_assert_busied(m); CTR2(KTR_PMAP, "%s(%p)", __func__, m); /* * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set. * If the object containing the page is locked and the page is not * exclusive busied, then PGA_WRITEABLE cannot be concurrently set. */ if ((m->a.flags & PGA_WRITEABLE) == 0) return; pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_wlock(lock); restart: TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } va = pv->pv_va; l3e = pmap_pml3e(pmap, va); oldl3e = be64toh(*l3e); if ((oldl3e & PG_RW) != 0) { if (pmap_demote_l3e_locked(pmap, l3e, va, &lock)) { if ((oldl3e & PG_W) == 0) { /* * Write protect the mapping to a * single page so that a subsequent * write access may repromote. */ va += VM_PAGE_TO_PHYS(m) - (oldl3e & PG_PS_FRAME); pte = pmap_l3e_to_pte(l3e, va); oldpte = be64toh(*pte); if ((oldpte & PG_V) != 0) { while (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~(PG_M | PG_RW)))) oldpte = be64toh(*pte); vm_page_dirty(m); pmap_invalidate_page(pmap, va); } } } } PMAP_UNLOCK(pmap); } TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } l3e = pmap_pml3e(pmap, pv->pv_va); KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_clear_modify: found" " a 2mpage in page %p's pv list", m)); pte = pmap_l3e_to_pte(l3e, pv->pv_va); if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) { atomic_clear_long(pte, htobe64(PG_M)); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } rw_wunlock(lock); } void mmu_radix_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { struct rwlock *lock; struct spglist free; vm_offset_t addr; vm_offset_t end_addr = src_addr + len; vm_offset_t va_next; vm_page_t dst_pdpg, dstmpte, srcmpte; bool invalidate_all; CTR6(KTR_PMAP, "%s(dst_pmap=%p, src_pmap=%p, dst_addr=%lx, len=%lu, src_addr=%lx)\n", __func__, dst_pmap, src_pmap, dst_addr, len, src_addr); if (dst_addr != src_addr) return; lock = NULL; invalidate_all = false; if (dst_pmap < src_pmap) { PMAP_LOCK(dst_pmap); PMAP_LOCK(src_pmap); } else { PMAP_LOCK(src_pmap); PMAP_LOCK(dst_pmap); } for (addr = src_addr; addr < end_addr; addr = va_next) { pml1_entry_t *l1e; pml2_entry_t *l2e; pml3_entry_t srcptepaddr, *l3e; pt_entry_t *src_pte, *dst_pte; l1e = pmap_pml1e(src_pmap, addr); if ((be64toh(*l1e) & PG_V) == 0) { va_next = (addr + L1_PAGE_SIZE) & ~L1_PAGE_MASK; if (va_next < addr) va_next = end_addr; continue; } l2e = pmap_l1e_to_l2e(l1e, addr); if ((be64toh(*l2e) & PG_V) == 0) { va_next = (addr + L2_PAGE_SIZE) & ~L2_PAGE_MASK; if (va_next < addr) va_next = end_addr; continue; } va_next = (addr + L3_PAGE_SIZE) & ~L3_PAGE_MASK; if (va_next < addr) va_next = end_addr; l3e = pmap_l2e_to_l3e(l2e, addr); srcptepaddr = be64toh(*l3e); if (srcptepaddr == 0) continue; if (srcptepaddr & RPTE_LEAF) { if ((addr & L3_PAGE_MASK) != 0 || addr + L3_PAGE_SIZE > end_addr) continue; dst_pdpg = pmap_allocl3e(dst_pmap, addr, NULL); if (dst_pdpg == NULL) break; l3e = (pml3_entry_t *) PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg)); l3e = &l3e[pmap_pml3e_index(addr)]; if (be64toh(*l3e) == 0 && ((srcptepaddr & PG_MANAGED) == 0 || pmap_pv_insert_l3e(dst_pmap, addr, srcptepaddr, PMAP_ENTER_NORECLAIM, &lock))) { *l3e = htobe64(srcptepaddr & ~PG_W); pmap_resident_count_inc(dst_pmap, L3_PAGE_SIZE / PAGE_SIZE); atomic_add_long(&pmap_l3e_mappings, 1); } else dst_pdpg->ref_count--; continue; } srcptepaddr &= PG_FRAME; srcmpte = PHYS_TO_VM_PAGE(srcptepaddr); KASSERT(srcmpte->ref_count > 0, ("pmap_copy: source page table page is unused")); if (va_next > end_addr) va_next = end_addr; src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr); src_pte = &src_pte[pmap_pte_index(addr)]; dstmpte = NULL; while (addr < va_next) { pt_entry_t ptetemp; ptetemp = be64toh(*src_pte); /* * we only virtual copy managed pages */ if ((ptetemp & PG_MANAGED) != 0) { if (dstmpte != NULL && dstmpte->pindex == pmap_l3e_pindex(addr)) dstmpte->ref_count++; else if ((dstmpte = pmap_allocpte(dst_pmap, addr, NULL)) == NULL) goto out; dst_pte = (pt_entry_t *) PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte)); dst_pte = &dst_pte[pmap_pte_index(addr)]; if (be64toh(*dst_pte) == 0 && pmap_try_insert_pv_entry(dst_pmap, addr, PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) { /* * Clear the wired, modified, and * accessed (referenced) bits * during the copy. */ *dst_pte = htobe64(ptetemp & ~(PG_W | PG_M | PG_A)); pmap_resident_count_inc(dst_pmap, 1); } else { SLIST_INIT(&free); if (pmap_unwire_ptp(dst_pmap, addr, dstmpte, &free)) { /* * Although "addr" is not * mapped, paging-structure * caches could nonetheless * have entries that refer to * the freed page table pages. * Invalidate those entries. */ invalidate_all = true; vm_page_free_pages_toq(&free, true); } goto out; } if (dstmpte->ref_count >= srcmpte->ref_count) break; } addr += PAGE_SIZE; if (__predict_false((addr & L3_PAGE_MASK) == 0)) src_pte = pmap_pte(src_pmap, addr); else src_pte++; } } out: if (invalidate_all) pmap_invalidate_all(dst_pmap); if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(src_pmap); PMAP_UNLOCK(dst_pmap); } static void mmu_radix_copy_page(vm_page_t msrc, vm_page_t mdst) { vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc)); vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst)); CTR3(KTR_PMAP, "%s(%p, %p)", __func__, src, dst); /* * XXX slow */ bcopy((void *)src, (void *)dst, PAGE_SIZE); } static void mmu_radix_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[], vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; CTR6(KTR_PMAP, "%s(%p, %#x, %p, %#x, %#x)", __func__, ma, a_offset, mb, b_offset, xfersize); while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); a_cp = (char *)(uintptr_t)PHYS_TO_DMAP( VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); b_cp = (char *)(uintptr_t)PHYS_TO_DMAP( VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } } #if VM_NRESERVLEVEL > 0 /* * Tries to promote the 512, contiguous 4KB page mappings that are within a * single page table page (PTP) to a single 2MB page mapping. For promotion * to occur, two conditions must be met: (1) the 4KB page mappings must map * aligned, contiguous physical memory and (2) the 4KB page mappings must have * identical characteristics. */ static int pmap_promote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va, struct rwlock **lockp) { pml3_entry_t newpde; pt_entry_t *firstpte, oldpte, pa, *pte; vm_page_t mpte; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Examine the first PTE in the specified PTP. Abort if this PTE is * either invalid, unused, or does not map the first 4KB physical page * within a 2MB page. */ firstpte = (pt_entry_t *)PHYS_TO_DMAP(be64toh(*pde) & PG_FRAME); setpde: newpde = *firstpte; if ((newpde & ((PG_FRAME & L3_PAGE_MASK) | PG_A | PG_V)) != (PG_A | PG_V)) { CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx" " in pmap %p", va, pmap); goto fail; } if ((newpde & (PG_M | PG_RW)) == PG_RW) { /* * When PG_M is already clear, PG_RW can be cleared without * a TLB invalidation. */ if (!atomic_cmpset_long(firstpte, htobe64(newpde), htobe64((newpde | RPTE_EAA_R) & ~RPTE_EAA_W))) goto setpde; newpde &= ~RPTE_EAA_W; } /* * Examine each of the other PTEs in the specified PTP. Abort if this * PTE maps an unexpected 4KB physical page or does not have identical * characteristics to the first PTE. */ pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + L3_PAGE_SIZE - PAGE_SIZE; for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) { setpte: oldpte = be64toh(*pte); if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) { CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx" " in pmap %p", va, pmap); goto fail; } if ((oldpte & (PG_M | PG_RW)) == PG_RW) { /* * When PG_M is already clear, PG_RW can be cleared * without a TLB invalidation. */ if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~RPTE_EAA_W))) goto setpte; oldpte &= ~RPTE_EAA_W; CTR2(KTR_PMAP, "pmap_promote_l3e: protect for va %#lx" " in pmap %p", (oldpte & PG_FRAME & L3_PAGE_MASK) | (va & ~L3_PAGE_MASK), pmap); } if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) { CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx" " in pmap %p", va, pmap); goto fail; } pa -= PAGE_SIZE; } /* * Save the page table page in its current state until the PDE * mapping the superpage is demoted by pmap_demote_pde() or * destroyed by pmap_remove_pde(). */ mpte = PHYS_TO_VM_PAGE(be64toh(*pde) & PG_FRAME); KASSERT(mpte >= vm_page_array && mpte < &vm_page_array[vm_page_array_size], ("pmap_promote_l3e: page table page is out of range")); KASSERT(mpte->pindex == pmap_l3e_pindex(va), ("pmap_promote_l3e: page table page's pindex is wrong")); if (pmap_insert_pt_page(pmap, mpte)) { CTR2(KTR_PMAP, "pmap_promote_l3e: failure for va %#lx in pmap %p", va, pmap); goto fail; } /* * Promote the pv entries. */ if ((newpde & PG_MANAGED) != 0) pmap_pv_promote_l3e(pmap, va, newpde & PG_PS_FRAME, lockp); pte_store(pde, PG_PROMOTED | newpde); ptesync(); atomic_add_long(&pmap_l3e_promotions, 1); CTR2(KTR_PMAP, "pmap_promote_l3e: success for va %#lx" " in pmap %p", va, pmap); return (0); fail: atomic_add_long(&pmap_l3e_p_failures, 1); return (KERN_FAILURE); } #endif /* VM_NRESERVLEVEL > 0 */ int mmu_radix_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { struct rwlock *lock; pml3_entry_t *l3e; pt_entry_t *pte; pt_entry_t newpte, origpte; pv_entry_t pv; vm_paddr_t opa, pa; vm_page_t mpte, om; int rv, retrycount; boolean_t nosleep, invalidate_all, invalidate_page; va = trunc_page(va); retrycount = 0; invalidate_page = invalidate_all = false; CTR6(KTR_PMAP, "pmap_enter(%p, %#lx, %p, %#x, %#x, %d)", pmap, va, m, prot, flags, psind); KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig")); KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva || va >= kmi.clean_eva, ("pmap_enter: managed mapping within the clean submap")); if ((m->oflags & VPO_UNMANAGED) == 0) VM_PAGE_OBJECT_BUSY_ASSERT(m); KASSERT((flags & PMAP_ENTER_RESERVED) == 0, ("pmap_enter: flags %u has reserved bits set", flags)); pa = VM_PAGE_TO_PHYS(m); newpte = (pt_entry_t)(pa | PG_A | PG_V | RPTE_LEAF); if ((flags & VM_PROT_WRITE) != 0) newpte |= PG_M; if ((flags & VM_PROT_READ) != 0) newpte |= PG_A; if (prot & VM_PROT_READ) newpte |= RPTE_EAA_R; if ((prot & VM_PROT_WRITE) != 0) newpte |= RPTE_EAA_W; KASSERT((newpte & (PG_M | PG_RW)) != PG_M, ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't")); if (prot & VM_PROT_EXECUTE) newpte |= PG_X; if ((flags & PMAP_ENTER_WIRED) != 0) newpte |= PG_W; if (va >= DMAP_MIN_ADDRESS) newpte |= RPTE_EAA_P; newpte |= pmap_cache_bits(m->md.mdpg_cache_attrs); /* * Set modified bit gratuitously for writeable mappings if * the page is unmanaged. We do not want to take a fault * to do the dirty bit accounting for these mappings. */ if ((m->oflags & VPO_UNMANAGED) != 0) { if ((newpte & PG_RW) != 0) newpte |= PG_M; } else newpte |= PG_MANAGED; lock = NULL; PMAP_LOCK(pmap); if (psind == 1) { /* Assert the required virtual and physical alignment. */ KASSERT((va & L3_PAGE_MASK) == 0, ("pmap_enter: va unaligned")); KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind")); rv = pmap_enter_l3e(pmap, va, newpte | RPTE_LEAF, flags, m, &lock); goto out; } mpte = NULL; /* * In the case that a page table page is not * resident, we are creating it here. */ retry: l3e = pmap_pml3e(pmap, va); if (l3e != NULL && (be64toh(*l3e) & PG_V) != 0 && ((be64toh(*l3e) & RPTE_LEAF) == 0 || pmap_demote_l3e_locked(pmap, l3e, va, &lock))) { pte = pmap_l3e_to_pte(l3e, va); if (va < VM_MAXUSER_ADDRESS && mpte == NULL) { mpte = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME); mpte->ref_count++; } } else if (va < VM_MAXUSER_ADDRESS) { /* * Here if the pte page isn't mapped, or if it has been * deallocated. */ nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0; mpte = _pmap_allocpte(pmap, pmap_l3e_pindex(va), nosleep ? NULL : &lock); if (mpte == NULL && nosleep) { rv = KERN_RESOURCE_SHORTAGE; goto out; } if (__predict_false(retrycount++ == 6)) panic("too many retries"); invalidate_all = true; goto retry; } else panic("pmap_enter: invalid page directory va=%#lx", va); origpte = be64toh(*pte); pv = NULL; /* * Is the specified virtual address already mapped? */ if ((origpte & PG_V) != 0) { #ifdef INVARIANTS if (VERBOSE_PMAP || pmap_logging) { printf("cow fault pmap_enter(%p, %#lx, %p, %#x, %x, %d) --" " asid=%lu curpid=%d name=%s origpte0x%lx\n", pmap, va, m, prot, flags, psind, pmap->pm_pid, curproc->p_pid, curproc->p_comm, origpte); pmap_pte_walk(pmap->pm_pml1, va); } #endif /* * Wiring change, just update stats. We don't worry about * wiring PT pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is wired, * the PT page will be also. */ if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0) pmap->pm_stats.wired_count++; else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0) pmap->pm_stats.wired_count--; /* * Remove the extra PT page reference. */ if (mpte != NULL) { mpte->ref_count--; KASSERT(mpte->ref_count > 0, ("pmap_enter: missing reference to page table page," " va: 0x%lx", va)); } /* * Has the physical page changed? */ opa = origpte & PG_FRAME; if (opa == pa) { /* * No, might be a protection or wiring change. */ if ((origpte & PG_MANAGED) != 0 && (newpte & PG_RW) != 0) vm_page_aflag_set(m, PGA_WRITEABLE); if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) { if ((newpte & (PG_A|PG_M)) != (origpte & (PG_A|PG_M))) { if (!atomic_cmpset_long(pte, htobe64(origpte), htobe64(newpte))) goto retry; if ((newpte & PG_M) != (origpte & PG_M)) vm_page_dirty(m); if ((newpte & PG_A) != (origpte & PG_A)) vm_page_aflag_set(m, PGA_REFERENCED); ptesync(); } else invalidate_all = true; if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0) goto unchanged; } goto validate; } /* * The physical page has changed. Temporarily invalidate * the mapping. This ensures that all threads sharing the * pmap keep a consistent view of the mapping, which is * necessary for the correct handling of COW faults. It * also permits reuse of the old mapping's PV entry, * avoiding an allocation. * * For consistency, handle unmanaged mappings the same way. */ origpte = be64toh(pte_load_clear(pte)); KASSERT((origpte & PG_FRAME) == opa, ("pmap_enter: unexpected pa update for %#lx", va)); if ((origpte & PG_MANAGED) != 0) { om = PHYS_TO_VM_PAGE(opa); /* * The pmap lock is sufficient to synchronize with * concurrent calls to pmap_page_test_mappings() and * pmap_ts_referenced(). */ if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) vm_page_dirty(om); if ((origpte & PG_A) != 0) vm_page_aflag_set(om, PGA_REFERENCED); CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa); pv = pmap_pvh_remove(&om->md, pmap, va); if ((newpte & PG_MANAGED) == 0) free_pv_entry(pmap, pv); #ifdef INVARIANTS else if (origpte & PG_MANAGED) { if (pv == NULL) { pmap_page_print_mappings(om); MPASS(pv != NULL); } } #endif if ((om->a.flags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&om->md.pv_list) && ((om->flags & PG_FICTITIOUS) != 0 || TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list))) vm_page_aflag_clear(om, PGA_WRITEABLE); } if ((origpte & PG_A) != 0) invalidate_page = true; origpte = 0; } else { if (pmap != kernel_pmap) { #ifdef INVARIANTS if (VERBOSE_PMAP || pmap_logging) printf("pmap_enter(%p, %#lx, %p, %#x, %x, %d) -- asid=%lu curpid=%d name=%s\n", pmap, va, m, prot, flags, psind, pmap->pm_pid, curproc->p_pid, curproc->p_comm); #endif } /* * Increment the counters. */ if ((newpte & PG_W) != 0) pmap->pm_stats.wired_count++; pmap_resident_count_inc(pmap, 1); } /* * Enter on the PV list if part of our managed memory. */ if ((newpte & PG_MANAGED) != 0) { if (pv == NULL) { pv = get_pv_entry(pmap, &lock); pv->pv_va = va; } #ifdef VERBOSE_PV else printf("reassigning pv: %p to pmap: %p\n", pv, pmap); #endif CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; if ((newpte & PG_RW) != 0) vm_page_aflag_set(m, PGA_WRITEABLE); } /* * Update the PTE. */ if ((origpte & PG_V) != 0) { validate: origpte = be64toh(pte_load_store(pte, htobe64(newpte))); KASSERT((origpte & PG_FRAME) == pa, ("pmap_enter: unexpected pa update for %#lx", va)); if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) { if ((origpte & PG_MANAGED) != 0) vm_page_dirty(m); invalidate_page = true; /* * Although the PTE may still have PG_RW set, TLB * invalidation may nonetheless be required because * the PTE no longer has PG_M set. */ } else if ((origpte & PG_X) != 0 || (newpte & PG_X) == 0) { /* * Removing capabilities requires invalidation on POWER */ invalidate_page = true; goto unchanged; } if ((origpte & PG_A) != 0) invalidate_page = true; } else { pte_store(pte, newpte); ptesync(); } unchanged: #if VM_NRESERVLEVEL > 0 /* * If both the page table page and the reservation are fully * populated, then attempt promotion. */ if ((mpte == NULL || mpte->ref_count == NPTEPG) && mmu_radix_ps_enabled(pmap) && (m->flags & PG_FICTITIOUS) == 0 && vm_reserv_level_iffullpop(m) == 0 && pmap_promote_l3e(pmap, l3e, va, &lock) == 0) invalidate_all = true; #endif if (invalidate_all) pmap_invalidate_all(pmap); else if (invalidate_page) pmap_invalidate_page(pmap, va); rv = KERN_SUCCESS; out: if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); return (rv); } /* * Tries to create a read- and/or execute-only 2MB page mapping. Returns true * if successful. Returns false if (1) a page table page cannot be allocated * without sleeping, (2) a mapping already exists at the specified virtual * address, or (3) a PV entry cannot be allocated without reclaiming another * PV entry. */ static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, struct rwlock **lockp) { pml3_entry_t newpde; PMAP_LOCK_ASSERT(pmap, MA_OWNED); newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs) | RPTE_LEAF | PG_V; if ((m->oflags & VPO_UNMANAGED) == 0) newpde |= PG_MANAGED; if (prot & VM_PROT_EXECUTE) newpde |= PG_X; if (prot & VM_PROT_READ) newpde |= RPTE_EAA_R; if (va >= DMAP_MIN_ADDRESS) newpde |= RPTE_EAA_P; return (pmap_enter_l3e(pmap, va, newpde, PMAP_ENTER_NOSLEEP | PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) == KERN_SUCCESS); } /* * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE * otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and * a mapping already exists at the specified virtual address. Returns * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table * page allocation failed. Returns KERN_RESOURCE_SHORTAGE if * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed. * * The parameter "m" is only used when creating a managed, writeable mapping. */ static int pmap_enter_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t newpde, u_int flags, vm_page_t m, struct rwlock **lockp) { struct spglist free; pml3_entry_t oldl3e, *l3e; vm_page_t mt, pdpg; KASSERT((newpde & (PG_M | PG_RW)) != PG_RW, ("pmap_enter_pde: newpde is missing PG_M")); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((pdpg = pmap_allocl3e(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) { CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx" " in pmap %p", va, pmap); return (KERN_RESOURCE_SHORTAGE); } l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg)); l3e = &l3e[pmap_pml3e_index(va)]; oldl3e = be64toh(*l3e); if ((oldl3e & PG_V) != 0) { KASSERT(pdpg->ref_count > 1, ("pmap_enter_pde: pdpg's wire count is too low")); if ((flags & PMAP_ENTER_NOREPLACE) != 0) { pdpg->ref_count--; CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx" " in pmap %p", va, pmap); return (KERN_FAILURE); } /* Break the existing mapping(s). */ SLIST_INIT(&free); if ((oldl3e & RPTE_LEAF) != 0) { /* * The reference to the PD page that was acquired by * pmap_allocl3e() ensures that it won't be freed. * However, if the PDE resulted from a promotion, then * a reserved PT page could be freed. */ (void)pmap_remove_l3e(pmap, l3e, va, &free, lockp); } else { if (pmap_remove_ptes(pmap, va, va + L3_PAGE_SIZE, l3e, &free, lockp)) pmap_invalidate_all(pmap); } vm_page_free_pages_toq(&free, true); if (va >= VM_MAXUSER_ADDRESS) { mt = PHYS_TO_VM_PAGE(be64toh(*l3e) & PG_FRAME); if (pmap_insert_pt_page(pmap, mt)) { /* * XXX Currently, this can't happen because * we do not perform pmap_enter(psind == 1) * on the kernel pmap. */ panic("pmap_enter_pde: trie insert failed"); } } else KASSERT(be64toh(*l3e) == 0, ("pmap_enter_pde: non-zero pde %p", l3e)); } if ((newpde & PG_MANAGED) != 0) { /* * Abort this mapping if its PV entry could not be created. */ if (!pmap_pv_insert_l3e(pmap, va, newpde, flags, lockp)) { SLIST_INIT(&free); if (pmap_unwire_ptp(pmap, va, pdpg, &free)) { /* * Although "va" is not mapped, paging- * structure caches could nonetheless have * entries that refer to the freed page table * pages. Invalidate those entries. */ pmap_invalidate_page(pmap, va); vm_page_free_pages_toq(&free, true); } CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx" " in pmap %p", va, pmap); return (KERN_RESOURCE_SHORTAGE); } if ((newpde & PG_RW) != 0) { for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++) vm_page_aflag_set(mt, PGA_WRITEABLE); } } /* * Increment counters. */ if ((newpde & PG_W) != 0) pmap->pm_stats.wired_count += L3_PAGE_SIZE / PAGE_SIZE; pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE); /* * Map the superpage. (This is not a promoted mapping; there will not * be any lingering 4KB page mappings in the TLB.) */ pte_store(l3e, newpde); atomic_add_long(&pmap_l3e_mappings, 1); CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx" " in pmap %p", va, pmap); return (KERN_SUCCESS); } void mmu_radix_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { struct rwlock *lock; vm_offset_t va; vm_page_t m, mpte; vm_pindex_t diff, psize; bool invalidate; VM_OBJECT_ASSERT_LOCKED(m_start->object); CTR6(KTR_PMAP, "%s(%p, %#x, %#x, %p, %#x)", __func__, pmap, start, end, m_start, prot); invalidate = false; psize = atop(end - start); mpte = NULL; m = m_start; lock = NULL; PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { va = start + ptoa(diff); if ((va & L3_PAGE_MASK) == 0 && va + L3_PAGE_SIZE <= end && m->psind == 1 && mmu_radix_ps_enabled(pmap) && pmap_enter_2mpage(pmap, va, m, prot, &lock)) m = &m[L3_PAGE_SIZE / PAGE_SIZE - 1]; else mpte = mmu_radix_enter_quick_locked(pmap, va, m, prot, mpte, &lock, &invalidate); m = TAILQ_NEXT(m, listq); } ptesync(); if (lock != NULL) rw_wunlock(lock); if (invalidate) pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); } static vm_page_t mmu_radix_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp, bool *invalidate) { struct spglist free; pt_entry_t *pte; vm_paddr_t pa; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0, ("mmu_radix_enter_quick_locked: managed mapping within the clean submap")); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * In the case that a page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { vm_pindex_t ptepindex; pml3_entry_t *ptepa; /* * Calculate pagetable page index */ ptepindex = pmap_l3e_pindex(va); if (mpte && (mpte->pindex == ptepindex)) { mpte->ref_count++; } else { /* * Get the page directory entry */ ptepa = pmap_pml3e(pmap, va); /* * If the page table page is mapped, we just increment * the hold count, and activate it. Otherwise, we * attempt to allocate a page table page. If this * attempt fails, we don't retry. Instead, we give up. */ if (ptepa && (be64toh(*ptepa) & PG_V) != 0) { if (be64toh(*ptepa) & RPTE_LEAF) return (NULL); mpte = PHYS_TO_VM_PAGE(be64toh(*ptepa) & PG_FRAME); mpte->ref_count++; } else { /* * Pass NULL instead of the PV list lock * pointer, because we don't intend to sleep. */ mpte = _pmap_allocpte(pmap, ptepindex, NULL); if (mpte == NULL) return (mpte); } } pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte)); pte = &pte[pmap_pte_index(va)]; } else { mpte = NULL; pte = pmap_pte(pmap, va); } if (be64toh(*pte)) { if (mpte != NULL) { mpte->ref_count--; mpte = NULL; } return (mpte); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0 && !pmap_try_insert_pv_entry(pmap, va, m, lockp)) { if (mpte != NULL) { SLIST_INIT(&free); if (pmap_unwire_ptp(pmap, va, mpte, &free)) { /* * Although "va" is not mapped, paging- * structure caches could nonetheless have * entries that refer to the freed page table * pages. Invalidate those entries. */ *invalidate = true; vm_page_free_pages_toq(&free, true); } mpte = NULL; } return (mpte); } /* * Increment counters */ pmap_resident_count_inc(pmap, 1); pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.mdpg_cache_attrs); if (prot & VM_PROT_EXECUTE) pa |= PG_X; else pa |= RPTE_EAA_R; if ((m->oflags & VPO_UNMANAGED) == 0) pa |= PG_MANAGED; pte_store(pte, pa); return (mpte); } void mmu_radix_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { struct rwlock *lock; bool invalidate; lock = NULL; invalidate = false; PMAP_LOCK(pmap); mmu_radix_enter_quick_locked(pmap, va, m, prot, NULL, &lock, &invalidate); ptesync(); if (lock != NULL) rw_wunlock(lock); if (invalidate) pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); } vm_paddr_t mmu_radix_extract(pmap_t pmap, vm_offset_t va) { pml3_entry_t *l3e; pt_entry_t *pte; vm_paddr_t pa; l3e = pmap_pml3e(pmap, va); if (__predict_false(l3e == NULL)) return (0); if (be64toh(*l3e) & RPTE_LEAF) { pa = (be64toh(*l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK); pa |= (va & L3_PAGE_MASK); } else { /* * Beware of a concurrent promotion that changes the * PDE at this point! For example, vtopte() must not * be used to access the PTE because it would use the * new PDE. It is, however, safe to use the old PDE * because the page table page is preserved by the * promotion. */ pte = pmap_l3e_to_pte(l3e, va); if (__predict_false(pte == NULL)) return (0); pa = be64toh(*pte); pa = (pa & PG_FRAME) | (va & PAGE_MASK); pa |= (va & PAGE_MASK); } return (pa); } vm_page_t mmu_radix_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pml3_entry_t l3e, *l3ep; pt_entry_t pte; vm_paddr_t pa; vm_page_t m; pa = 0; m = NULL; CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, va, prot); PMAP_LOCK(pmap); l3ep = pmap_pml3e(pmap, va); if (l3ep != NULL && (l3e = be64toh(*l3ep))) { if (l3e & RPTE_LEAF) { if ((l3e & PG_RW) || (prot & VM_PROT_WRITE) == 0) m = PHYS_TO_VM_PAGE((l3e & PG_PS_FRAME) | (va & L3_PAGE_MASK)); } else { /* Native endian PTE, do not pass to pmap functions */ pte = be64toh(*pmap_l3e_to_pte(l3ep, va)); if ((pte & PG_V) && ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) m = PHYS_TO_VM_PAGE(pte & PG_FRAME); } if (m != NULL && !vm_page_wire_mapped(m)) m = NULL; } PMAP_UNLOCK(pmap); return (m); } static void mmu_radix_growkernel(vm_offset_t addr) { vm_paddr_t paddr; vm_page_t nkpg; pml3_entry_t *l3e; pml2_entry_t *l2e; CTR2(KTR_PMAP, "%s(%#x)", __func__, addr); if (VM_MIN_KERNEL_ADDRESS < addr && addr < (VM_MIN_KERNEL_ADDRESS + nkpt * L3_PAGE_SIZE)) return; addr = roundup2(addr, L3_PAGE_SIZE); if (addr - 1 >= vm_map_max(kernel_map)) addr = vm_map_max(kernel_map); while (kernel_vm_end < addr) { l2e = pmap_pml2e(kernel_pmap, kernel_vm_end); if ((be64toh(*l2e) & PG_V) == 0) { /* We need a new PDP entry */ nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_PAGE_SIZE_SHIFT, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (nkpg == NULL) panic("pmap_growkernel: no memory to grow kernel"); if ((nkpg->flags & PG_ZERO) == 0) mmu_radix_zero_page(nkpg); paddr = VM_PAGE_TO_PHYS(nkpg); pde_store(l2e, paddr); continue; /* try again */ } l3e = pmap_l2e_to_l3e(l2e, kernel_vm_end); if ((be64toh(*l3e) & PG_V) != 0) { kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK; if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) { kernel_vm_end = vm_map_max(kernel_map); break; } continue; } nkpg = vm_page_alloc(NULL, pmap_l3e_pindex(kernel_vm_end), VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (nkpg == NULL) panic("pmap_growkernel: no memory to grow kernel"); if ((nkpg->flags & PG_ZERO) == 0) mmu_radix_zero_page(nkpg); paddr = VM_PAGE_TO_PHYS(nkpg); pde_store(l3e, paddr); kernel_vm_end = (kernel_vm_end + L3_PAGE_SIZE) & ~L3_PAGE_MASK; if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) { kernel_vm_end = vm_map_max(kernel_map); break; } } ptesync(); } static MALLOC_DEFINE(M_RADIX_PGD, "radix_pgd", "radix page table root directory"); static uma_zone_t zone_radix_pgd; static int radix_pgd_import(void *arg __unused, void **store, int count, int domain __unused, int flags) { for (int i = 0; i < count; i++) { vm_page_t m = vm_page_alloc_contig(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK, RADIX_PGD_SIZE/PAGE_SIZE, 0, (vm_paddr_t)-1, RADIX_PGD_SIZE, L1_PAGE_SIZE, VM_MEMATTR_DEFAULT); /* XXX zero on alloc here so we don't have to later */ store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); } return (count); } static void radix_pgd_release(void *arg __unused, void **store, int count) { vm_page_t m; struct spglist free; int page_count; SLIST_INIT(&free); page_count = RADIX_PGD_SIZE/PAGE_SIZE; for (int i = 0; i < count; i++) { /* * XXX selectively remove dmap and KVA entries so we don't * need to bzero */ m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); for (int j = page_count-1; j >= 0; j--) { vm_page_unwire_noq(&m[j]); SLIST_INSERT_HEAD(&free, &m[j], plinks.s.ss); } vm_page_free_pages_toq(&free, false); } } static void mmu_radix_init() { vm_page_t mpte; vm_size_t s; int error, i, pv_npg; /* XXX is this really needed for POWER? */ /* L1TF, reserve page @0 unconditionally */ vm_page_blacklist_add(0, bootverbose); zone_radix_pgd = uma_zcache_create("radix_pgd_cache", RADIX_PGD_SIZE, NULL, NULL, #ifdef INVARIANTS trash_init, trash_fini, #else NULL, NULL, #endif radix_pgd_import, radix_pgd_release, NULL, UMA_ZONE_NOBUCKET); /* * Initialize the vm page array entries for the kernel pmap's * page table pages. */ PMAP_LOCK(kernel_pmap); for (i = 0; i < nkpt; i++) { mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT)); KASSERT(mpte >= vm_page_array && mpte < &vm_page_array[vm_page_array_size], ("pmap_init: page table page is out of range size: %lu", vm_page_array_size)); mpte->pindex = pmap_l3e_pindex(VM_MIN_KERNEL_ADDRESS) + i; mpte->phys_addr = KPTphys + (i << PAGE_SHIFT); MPASS(PHYS_TO_VM_PAGE(mpte->phys_addr) == mpte); //pmap_insert_pt_page(kernel_pmap, mpte); mpte->ref_count = 1; } PMAP_UNLOCK(kernel_pmap); vm_wire_add(nkpt); CTR1(KTR_PMAP, "%s()", __func__); TAILQ_INIT(&pv_dummy.pv_list); /* * Are large page mappings enabled? */ TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled); if (superpages_enabled) { KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0, ("pmap_init: can't assign to pagesizes[1]")); pagesizes[1] = L3_PAGE_SIZE; } /* * Initialize the pv chunk list mutex. */ mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF); /* * Initialize the pool of pv list locks. */ for (i = 0; i < NPV_LIST_LOCKS; i++) rw_init(&pv_list_locks[i], "pmap pv list"); /* * Calculate the size of the pv head table for superpages. */ pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L3_PAGE_SIZE); /* * Allocate memory for the pv head table for superpages. */ s = (vm_size_t)(pv_npg * sizeof(struct md_page)); s = round_page(s); pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO); for (i = 0; i < pv_npg; i++) TAILQ_INIT(&pv_table[i].pv_list); TAILQ_INIT(&pv_dummy.pv_list); pmap_initialized = 1; mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN); error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK, (vmem_addr_t *)&qframe); if (error != 0) panic("qframe allocation failed"); asid_arena = vmem_create("ASID", isa3_base_pid + 1, (1<md.pv_list, pv_link) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va); mask = 0; if (modified) mask |= PG_RW | PG_M; if (accessed) mask |= PG_V | PG_A; rv = (be64toh(*pte) & mask) == mask; PMAP_UNLOCK(pmap); if (rv) goto out; } if ((m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen || pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pml3e(pmap, pv->pv_va); mask = 0; if (modified) mask |= PG_RW | PG_M; if (accessed) mask |= PG_V | PG_A; rv = (be64toh(*pte) & mask) == mask; PMAP_UNLOCK(pmap); if (rv) goto out; } } out: rw_runlock(lock); return (rv); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t mmu_radix_is_modified(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_modified: page %p is not managed", m)); CTR2(KTR_PMAP, "%s(%p)", __func__, m); /* * If the page is not busied then this check is racy. */ if (!pmap_page_is_write_mapped(m)) return (FALSE); return (pmap_page_test_mappings(m, FALSE, TRUE)); } boolean_t mmu_radix_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pml3_entry_t *l3e; pt_entry_t *pte; boolean_t rv; CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr); rv = FALSE; PMAP_LOCK(pmap); l3e = pmap_pml3e(pmap, addr); if (l3e != NULL && (be64toh(*l3e) & (RPTE_LEAF | PG_V)) == PG_V) { pte = pmap_l3e_to_pte(l3e, addr); rv = (be64toh(*pte) & PG_V) == 0; } PMAP_UNLOCK(pmap); return (rv); } boolean_t mmu_radix_is_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_referenced: page %p is not managed", m)); CTR2(KTR_PMAP, "%s(%p)", __func__, m); return (pmap_page_test_mappings(m, TRUE, FALSE)); } /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * As an optimization, update the page's dirty field if a modified bit is * found while counting reference bits. This opportunistic update can be * performed at low cost and can eliminate the need for some future calls * to pmap_is_modified(). However, since this function stops after * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some * dirty pages. Those dirty pages will only be detected by a future call * to pmap_is_modified(). * * A DI block is not needed within this function, because * invalidations are performed before the PV list lock is * released. */ boolean_t mmu_radix_ts_referenced(vm_page_t m) { struct md_page *pvh; pv_entry_t pv, pvf; pmap_t pmap; struct rwlock *lock; pml3_entry_t oldl3e, *l3e; pt_entry_t *pte; vm_paddr_t pa; int cleared, md_gen, not_cleared, pvh_gen; struct spglist free; CTR2(KTR_PMAP, "%s(%p)", __func__, m); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_ts_referenced: page %p is not managed", m)); SLIST_INIT(&free); cleared = 0; pa = VM_PAGE_TO_PHYS(m); lock = PHYS_TO_PV_LIST_LOCK(pa); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa); rw_wlock(lock); retry: not_cleared = 0; if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL) goto small_mappings; pv = pvf; do { if (pvf == NULL) pvf = pv; pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto retry; } } l3e = pmap_pml3e(pmap, pv->pv_va); oldl3e = be64toh(*l3e); if ((oldl3e & (PG_M | PG_RW)) == (PG_M | PG_RW)) { /* * Although "oldpde" is mapping a 2MB page, because * this function is called at a 4KB page granularity, * we only update the 4KB page under test. */ vm_page_dirty(m); } if ((oldl3e & PG_A) != 0) { /* * Since this reference bit is shared by 512 4KB * pages, it should not be cleared every time it is * tested. Apply a simple "hash" function on the * physical page number, the virtual superpage number, * and the pmap address to select one 4KB page out of * the 512 on which testing the reference bit will * result in clearing that reference bit. This * function is designed to avoid the selection of the * same 4KB page for every 2MB page mapping. * * On demotion, a mapping that hasn't been referenced * is simply destroyed. To avoid the possibility of a * subsequent page fault on a demoted wired mapping, * always leave its reference bit set. Moreover, * since the superpage is wired, the current state of * its reference bit won't affect page replacement. */ if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L3_PAGE_SIZE_SHIFT) ^ (uintptr_t)pmap) & (NPTEPG - 1)) == 0 && (oldl3e & PG_W) == 0) { atomic_clear_long(l3e, htobe64(PG_A)); pmap_invalidate_page(pmap, pv->pv_va); cleared++; KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m), ("inconsistent pv lock %p %p for page %p", lock, VM_PAGE_TO_PV_LIST_LOCK(m), m)); } else not_cleared++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_link); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link); pvh->pv_gen++; } if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX) goto out; } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf); small_mappings: if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL) goto out; pv = pvf; do { if (pvf == NULL) pvf = pv; pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto retry; } } l3e = pmap_pml3e(pmap, pv->pv_va); KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_ts_referenced: found a 2mpage in page %p's pv list", m)); pte = pmap_l3e_to_pte(l3e, pv->pv_va); if ((be64toh(*pte) & (PG_M | PG_RW)) == (PG_M | PG_RW)) vm_page_dirty(m); if ((be64toh(*pte) & PG_A) != 0) { atomic_clear_long(pte, htobe64(PG_A)); pmap_invalidate_page(pmap, pv->pv_va); cleared++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (pv != NULL && TAILQ_NEXT(pv, pv_link) != NULL) { TAILQ_REMOVE(&m->md.pv_list, pv, pv_link); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; } } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared + not_cleared < PMAP_TS_REFERENCED_MAX); out: rw_wunlock(lock); vm_page_free_pages_toq(&free, true); return (cleared + not_cleared); } static vm_offset_t mmu_radix_map(vm_offset_t *virt __unused, vm_paddr_t start, vm_paddr_t end, int prot __unused) { CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, virt, start, end, prot); return (PHYS_TO_DMAP(start)); } void mmu_radix_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { pml3_entry_t *l3e; vm_paddr_t pa, ptepa; vm_page_t p, pdpg; vm_memattr_t ma; CTR6(KTR_PMAP, "%s(%p, %#x, %p, %u, %#x)", __func__, pmap, addr, object, pindex, size); VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("pmap_object_init_pt: non-device object")); /* NB: size can be logically ored with addr here */ if ((addr & L3_PAGE_MASK) == 0 && (size & L3_PAGE_MASK) == 0) { if (!mmu_radix_ps_enabled(pmap)) return; if (!vm_object_populate(object, pindex, pindex + atop(size))) return; p = vm_page_lookup(object, pindex); KASSERT(p->valid == VM_PAGE_BITS_ALL, ("pmap_object_init_pt: invalid page %p", p)); ma = p->md.mdpg_cache_attrs; /* * Abort the mapping if the first page is not physically * aligned to a 2MB page boundary. */ ptepa = VM_PAGE_TO_PHYS(p); if (ptepa & L3_PAGE_MASK) return; /* * Skip the first page. Abort the mapping if the rest of * the pages are not physically contiguous or have differing * memory attributes. */ p = TAILQ_NEXT(p, listq); for (pa = ptepa + PAGE_SIZE; pa < ptepa + size; pa += PAGE_SIZE) { KASSERT(p->valid == VM_PAGE_BITS_ALL, ("pmap_object_init_pt: invalid page %p", p)); if (pa != VM_PAGE_TO_PHYS(p) || ma != p->md.mdpg_cache_attrs) return; p = TAILQ_NEXT(p, listq); } PMAP_LOCK(pmap); for (pa = ptepa | pmap_cache_bits(ma); pa < ptepa + size; pa += L3_PAGE_SIZE) { pdpg = pmap_allocl3e(pmap, addr, NULL); if (pdpg == NULL) { /* * The creation of mappings below is only an * optimization. If a page directory page * cannot be allocated without blocking, * continue on to the next mapping rather than * blocking. */ addr += L3_PAGE_SIZE; continue; } l3e = (pml3_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg)); l3e = &l3e[pmap_pml3e_index(addr)]; if ((be64toh(*l3e) & PG_V) == 0) { pa |= PG_M | PG_A | PG_RW; pte_store(l3e, pa); pmap_resident_count_inc(pmap, L3_PAGE_SIZE / PAGE_SIZE); atomic_add_long(&pmap_l3e_mappings, 1); } else { /* Continue on if the PDE is already valid. */ pdpg->ref_count--; KASSERT(pdpg->ref_count > 0, ("pmap_object_init_pt: missing reference " "to page directory page, va: 0x%lx", addr)); } addr += L3_PAGE_SIZE; } ptesync(); PMAP_UNLOCK(pmap); } } boolean_t mmu_radix_page_exists_quick(pmap_t pmap, vm_page_t m) { struct md_page *pvh; struct rwlock *lock; pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_page_exists_quick: page %p is not managed", m)); CTR3(KTR_PMAP, "%s(%p, %p)", __func__, pmap, m); rv = FALSE; lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } } rw_runlock(lock); return (rv); } void mmu_radix_page_init(vm_page_t m) { CTR2(KTR_PMAP, "%s(%p)", __func__, m); TAILQ_INIT(&m->md.pv_list); m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT; } int mmu_radix_page_wired_mappings(vm_page_t m) { struct rwlock *lock; struct md_page *pvh; pmap_t pmap; pt_entry_t *pte; pv_entry_t pv; int count, md_gen, pvh_gen; if ((m->oflags & VPO_UNMANAGED) != 0) return (0); CTR2(KTR_PMAP, "%s(%p)", __func__, m); lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); restart: count = 0; TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va); if ((be64toh(*pte) & PG_W) != 0) count++; PMAP_UNLOCK(pmap); } if ((m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_link) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen || pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pml3e(pmap, pv->pv_va); if ((be64toh(*pte) & PG_W) != 0) count++; PMAP_UNLOCK(pmap); } } rw_runlock(lock); return (count); } static void mmu_radix_update_proctab(int pid, pml1_entry_t l1pa) { isa3_proctab[pid].proctab0 = htobe64(RTS_SIZE | l1pa | RADIX_PGD_INDEX_SHIFT); } int mmu_radix_pinit(pmap_t pmap) { vmem_addr_t pid; vm_paddr_t l1pa; CTR2(KTR_PMAP, "%s(%p)", __func__, pmap); /* * allocate the page directory page */ pmap->pm_pml1 = uma_zalloc(zone_radix_pgd, M_WAITOK); for (int j = 0; j < RADIX_PGD_SIZE_SHIFT; j++) pagezero((vm_offset_t)pmap->pm_pml1 + j * PAGE_SIZE); pmap->pm_radix.rt_root = 0; TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); pmap->pm_flags = PMAP_PDE_SUPERPAGE; vmem_alloc(asid_arena, 1, M_FIRSTFIT|M_WAITOK, &pid); pmap->pm_pid = pid; l1pa = DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml1); mmu_radix_update_proctab(pid, l1pa); __asm __volatile("ptesync;isync" : : : "memory"); return (1); } /* * This routine is called if the desired page table page does not exist. * * If page table page allocation fails, this routine may sleep before * returning NULL. It sleeps only if a lock pointer was given. * * Note: If a page allocation fails at page table level two or three, * one or two pages may be held during the wait, only to be released * afterwards. This conservative approach is easily argued to avoid * race conditions. */ static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp) { vm_page_t m, pdppg, pdpg; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Allocate a page table page. */ if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) { if (lockp != NULL) { RELEASE_PV_LIST_LOCK(lockp); PMAP_UNLOCK(pmap); vm_wait(NULL); PMAP_LOCK(pmap); } /* * Indicate the need to retry. While waiting, the page table * page may have been allocated. */ return (NULL); } if ((m->flags & PG_ZERO) == 0) mmu_radix_zero_page(m); /* * Map the pagetable page into the process address space, if * it isn't already there. */ if (ptepindex >= (NUPDE + NUPDPE)) { pml1_entry_t *l1e; vm_pindex_t pml1index; /* Wire up a new PDPE page */ pml1index = ptepindex - (NUPDE + NUPDPE); l1e = &pmap->pm_pml1[pml1index]; pde_store(l1e, VM_PAGE_TO_PHYS(m)); } else if (ptepindex >= NUPDE) { vm_pindex_t pml1index; vm_pindex_t pdpindex; pml1_entry_t *l1e; pml2_entry_t *l2e; /* Wire up a new l2e page */ pdpindex = ptepindex - NUPDE; pml1index = pdpindex >> RPTE_SHIFT; l1e = &pmap->pm_pml1[pml1index]; if ((be64toh(*l1e) & PG_V) == 0) { /* Have to allocate a new pdp, recurse */ if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml1index, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { /* Add reference to l2e page */ pdppg = PHYS_TO_VM_PAGE(be64toh(*l1e) & PG_FRAME); pdppg->ref_count++; } l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME); /* Now find the pdp page */ l2e = &l2e[pdpindex & RPTE_MASK]; pde_store(l2e, VM_PAGE_TO_PHYS(m)); } else { vm_pindex_t pml1index; vm_pindex_t pdpindex; pml1_entry_t *l1e; pml2_entry_t *l2e; pml3_entry_t *l3e; /* Wire up a new PTE page */ pdpindex = ptepindex >> RPTE_SHIFT; pml1index = pdpindex >> RPTE_SHIFT; /* First, find the pdp and check that its valid. */ l1e = &pmap->pm_pml1[pml1index]; if ((be64toh(*l1e) & PG_V) == 0) { /* Have to allocate a new pd, recurse */ if (_pmap_allocpte(pmap, NUPDE + pdpindex, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME); l2e = &l2e[pdpindex & RPTE_MASK]; } else { l2e = (pml2_entry_t *)PHYS_TO_DMAP(be64toh(*l1e) & PG_FRAME); l2e = &l2e[pdpindex & RPTE_MASK]; if ((be64toh(*l2e) & PG_V) == 0) { /* Have to allocate a new pd, recurse */ if (_pmap_allocpte(pmap, NUPDE + pdpindex, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { /* Add reference to the pd page */ pdpg = PHYS_TO_VM_PAGE(be64toh(*l2e) & PG_FRAME); pdpg->ref_count++; } } l3e = (pml3_entry_t *)PHYS_TO_DMAP(be64toh(*l2e) & PG_FRAME); /* Now we know where the page directory page is */ l3e = &l3e[ptepindex & RPTE_MASK]; pde_store(l3e, VM_PAGE_TO_PHYS(m)); } pmap_resident_count_inc(pmap, 1); return (m); } static vm_page_t pmap_allocl3e(pmap_t pmap, vm_offset_t va, struct rwlock **lockp) { vm_pindex_t pdpindex, ptepindex; pml2_entry_t *pdpe; vm_page_t pdpg; retry: pdpe = pmap_pml2e(pmap, va); if (pdpe != NULL && (be64toh(*pdpe) & PG_V) != 0) { /* Add a reference to the pd page. */ pdpg = PHYS_TO_VM_PAGE(be64toh(*pdpe) & PG_FRAME); pdpg->ref_count++; } else { /* Allocate a pd page. */ ptepindex = pmap_l3e_pindex(va); pdpindex = ptepindex >> RPTE_SHIFT; pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp); if (pdpg == NULL && lockp != NULL) goto retry; } return (pdpg); } static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp) { vm_pindex_t ptepindex; pml3_entry_t *pd; vm_page_t m; /* * Calculate pagetable page index */ ptepindex = pmap_l3e_pindex(va); retry: /* * Get the page directory entry */ pd = pmap_pml3e(pmap, va); /* * This supports switching from a 2MB page to a * normal 4K page. */ if (pd != NULL && (be64toh(*pd) & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V)) { if (!pmap_demote_l3e_locked(pmap, pd, va, lockp)) { /* * Invalidation of the 2MB page mapping may have caused * the deallocation of the underlying PD page. */ pd = NULL; } } /* * If the page table page is mapped, we just increment the * hold count, and activate it. */ if (pd != NULL && (be64toh(*pd) & PG_V) != 0) { m = PHYS_TO_VM_PAGE(be64toh(*pd) & PG_FRAME); m->ref_count++; } else { /* * Here if the pte page isn't mapped, or if it has been * deallocated. */ m = _pmap_allocpte(pmap, ptepindex, lockp); if (m == NULL && lockp != NULL) goto retry; } return (m); } static void mmu_radix_pinit0(pmap_t pmap) { CTR2(KTR_PMAP, "%s(%p)", __func__, pmap); PMAP_LOCK_INIT(pmap); pmap->pm_pml1 = kernel_pmap->pm_pml1; pmap->pm_pid = kernel_pmap->pm_pid; pmap->pm_radix.rt_root = 0; TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); kernel_pmap->pm_flags = pmap->pm_flags = PMAP_PDE_SUPERPAGE; } /* * pmap_protect_l3e: do the things to protect a 2mpage in a process */ static boolean_t pmap_protect_l3e(pmap_t pmap, pt_entry_t *l3e, vm_offset_t sva, vm_prot_t prot) { pt_entry_t newpde, oldpde; vm_offset_t eva, va; vm_page_t m; boolean_t anychanged; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & L3_PAGE_MASK) == 0, ("pmap_protect_l3e: sva is not 2mpage aligned")); anychanged = FALSE; retry: oldpde = newpde = be64toh(*l3e); if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) == (PG_MANAGED | PG_M | PG_RW)) { eva = sva + L3_PAGE_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME); va < eva; va += PAGE_SIZE, m++) vm_page_dirty(m); } if ((prot & VM_PROT_WRITE) == 0) { newpde &= ~(PG_RW | PG_M); newpde |= RPTE_EAA_R; } if (prot & VM_PROT_EXECUTE) newpde |= PG_X; if (newpde != oldpde) { /* * As an optimization to future operations on this PDE, clear * PG_PROMOTED. The impending invalidation will remove any * lingering 4KB page mappings from the TLB. */ if (!atomic_cmpset_long(l3e, htobe64(oldpde), htobe64(newpde & ~PG_PROMOTED))) goto retry; anychanged = TRUE; } return (anychanged); } void mmu_radix_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { vm_offset_t va_next; pml1_entry_t *l1e; pml2_entry_t *l2e; pml3_entry_t ptpaddr, *l3e; pt_entry_t *pte; boolean_t anychanged; CTR5(KTR_PMAP, "%s(%p, %#x, %#x, %#x)", __func__, pmap, sva, eva, prot); KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot)); if (prot == VM_PROT_NONE) { mmu_radix_remove(pmap, sva, eva); return; } if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) == (VM_PROT_WRITE|VM_PROT_EXECUTE)) return; #ifdef INVARIANTS if (VERBOSE_PROTECT || pmap_logging) printf("pmap_protect(%p, %#lx, %#lx, %x) - asid: %lu\n", pmap, sva, eva, prot, pmap->pm_pid); #endif anychanged = FALSE; PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l1e = pmap_pml1e(pmap, sva); if ((be64toh(*l1e) & PG_V) == 0) { va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } l2e = pmap_l1e_to_l2e(l1e, sva); if ((be64toh(*l2e) & PG_V) == 0) { va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK; if (va_next < sva) va_next = eva; l3e = pmap_l2e_to_l3e(l2e, sva); ptpaddr = be64toh(*l3e); /* * Weed out invalid mappings. */ if (ptpaddr == 0) continue; /* * Check for large page. */ if ((ptpaddr & RPTE_LEAF) != 0) { /* * Are we protecting the entire large page? If not, * demote the mapping and fall through. */ if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) { if (pmap_protect_l3e(pmap, l3e, sva, prot)) anychanged = TRUE; continue; } else if (!pmap_demote_l3e(pmap, l3e, sva)) { /* * The large page mapping was destroyed. */ continue; } } if (va_next > eva) va_next = eva; for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++, sva += PAGE_SIZE) { pt_entry_t obits, pbits; vm_page_t m; retry: MPASS(pte == pmap_pte(pmap, sva)); obits = pbits = be64toh(*pte); if ((pbits & PG_V) == 0) continue; if ((prot & VM_PROT_WRITE) == 0) { if ((pbits & (PG_MANAGED | PG_M | PG_RW)) == (PG_MANAGED | PG_M | PG_RW)) { m = PHYS_TO_VM_PAGE(pbits & PG_FRAME); vm_page_dirty(m); } pbits &= ~(PG_RW | PG_M); pbits |= RPTE_EAA_R; } if (prot & VM_PROT_EXECUTE) pbits |= PG_X; if (pbits != obits) { if (!atomic_cmpset_long(pte, htobe64(obits), htobe64(pbits))) goto retry; if (obits & (PG_A|PG_M)) { anychanged = TRUE; #ifdef INVARIANTS if (VERBOSE_PROTECT || pmap_logging) printf("%#lx %#lx -> %#lx\n", sva, obits, pbits); #endif } } } } if (anychanged) pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); } void mmu_radix_qenter(vm_offset_t sva, vm_page_t *ma, int count) { CTR4(KTR_PMAP, "%s(%#x, %p, %d)", __func__, sva, ma, count); pt_entry_t oldpte, pa, *pte; vm_page_t m; uint64_t cache_bits, attr_bits; vm_offset_t va; oldpte = 0; attr_bits = RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A; va = sva; pte = kvtopte(va); while (va < sva + PAGE_SIZE * count) { if (__predict_false((va & L3_PAGE_MASK) == 0)) pte = kvtopte(va); MPASS(pte == pmap_pte(kernel_pmap, va)); /* * XXX there has to be a more efficient way than traversing * the page table every time - but go for correctness for * today */ m = *ma++; cache_bits = pmap_cache_bits(m->md.mdpg_cache_attrs); pa = VM_PAGE_TO_PHYS(m) | cache_bits | attr_bits; if (be64toh(*pte) != pa) { oldpte |= be64toh(*pte); pte_store(pte, pa); } va += PAGE_SIZE; pte++; } if (__predict_false((oldpte & RPTE_VALID) != 0)) pmap_invalidate_range(kernel_pmap, sva, sva + count * PAGE_SIZE); else ptesync(); } void mmu_radix_qremove(vm_offset_t sva, int count) { vm_offset_t va; pt_entry_t *pte; CTR3(KTR_PMAP, "%s(%#x, %d)", __func__, sva, count); KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode or dmap va %lx", sva)); va = sva; pte = kvtopte(va); while (va < sva + PAGE_SIZE * count) { if (__predict_false((va & L3_PAGE_MASK) == 0)) pte = kvtopte(va); pte_clear(pte); pte++; va += PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /*************************************************** * Page table page management routines..... ***************************************************/ /* * Schedule the specified unused page table page to be freed. Specifically, * add the page to the specified list of pages that will be released to the * physical memory manager after the TLB has been updated. */ static __inline void pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, boolean_t set_PG_ZERO) { if (set_PG_ZERO) m->flags |= PG_ZERO; else m->flags &= ~PG_ZERO; SLIST_INSERT_HEAD(free, m, plinks.s.ss); } /* * Inserts the specified page table page into the specified pmap's collection * of idle page table pages. Each of a pmap's page table pages is responsible * for mapping a distinct range of virtual addresses. The pmap's collection is * ordered by this virtual address range. */ static __inline int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); return (vm_radix_insert(&pmap->pm_radix, mpte)); } /* * Removes the page table page mapping the specified virtual address from the * specified pmap's collection of idle page table pages, and returns it. * Otherwise, returns NULL if there is no page table page corresponding to the * specified virtual address. */ static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); return (vm_radix_remove(&pmap->pm_radix, pmap_l3e_pindex(va))); } /* * Decrements a page table page's wire count, which is used to record the * number of valid page table entries within the page. If the wire count * drops to zero, then the page table page is unmapped. Returns TRUE if the * page table page was unmapped and FALSE otherwise. */ static inline boolean_t pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { --m->ref_count; if (m->ref_count == 0) { _pmap_unwire_ptp(pmap, va, m, free); return (TRUE); } else return (FALSE); } static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * unmap the page table page */ if (m->pindex >= (NUPDE + NUPDPE)) { /* PDP page */ pml1_entry_t *pml1; pml1 = pmap_pml1e(pmap, va); *pml1 = 0; } else if (m->pindex >= NUPDE) { /* PD page */ pml2_entry_t *l2e; l2e = pmap_pml2e(pmap, va); *l2e = 0; } else { /* PTE page */ pml3_entry_t *l3e; l3e = pmap_pml3e(pmap, va); *l3e = 0; } pmap_resident_count_dec(pmap, 1); if (m->pindex < NUPDE) { /* We just released a PT, unhold the matching PD */ vm_page_t pdpg; pdpg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml2e(pmap, va)) & PG_FRAME); pmap_unwire_ptp(pmap, va, pdpg, free); } if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) { /* We just released a PD, unhold the matching PDP */ vm_page_t pdppg; pdppg = PHYS_TO_VM_PAGE(be64toh(*pmap_pml1e(pmap, va)) & PG_FRAME); pmap_unwire_ptp(pmap, va, pdppg, free); } /* * Put page on a list so that it is released after * *ALL* TLB shootdown is done */ pmap_add_delayed_free_list(m, free, TRUE); } /* * After removing a page table entry, this routine is used to * conditionally free the page, and manage the hold/wire counts. */ static int pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pml3_entry_t ptepde, struct spglist *free) { vm_page_t mpte; if (va >= VM_MAXUSER_ADDRESS) return (0); KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0")); mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME); return (pmap_unwire_ptp(pmap, va, mpte, free)); } void mmu_radix_release(pmap_t pmap) { CTR2(KTR_PMAP, "%s(%p)", __func__, pmap); KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); KASSERT(vm_radix_is_empty(&pmap->pm_radix), ("pmap_release: pmap has reserved page table page(s)")); pmap_invalidate_all(pmap); isa3_proctab[pmap->pm_pid].proctab0 = 0; uma_zfree(zone_radix_pgd, pmap->pm_pml1); vmem_free(asid_arena, pmap->pm_pid, 1); } /* * Create the PV entry for a 2MB page mapping. Always returns true unless the * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns * false if the PV entry cannot be allocated without resorting to reclamation. */ static bool pmap_pv_insert_l3e(pmap_t pmap, vm_offset_t va, pml3_entry_t pde, u_int flags, struct rwlock **lockp) { struct md_page *pvh; pv_entry_t pv; vm_paddr_t pa; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Pass NULL instead of the lock pointer to disable reclamation. */ if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ? NULL : lockp)) == NULL) return (false); pv->pv_va = va; pa = pde & PG_PS_FRAME; CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_link); pvh->pv_gen++; return (true); } /* * Fills a page table page with mappings to consecutive physical pages. */ static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte) { pt_entry_t *pte; for (pte = firstpte; pte < firstpte + NPTEPG; pte++) { *pte = htobe64(newpte); newpte += PAGE_SIZE; } } static boolean_t pmap_demote_l3e(pmap_t pmap, pml3_entry_t *pde, vm_offset_t va) { struct rwlock *lock; boolean_t rv; lock = NULL; rv = pmap_demote_l3e_locked(pmap, pde, va, &lock); if (lock != NULL) rw_wunlock(lock); return (rv); } static boolean_t pmap_demote_l3e_locked(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va, struct rwlock **lockp) { pml3_entry_t oldpde; pt_entry_t *firstpte; vm_paddr_t mptepa; vm_page_t mpte; struct spglist free; vm_offset_t sva; PMAP_LOCK_ASSERT(pmap, MA_OWNED); oldpde = be64toh(*l3e); KASSERT((oldpde & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V), ("pmap_demote_l3e: oldpde is missing RPTE_LEAF and/or PG_V %lx", oldpde)); if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) == NULL) { KASSERT((oldpde & PG_W) == 0, ("pmap_demote_l3e: page table page for a wired mapping" " is missing")); /* * Invalidate the 2MB page mapping and return "failure" if the * mapping was never accessed or the allocation of the new * page table page fails. If the 2MB page mapping belongs to * the direct map region of the kernel's address space, then * the page allocation request specifies the highest possible * priority (VM_ALLOC_INTERRUPT). Otherwise, the priority is * normal. Page table pages are preallocated for every other * part of the kernel address space, so the direct map region * is the only part of the kernel address space that must be * handled here. */ if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL, pmap_l3e_pindex(va), (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { SLIST_INIT(&free); sva = trunc_2mpage(va); pmap_remove_l3e(pmap, l3e, sva, &free, lockp); pmap_invalidate_l3e_page(pmap, sva, oldpde); vm_page_free_pages_toq(&free, true); CTR2(KTR_PMAP, "pmap_demote_l3e: failure for va %#lx" " in pmap %p", va, pmap); return (FALSE); } if (va < VM_MAXUSER_ADDRESS) pmap_resident_count_inc(pmap, 1); } mptepa = VM_PAGE_TO_PHYS(mpte); firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa); KASSERT((oldpde & PG_A) != 0, ("pmap_demote_l3e: oldpde is missing PG_A")); KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW, ("pmap_demote_l3e: oldpde is missing PG_M")); /* * If the page table page is new, initialize it. */ if (mpte->ref_count == 1) { mpte->ref_count = NPTEPG; pmap_fill_ptp(firstpte, oldpde); } KASSERT((be64toh(*firstpte) & PG_FRAME) == (oldpde & PG_FRAME), ("pmap_demote_l3e: firstpte and newpte map different physical" " addresses")); /* * If the mapping has changed attributes, update the page table * entries. */ if ((be64toh(*firstpte) & PG_PTE_PROMOTE) != (oldpde & PG_PTE_PROMOTE)) pmap_fill_ptp(firstpte, oldpde); /* * The spare PV entries must be reserved prior to demoting the * mapping, that is, prior to changing the PDE. Otherwise, the state * of the PDE and the PV lists will be inconsistent, which can result * in reclaim_pv_chunk() attempting to remove a PV entry from the * wrong PV list and pmap_pv_demote_l3e() failing to find the expected * PV entry for the 2MB page mapping that is being demoted. */ if ((oldpde & PG_MANAGED) != 0) reserve_pv_entries(pmap, NPTEPG - 1, lockp); /* * Demote the mapping. This pmap is locked. The old PDE has * PG_A set. If the old PDE has PG_RW set, it also has PG_M * set. Thus, there is no danger of a race with another * processor changing the setting of PG_A and/or PG_M between * the read above and the store below. */ pde_store(l3e, mptepa); ptesync(); /* * Demote the PV entry. */ if ((oldpde & PG_MANAGED) != 0) pmap_pv_demote_l3e(pmap, va, oldpde & PG_PS_FRAME, lockp); atomic_add_long(&pmap_l3e_demotions, 1); CTR2(KTR_PMAP, "pmap_demote_l3e: success for va %#lx" " in pmap %p", va, pmap); return (TRUE); } /* * pmap_remove_kernel_pde: Remove a kernel superpage mapping. */ static void pmap_remove_kernel_l3e(pmap_t pmap, pml3_entry_t *l3e, vm_offset_t va) { vm_paddr_t mptepa; vm_page_t mpte; KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); mpte = pmap_remove_pt_page(pmap, va); if (mpte == NULL) panic("pmap_remove_kernel_pde: Missing pt page."); mptepa = VM_PAGE_TO_PHYS(mpte); /* * Initialize the page table page. */ pagezero(PHYS_TO_DMAP(mptepa)); /* * Demote the mapping. */ pde_store(l3e, mptepa); ptesync(); } /* * pmap_remove_l3e: do the things to unmap a superpage in a process */ static int pmap_remove_l3e(pmap_t pmap, pml3_entry_t *pdq, vm_offset_t sva, struct spglist *free, struct rwlock **lockp) { struct md_page *pvh; pml3_entry_t oldpde; vm_offset_t eva, va; vm_page_t m, mpte; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & L3_PAGE_MASK) == 0, ("pmap_remove_l3e: sva is not 2mpage aligned")); oldpde = be64toh(pte_load_clear(pdq)); if (oldpde & PG_W) pmap->pm_stats.wired_count -= (L3_PAGE_SIZE / PAGE_SIZE); pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE); if (oldpde & PG_MANAGED) { CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME); pvh = pa_to_pvh(oldpde & PG_PS_FRAME); pmap_pvh_free(pvh, pmap, sva); eva = sva + L3_PAGE_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME); va < eva; va += PAGE_SIZE, m++) { if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) vm_page_dirty(m); if (oldpde & PG_A) vm_page_aflag_set(m, PGA_REFERENCED); if (TAILQ_EMPTY(&m->md.pv_list) && TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } if (pmap == kernel_pmap) { pmap_remove_kernel_l3e(pmap, pdq, sva); } else { mpte = pmap_remove_pt_page(pmap, sva); if (mpte != NULL) { pmap_resident_count_dec(pmap, 1); KASSERT(mpte->ref_count == NPTEPG, ("pmap_remove_l3e: pte page wire count error")); mpte->ref_count = 0; pmap_add_delayed_free_list(mpte, free, FALSE); } } return (pmap_unuse_pt(pmap, sva, be64toh(*pmap_pml2e(pmap, sva)), free)); } /* * pmap_remove_pte: do the things to unmap a page in a process */ static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, pml3_entry_t ptepde, struct spglist *free, struct rwlock **lockp) { struct md_page *pvh; pt_entry_t oldpte; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); oldpte = be64toh(pte_load_clear(ptq)); if (oldpte & RPTE_WIRED) pmap->pm_stats.wired_count -= 1; pmap_resident_count_dec(pmap, 1); if (oldpte & RPTE_MANAGED) { m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME); if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) vm_page_dirty(m); if (oldpte & PG_A) vm_page_aflag_set(m, PGA_REFERENCED); CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); pmap_pvh_free(&m->md, pmap, va); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } return (pmap_unuse_pt(pmap, va, ptepde, free)); } /* * Remove a single page from a process address space */ static bool pmap_remove_page(pmap_t pmap, vm_offset_t va, pml3_entry_t *l3e, struct spglist *free) { struct rwlock *lock; pt_entry_t *pte; bool invalidate_all; PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((be64toh(*l3e) & RPTE_VALID) == 0) { return (false); } pte = pmap_l3e_to_pte(l3e, va); if ((be64toh(*pte) & RPTE_VALID) == 0) { return (false); } lock = NULL; invalidate_all = pmap_remove_pte(pmap, pte, va, be64toh(*l3e), free, &lock); if (lock != NULL) rw_wunlock(lock); if (!invalidate_all) pmap_invalidate_page(pmap, va); return (invalidate_all); } /* * Removes the specified range of addresses from the page table page. */ static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pml3_entry_t *l3e, struct spglist *free, struct rwlock **lockp) { pt_entry_t *pte; vm_offset_t va; bool anyvalid; PMAP_LOCK_ASSERT(pmap, MA_OWNED); anyvalid = false; va = eva; for (pte = pmap_l3e_to_pte(l3e, sva); sva != eva; pte++, sva += PAGE_SIZE) { MPASS(pte == pmap_pte(pmap, sva)); if (*pte == 0) { if (va != eva) { anyvalid = true; va = eva; } continue; } if (va == eva) va = sva; if (pmap_remove_pte(pmap, pte, sva, be64toh(*l3e), free, lockp)) { anyvalid = true; sva += PAGE_SIZE; break; } } if (anyvalid) pmap_invalidate_all(pmap); else if (va != eva) pmap_invalidate_range(pmap, va, sva); return (anyvalid); } void mmu_radix_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { struct rwlock *lock; vm_offset_t va_next; pml1_entry_t *l1e; pml2_entry_t *l2e; pml3_entry_t ptpaddr, *l3e; struct spglist free; bool anyvalid; CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva); /* * Perform an unsynchronized read. This is, however, safe. */ if (pmap->pm_stats.resident_count == 0) return; anyvalid = false; SLIST_INIT(&free); /* XXX something fishy here */ sva = (sva + PAGE_MASK) & ~PAGE_MASK; eva = (eva + PAGE_MASK) & ~PAGE_MASK; PMAP_LOCK(pmap); /* * special handling of removing one page. a very * common operation and easy to short circuit some * code. */ if (sva + PAGE_SIZE == eva) { l3e = pmap_pml3e(pmap, sva); if (l3e && (be64toh(*l3e) & RPTE_LEAF) == 0) { anyvalid = pmap_remove_page(pmap, sva, l3e, &free); goto out; } } lock = NULL; for (; sva < eva; sva = va_next) { if (pmap->pm_stats.resident_count == 0) break; l1e = pmap_pml1e(pmap, sva); if (l1e == NULL || (be64toh(*l1e) & PG_V) == 0) { va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } l2e = pmap_l1e_to_l2e(l1e, sva); if (l2e == NULL || (be64toh(*l2e) & PG_V) == 0) { va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } /* * Calculate index for next page table. */ va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK; if (va_next < sva) va_next = eva; l3e = pmap_l2e_to_l3e(l2e, sva); ptpaddr = be64toh(*l3e); /* * Weed out invalid mappings. */ if (ptpaddr == 0) continue; /* * Check for large page. */ if ((ptpaddr & RPTE_LEAF) != 0) { /* * Are we removing the entire large page? If not, * demote the mapping and fall through. */ if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) { pmap_remove_l3e(pmap, l3e, sva, &free, &lock); continue; } else if (!pmap_demote_l3e_locked(pmap, l3e, sva, &lock)) { /* The large page mapping was destroyed. */ continue; } else ptpaddr = be64toh(*l3e); } /* * Limit our scan to either the end of the va represented * by the current page table page, or to the end of the * range being removed. */ if (va_next > eva) va_next = eva; if (pmap_remove_ptes(pmap, sva, va_next, l3e, &free, &lock)) anyvalid = true; } if (lock != NULL) rw_wunlock(lock); out: if (anyvalid) pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, true); } void mmu_radix_remove_all(vm_page_t m) { struct md_page *pvh; pv_entry_t pv; pmap_t pmap; struct rwlock *lock; pt_entry_t *pte, tpte; pml3_entry_t *l3e; vm_offset_t va; struct spglist free; int pvh_gen, md_gen; CTR2(KTR_PMAP, "%s(%p)", __func__, m); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_all: page %p is not managed", m)); SLIST_INIT(&free); lock = VM_PAGE_TO_PV_LIST_LOCK(m); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); retry: rw_wlock(lock); while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { rw_wunlock(lock); PMAP_UNLOCK(pmap); goto retry; } } va = pv->pv_va; l3e = pmap_pml3e(pmap, va); (void)pmap_demote_l3e_locked(pmap, l3e, va, &lock); PMAP_UNLOCK(pmap); } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { rw_wunlock(lock); PMAP_UNLOCK(pmap); goto retry; } } pmap_resident_count_dec(pmap, 1); l3e = pmap_pml3e(pmap, pv->pv_va); KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_all: found" " a 2mpage in page %p's pv list", m)); pte = pmap_l3e_to_pte(l3e, pv->pv_va); tpte = be64toh(pte_load_clear(pte)); if (tpte & PG_W) pmap->pm_stats.wired_count--; if (tpte & PG_A) vm_page_aflag_set(m, PGA_REFERENCED); /* * Update the vm_page_t clean and reference bits. */ if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) vm_page_dirty(m); pmap_unuse_pt(pmap, pv->pv_va, be64toh(*l3e), &free); pmap_invalidate_page(pmap, pv->pv_va); TAILQ_REMOVE(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; free_pv_entry(pmap, pv); PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(lock); vm_page_free_pages_toq(&free, true); } /* * Destroy all managed, non-wired mappings in the given user-space * pmap. This pmap cannot be active on any processor besides the * caller. * * This function cannot be applied to the kernel pmap. Moreover, it * is not intended for general use. It is only to be used during * process termination. Consequently, it can be implemented in ways * that make it faster than pmap_remove(). First, it can more quickly * destroy mappings by iterating over the pmap's collection of PV * entries, rather than searching the page table. Second, it doesn't * have to test and clear the page table entries atomically, because * no processor is currently accessing the user address space. In * particular, a page table entry's dirty bit won't change state once * this function starts. * * Although this function destroys all of the pmap's managed, * non-wired mappings, it can delay and batch the invalidation of TLB * entries without calling pmap_delayed_invl_started() and * pmap_delayed_invl_finished(). Because the pmap is not active on * any other processor, none of these TLB entries will ever be used * before their eventual invalidation. Consequently, there is no need * for either pmap_remove_all() or pmap_remove_write() to wait for * that eventual TLB invalidation. */ void mmu_radix_remove_pages(pmap_t pmap) { CTR2(KTR_PMAP, "%s(%p)", __func__, pmap); pml3_entry_t ptel3e; pt_entry_t *pte, tpte; struct spglist free; vm_page_t m, mpte, mt; pv_entry_t pv; struct md_page *pvh; struct pv_chunk *pc, *npc; struct rwlock *lock; int64_t bit; uint64_t inuse, bitmask; int allfree, field, freed, idx; boolean_t superpage; vm_paddr_t pa; /* * Assert that the given pmap is only active on the current * CPU. Unfortunately, we cannot block another CPU from * activating the pmap while this function is executing. */ KASSERT(pmap->pm_pid == mfspr(SPR_PID), ("non-current asid %lu - expected %lu", pmap->pm_pid, mfspr(SPR_PID))); lock = NULL; SLIST_INIT(&free); PMAP_LOCK(pmap); TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) { allfree = 1; freed = 0; for (field = 0; field < _NPCM; field++) { inuse = ~pc->pc_map[field] & pc_freemask[field]; while (inuse != 0) { bit = cnttzd(inuse); bitmask = 1UL << bit; idx = field * 64 + bit; pv = &pc->pc_pventry[idx]; inuse &= ~bitmask; pte = pmap_pml2e(pmap, pv->pv_va); ptel3e = be64toh(*pte); pte = pmap_l2e_to_l3e(pte, pv->pv_va); tpte = be64toh(*pte); if ((tpte & (RPTE_LEAF | PG_V)) == PG_V) { superpage = FALSE; ptel3e = tpte; pte = (pt_entry_t *)PHYS_TO_DMAP(tpte & PG_FRAME); pte = &pte[pmap_pte_index(pv->pv_va)]; tpte = be64toh(*pte); } else { /* * Keep track whether 'tpte' is a * superpage explicitly instead of * relying on RPTE_LEAF being set. * * This is because RPTE_LEAF is numerically * identical to PG_PTE_PAT and thus a * regular page could be mistaken for * a superpage. */ superpage = TRUE; } if ((tpte & PG_V) == 0) { panic("bad pte va %lx pte %lx", pv->pv_va, tpte); } /* * We cannot remove wired pages from a process' mapping at this time */ if (tpte & PG_W) { allfree = 0; continue; } if (superpage) pa = tpte & PG_PS_FRAME; else pa = tpte & PG_FRAME; m = PHYS_TO_VM_PAGE(pa); KASSERT(m->phys_addr == pa, ("vm_page_t %p phys_addr mismatch %016jx %016jx", m, (uintmax_t)m->phys_addr, (uintmax_t)tpte)); KASSERT((m->flags & PG_FICTITIOUS) != 0 || m < &vm_page_array[vm_page_array_size], ("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte)); pte_clear(pte); /* * Update the vm_page_t clean/reference bits. */ if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) { if (superpage) { for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++) vm_page_dirty(mt); } else vm_page_dirty(m); } CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m); /* Mark free */ pc->pc_map[field] |= bitmask; if (superpage) { pmap_resident_count_dec(pmap, L3_PAGE_SIZE / PAGE_SIZE); pvh = pa_to_pvh(tpte & PG_PS_FRAME); TAILQ_REMOVE(&pvh->pv_list, pv, pv_link); pvh->pv_gen++; if (TAILQ_EMPTY(&pvh->pv_list)) { for (mt = m; mt < &m[L3_PAGE_SIZE / PAGE_SIZE]; mt++) if ((mt->a.flags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&mt->md.pv_list)) vm_page_aflag_clear(mt, PGA_WRITEABLE); } mpte = pmap_remove_pt_page(pmap, pv->pv_va); if (mpte != NULL) { pmap_resident_count_dec(pmap, 1); KASSERT(mpte->ref_count == NPTEPG, ("pmap_remove_pages: pte page wire count error")); mpte->ref_count = 0; pmap_add_delayed_free_list(mpte, &free, FALSE); } } else { pmap_resident_count_dec(pmap, 1); #ifdef VERBOSE_PV printf("freeing pv (%p, %p)\n", pmap, pv); #endif TAILQ_REMOVE(&m->md.pv_list, pv, pv_link); m->md.pv_gen++; if ((m->a.flags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } pmap_unuse_pt(pmap, pv->pv_va, ptel3e, &free); freed++; } } PV_STAT(atomic_add_long(&pv_entry_frees, freed)); PV_STAT(atomic_add_int(&pv_entry_spare, freed)); PV_STAT(atomic_subtract_long(&pv_entry_count, freed)); if (allfree) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } } if (lock != NULL) rw_wunlock(lock); pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, true); } void mmu_radix_remove_write(vm_page_t m) { struct md_page *pvh; pmap_t pmap; struct rwlock *lock; pv_entry_t next_pv, pv; pml3_entry_t *l3e; pt_entry_t oldpte, *pte; int pvh_gen, md_gen; CTR2(KTR_PMAP, "%s(%p)", __func__, m); KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_write: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; lock = VM_PAGE_TO_PV_LIST_LOCK(m); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); retry_pv_loop: rw_wlock(lock); TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_link, next_pv) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); rw_wunlock(lock); goto retry_pv_loop; } } l3e = pmap_pml3e(pmap, pv->pv_va); if ((be64toh(*l3e) & PG_RW) != 0) (void)pmap_demote_l3e_locked(pmap, l3e, pv->pv_va, &lock); KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m), ("inconsistent pv lock %p %p for page %p", lock, VM_PAGE_TO_PV_LIST_LOCK(m), m)); PMAP_UNLOCK(pmap); } TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); rw_wunlock(lock); goto retry_pv_loop; } } l3e = pmap_pml3e(pmap, pv->pv_va); KASSERT((be64toh(*l3e) & RPTE_LEAF) == 0, ("pmap_remove_write: found a 2mpage in page %p's pv list", m)); pte = pmap_l3e_to_pte(l3e, pv->pv_va); retry: oldpte = be64toh(*pte); if (oldpte & PG_RW) { if (!atomic_cmpset_long(pte, htobe64(oldpte), htobe64((oldpte | RPTE_EAA_R) & ~(PG_RW | PG_M)))) goto retry; if ((oldpte & PG_M) != 0) vm_page_dirty(m); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } rw_wunlock(lock); vm_page_aflag_clear(m, PGA_WRITEABLE); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range * must have the wired attribute set. In contrast, invalid mappings * cannot have the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware * feature, so there is no need to invalidate any TLB entries. * Since pmap_demote_l3e() for the wired entry must never fail, * pmap_delayed_invl_started()/finished() calls around the * function are not needed. */ void mmu_radix_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t va_next; pml1_entry_t *l1e; pml2_entry_t *l2e; pml3_entry_t *l3e; pt_entry_t *pte; CTR4(KTR_PMAP, "%s(%p, %#x, %#x)", __func__, pmap, sva, eva); PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l1e = pmap_pml1e(pmap, sva); if ((be64toh(*l1e) & PG_V) == 0) { va_next = (sva + L1_PAGE_SIZE) & ~L1_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } l2e = pmap_l1e_to_l2e(l1e, sva); if ((be64toh(*l2e) & PG_V) == 0) { va_next = (sva + L2_PAGE_SIZE) & ~L2_PAGE_MASK; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L3_PAGE_SIZE) & ~L3_PAGE_MASK; if (va_next < sva) va_next = eva; l3e = pmap_l2e_to_l3e(l2e, sva); if ((be64toh(*l3e) & PG_V) == 0) continue; if ((be64toh(*l3e) & RPTE_LEAF) != 0) { if ((be64toh(*l3e) & PG_W) == 0) panic("pmap_unwire: pde %#jx is missing PG_W", (uintmax_t)(be64toh(*l3e))); /* * Are we unwiring the entire large page? If not, * demote the mapping and fall through. */ if (sva + L3_PAGE_SIZE == va_next && eva >= va_next) { atomic_clear_long(l3e, htobe64(PG_W)); pmap->pm_stats.wired_count -= L3_PAGE_SIZE / PAGE_SIZE; continue; } else if (!pmap_demote_l3e(pmap, l3e, sva)) panic("pmap_unwire: demotion failed"); } if (va_next > eva) va_next = eva; for (pte = pmap_l3e_to_pte(l3e, sva); sva != va_next; pte++, sva += PAGE_SIZE) { MPASS(pte == pmap_pte(pmap, sva)); if ((be64toh(*pte) & PG_V) == 0) continue; if ((be64toh(*pte) & PG_W) == 0) panic("pmap_unwire: pte %#jx is missing PG_W", (uintmax_t)(be64toh(*pte))); /* * PG_W must be cleared atomically. Although the pmap * lock synchronizes access to PG_W, another processor * could be setting PG_M and/or PG_A concurrently. */ atomic_clear_long(pte, htobe64(PG_W)); pmap->pm_stats.wired_count--; } } PMAP_UNLOCK(pmap); } void mmu_radix_zero_page(vm_page_t m) { vm_offset_t addr; CTR2(KTR_PMAP, "%s(%p)", __func__, m); addr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); pagezero(addr); } void mmu_radix_zero_page_area(vm_page_t m, int off, int size) { caddr_t addr; CTR4(KTR_PMAP, "%s(%p, %d, %d)", __func__, m, off, size); MPASS(off + size <= PAGE_SIZE); addr = (caddr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); memset(addr + off, 0, size); } static int mmu_radix_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa) { pml3_entry_t *l3ep; pt_entry_t pte; vm_paddr_t pa; int val; CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, pmap, addr); PMAP_LOCK(pmap); l3ep = pmap_pml3e(pmap, addr); if (l3ep != NULL && (be64toh(*l3ep) & PG_V)) { if (be64toh(*l3ep) & RPTE_LEAF) { pte = be64toh(*l3ep); /* Compute the physical address of the 4KB page. */ pa = ((be64toh(*l3ep) & PG_PS_FRAME) | (addr & L3_PAGE_MASK)) & PG_FRAME; val = MINCORE_PSIND(1); } else { /* Native endian PTE, do not pass to functions */ pte = be64toh(*pmap_l3e_to_pte(l3ep, addr)); pa = pte & PG_FRAME; val = 0; } } else { pte = 0; pa = 0; val = 0; } if ((pte & PG_V) != 0) { val |= MINCORE_INCORE; if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if ((pte & PG_A) != 0) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) { *locked_pa = pa; } PMAP_UNLOCK(pmap); return (val); } void mmu_radix_activate(struct thread *td) { pmap_t pmap; uint32_t curpid; CTR2(KTR_PMAP, "%s(%p)", __func__, td); critical_enter(); pmap = vmspace_pmap(td->td_proc->p_vmspace); curpid = mfspr(SPR_PID); if (pmap->pm_pid > isa3_base_pid && curpid != pmap->pm_pid) { mmu_radix_pid_set(pmap); } critical_exit(); } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more superpage mappings. */ void mmu_radix_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { CTR5(KTR_PMAP, "%s(%p, %#x, %p, %#x)", __func__, object, offset, addr, size); vm_offset_t superpage_offset; if (size < L3_PAGE_SIZE) return; if (object != NULL && (object->flags & OBJ_COLORED) != 0) offset += ptoa(object->pg_color); superpage_offset = offset & L3_PAGE_MASK; if (size - ((L3_PAGE_SIZE - superpage_offset) & L3_PAGE_MASK) < L3_PAGE_SIZE || (*addr & L3_PAGE_MASK) == superpage_offset) return; if ((*addr & L3_PAGE_MASK) < superpage_offset) *addr = (*addr & ~L3_PAGE_MASK) + superpage_offset; else *addr = ((*addr + L3_PAGE_MASK) & ~L3_PAGE_MASK) + superpage_offset; } static void * mmu_radix_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t attr) { vm_offset_t va, tmpva, ppa, offset; ppa = trunc_page(pa); offset = pa & PAGE_MASK; size = roundup2(offset + size, PAGE_SIZE); if (pa < powerpc_ptob(Maxmem)) panic("bad pa: %#lx less than Maxmem %#lx\n", pa, powerpc_ptob(Maxmem)); va = kva_alloc(size); if (bootverbose) printf("%s(%#lx, %lu, %d)\n", __func__, pa, size, attr); KASSERT(size > 0, ("%s(%#lx, %lu, %d)", __func__, pa, size, attr)); if (!va) panic("%s: Couldn't alloc kernel virtual memory", __func__); for (tmpva = va; size > 0;) { mmu_radix_kenter_attr(tmpva, ppa, attr); size -= PAGE_SIZE; tmpva += PAGE_SIZE; ppa += PAGE_SIZE; } ptesync(); return ((void *)(va + offset)); } static void * mmu_radix_mapdev(vm_paddr_t pa, vm_size_t size) { CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size); return (mmu_radix_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT)); } void mmu_radix_page_set_memattr(vm_page_t m, vm_memattr_t ma) { CTR3(KTR_PMAP, "%s(%p, %#x)", __func__, m, ma); m->md.mdpg_cache_attrs = ma; /* * If "m" is a normal page, update its direct mapping. This update * can be relied upon to perform any cache operations that are * required for data coherence. */ if ((m->flags & PG_FICTITIOUS) == 0 && mmu_radix_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE, m->md.mdpg_cache_attrs)) panic("memory attribute change on the direct map failed"); } static void mmu_radix_unmapdev(vm_offset_t va, vm_size_t size) { vm_offset_t offset; CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, va, size); /* If we gave a direct map region in pmap_mapdev, do nothing */ if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) return; offset = va & PAGE_MASK; size = round_page(offset + size); va = trunc_page(va); if (pmap_initialized) { mmu_radix_qremove(va, atop(size)); kva_free(va, size); } } static __inline void pmap_pte_attr(pt_entry_t *pte, uint64_t cache_bits, uint64_t mask) { uint64_t opte, npte; /* * The cache mode bits are all in the low 32-bits of the * PTE, so we can just spin on updating the low 32-bits. */ do { opte = be64toh(*pte); npte = opte & ~mask; npte |= cache_bits; } while (npte != opte && !atomic_cmpset_long(pte, htobe64(opte), htobe64(npte))); } /* * Tries to demote a 1GB page mapping. */ static boolean_t pmap_demote_l2e(pmap_t pmap, pml2_entry_t *l2e, vm_offset_t va) { pml2_entry_t oldpdpe; pml3_entry_t *firstpde, newpde, *pde; vm_paddr_t pdpgpa; vm_page_t pdpg; PMAP_LOCK_ASSERT(pmap, MA_OWNED); oldpdpe = be64toh(*l2e); KASSERT((oldpdpe & (RPTE_LEAF | PG_V)) == (RPTE_LEAF | PG_V), ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V")); pdpg = vm_page_alloc(NULL, va >> L2_PAGE_SIZE_SHIFT, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (pdpg == NULL) { CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx" " in pmap %p", va, pmap); return (FALSE); } pdpgpa = VM_PAGE_TO_PHYS(pdpg); firstpde = (pml3_entry_t *)PHYS_TO_DMAP(pdpgpa); KASSERT((oldpdpe & PG_A) != 0, ("pmap_demote_pdpe: oldpdpe is missing PG_A")); KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW, ("pmap_demote_pdpe: oldpdpe is missing PG_M")); newpde = oldpdpe; /* * Initialize the page directory page. */ for (pde = firstpde; pde < firstpde + NPDEPG; pde++) { *pde = htobe64(newpde); newpde += L3_PAGE_SIZE; } /* * Demote the mapping. */ pde_store(l2e, pdpgpa); /* * Flush PWC --- XXX revisit */ pmap_invalidate_all(pmap); pmap_l2e_demotions++; CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx" " in pmap %p", va, pmap); return (TRUE); } vm_paddr_t mmu_radix_kextract(vm_offset_t va) { pml3_entry_t l3e; vm_paddr_t pa; CTR2(KTR_PMAP, "%s(%#x)", __func__, va); if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) { pa = DMAP_TO_PHYS(va); } else { /* Big-endian PTE on stack */ l3e = *pmap_pml3e(kernel_pmap, va); if (be64toh(l3e) & RPTE_LEAF) { pa = (be64toh(l3e) & PG_PS_FRAME) | (va & L3_PAGE_MASK); pa |= (va & L3_PAGE_MASK); } else { /* * Beware of a concurrent promotion that changes the * PDE at this point! For example, vtopte() must not * be used to access the PTE because it would use the * new PDE. It is, however, safe to use the old PDE * because the page table page is preserved by the * promotion. */ pa = be64toh(*pmap_l3e_to_pte(&l3e, va)); pa = (pa & PG_FRAME) | (va & PAGE_MASK); pa |= (va & PAGE_MASK); } } return (pa); } static pt_entry_t mmu_radix_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) { if (ma != VM_MEMATTR_DEFAULT) { return pmap_cache_bits(ma); } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ for (int i = 0; i < pregions_sz; i++) { if ((pa >= pregions[i].mr_start) && (pa < (pregions[i].mr_start + pregions[i].mr_size))) return (RPTE_ATTR_MEM); } return (RPTE_ATTR_GUARDEDIO); } static void mmu_radix_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) { pt_entry_t *pte, pteval; uint64_t cache_bits; pte = kvtopte(va); MPASS(pte != NULL); pteval = pa | RPTE_EAA_R | RPTE_EAA_W | RPTE_EAA_P | PG_M | PG_A; cache_bits = mmu_radix_calc_wimg(pa, ma); pte_store(pte, pteval | cache_bits); } void mmu_radix_kremove(vm_offset_t va) { pt_entry_t *pte; CTR2(KTR_PMAP, "%s(%#x)", __func__, va); pte = kvtopte(va); pte_clear(pte); } int mmu_radix_decode_kernel_ptr(vm_offset_t addr, int *is_user, vm_offset_t *decoded) { CTR2(KTR_PMAP, "%s(%#jx)", __func__, (uintmax_t)addr); *decoded = addr; *is_user = (addr < VM_MAXUSER_ADDRESS); return (0); } static boolean_t mmu_radix_dev_direct_mapped(vm_paddr_t pa, vm_size_t size) { CTR3(KTR_PMAP, "%s(%#x, %#x)", __func__, pa, size); return (mem_valid(pa, size)); } static void mmu_radix_scan_init() { CTR1(KTR_PMAP, "%s()", __func__); UNIMPLEMENTED(); } static void mmu_radix_dumpsys_map(vm_paddr_t pa, size_t sz, void **va) { CTR4(KTR_PMAP, "%s(%#jx, %#zx, %p)", __func__, (uintmax_t)pa, sz, va); UNIMPLEMENTED(); } vm_offset_t mmu_radix_quick_enter_page(vm_page_t m) { vm_paddr_t paddr; CTR2(KTR_PMAP, "%s(%p)", __func__, m); paddr = VM_PAGE_TO_PHYS(m); return (PHYS_TO_DMAP(paddr)); } void mmu_radix_quick_remove_page(vm_offset_t addr __unused) { /* no work to do here */ CTR2(KTR_PMAP, "%s(%#x)", __func__, addr); } static void pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva) { cpu_flush_dcache((void *)sva, eva - sva); } int mmu_radix_change_attr(vm_offset_t va, vm_size_t size, vm_memattr_t mode) { int error; CTR4(KTR_PMAP, "%s(%#x, %#zx, %d)", __func__, va, size, mode); PMAP_LOCK(kernel_pmap); error = pmap_change_attr_locked(va, size, mode, true); PMAP_UNLOCK(kernel_pmap); return (error); } static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode, bool flush) { vm_offset_t base, offset, tmpva; vm_paddr_t pa_start, pa_end, pa_end1; pml2_entry_t *l2e; pml3_entry_t *l3e; pt_entry_t *pte; int cache_bits, error; boolean_t changed; PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED); base = trunc_page(va); offset = va & PAGE_MASK; size = round_page(offset + size); /* * Only supported on kernel virtual addresses, including the direct * map but excluding the recursive map. */ if (base < DMAP_MIN_ADDRESS) return (EINVAL); cache_bits = pmap_cache_bits(mode); changed = FALSE; /* * Pages that aren't mapped aren't supported. Also break down 2MB pages * into 4KB pages if required. */ for (tmpva = base; tmpva < base + size; ) { l2e = pmap_pml2e(kernel_pmap, tmpva); if (l2e == NULL || *l2e == 0) return (EINVAL); if (be64toh(*l2e) & RPTE_LEAF) { /* * If the current 1GB page already has the required * memory type, then we need not demote this page. Just * increment tmpva to the next 1GB page frame. */ if ((be64toh(*l2e) & RPTE_ATTR_MASK) == cache_bits) { tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE; continue; } /* * If the current offset aligns with a 1GB page frame * and there is at least 1GB left within the range, then * we need not break down this page into 2MB pages. */ if ((tmpva & L2_PAGE_MASK) == 0 && tmpva + L2_PAGE_MASK < base + size) { tmpva += L2_PAGE_MASK; continue; } if (!pmap_demote_l2e(kernel_pmap, l2e, tmpva)) return (ENOMEM); } l3e = pmap_l2e_to_l3e(l2e, tmpva); KASSERT(l3e != NULL, ("no l3e entry for %#lx in %p\n", tmpva, l2e)); if (*l3e == 0) return (EINVAL); if (be64toh(*l3e) & RPTE_LEAF) { /* * If the current 2MB page already has the required * memory type, then we need not demote this page. Just * increment tmpva to the next 2MB page frame. */ if ((be64toh(*l3e) & RPTE_ATTR_MASK) == cache_bits) { tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE; continue; } /* * If the current offset aligns with a 2MB page frame * and there is at least 2MB left within the range, then * we need not break down this page into 4KB pages. */ if ((tmpva & L3_PAGE_MASK) == 0 && tmpva + L3_PAGE_MASK < base + size) { tmpva += L3_PAGE_SIZE; continue; } if (!pmap_demote_l3e(kernel_pmap, l3e, tmpva)) return (ENOMEM); } pte = pmap_l3e_to_pte(l3e, tmpva); if (*pte == 0) return (EINVAL); tmpva += PAGE_SIZE; } error = 0; /* * Ok, all the pages exist, so run through them updating their * cache mode if required. */ pa_start = pa_end = 0; for (tmpva = base; tmpva < base + size; ) { l2e = pmap_pml2e(kernel_pmap, tmpva); if (be64toh(*l2e) & RPTE_LEAF) { if ((be64toh(*l2e) & RPTE_ATTR_MASK) != cache_bits) { pmap_pte_attr(l2e, cache_bits, RPTE_ATTR_MASK); changed = TRUE; } if (tmpva >= VM_MIN_KERNEL_ADDRESS && (*l2e & PG_PS_FRAME) < dmaplimit) { if (pa_start == pa_end) { /* Start physical address run. */ pa_start = be64toh(*l2e) & PG_PS_FRAME; pa_end = pa_start + L2_PAGE_SIZE; } else if (pa_end == (be64toh(*l2e) & PG_PS_FRAME)) pa_end += L2_PAGE_SIZE; else { /* Run ended, update direct map. */ error = pmap_change_attr_locked( PHYS_TO_DMAP(pa_start), pa_end - pa_start, mode, flush); if (error != 0) break; /* Start physical address run. */ pa_start = be64toh(*l2e) & PG_PS_FRAME; pa_end = pa_start + L2_PAGE_SIZE; } } tmpva = trunc_1gpage(tmpva) + L2_PAGE_SIZE; continue; } l3e = pmap_l2e_to_l3e(l2e, tmpva); if (be64toh(*l3e) & RPTE_LEAF) { if ((be64toh(*l3e) & RPTE_ATTR_MASK) != cache_bits) { pmap_pte_attr(l3e, cache_bits, RPTE_ATTR_MASK); changed = TRUE; } if (tmpva >= VM_MIN_KERNEL_ADDRESS && (be64toh(*l3e) & PG_PS_FRAME) < dmaplimit) { if (pa_start == pa_end) { /* Start physical address run. */ pa_start = be64toh(*l3e) & PG_PS_FRAME; pa_end = pa_start + L3_PAGE_SIZE; } else if (pa_end == (be64toh(*l3e) & PG_PS_FRAME)) pa_end += L3_PAGE_SIZE; else { /* Run ended, update direct map. */ error = pmap_change_attr_locked( PHYS_TO_DMAP(pa_start), pa_end - pa_start, mode, flush); if (error != 0) break; /* Start physical address run. */ pa_start = be64toh(*l3e) & PG_PS_FRAME; pa_end = pa_start + L3_PAGE_SIZE; } } tmpva = trunc_2mpage(tmpva) + L3_PAGE_SIZE; } else { pte = pmap_l3e_to_pte(l3e, tmpva); if ((be64toh(*pte) & RPTE_ATTR_MASK) != cache_bits) { pmap_pte_attr(pte, cache_bits, RPTE_ATTR_MASK); changed = TRUE; } if (tmpva >= VM_MIN_KERNEL_ADDRESS && (be64toh(*pte) & PG_FRAME) < dmaplimit) { if (pa_start == pa_end) { /* Start physical address run. */ pa_start = be64toh(*pte) & PG_FRAME; pa_end = pa_start + PAGE_SIZE; } else if (pa_end == (be64toh(*pte) & PG_FRAME)) pa_end += PAGE_SIZE; else { /* Run ended, update direct map. */ error = pmap_change_attr_locked( PHYS_TO_DMAP(pa_start), pa_end - pa_start, mode, flush); if (error != 0) break; /* Start physical address run. */ pa_start = be64toh(*pte) & PG_FRAME; pa_end = pa_start + PAGE_SIZE; } } tmpva += PAGE_SIZE; } } if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) { pa_end1 = MIN(pa_end, dmaplimit); if (pa_start != pa_end1) error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start), pa_end1 - pa_start, mode, flush); } /* * Flush CPU caches if required to make sure any data isn't cached that * shouldn't be, etc. */ if (changed) { pmap_invalidate_all(kernel_pmap); if (flush) pmap_invalidate_cache_range(base, tmpva); } return (error); } /* * Allocate physical memory for the vm_page array and map it into KVA, * attempting to back the vm_pages with domain-local memory. */ void mmu_radix_page_array_startup(long pages) { #ifdef notyet pml2_entry_t *l2e; pml3_entry_t *pde; pml3_entry_t newl3; vm_offset_t va; long pfn; int domain, i; #endif vm_paddr_t pa; vm_offset_t start, end; vm_page_array_size = pages; start = VM_MIN_KERNEL_ADDRESS; end = start + pages * sizeof(struct vm_page); pa = vm_phys_early_alloc(0, end - start); start = mmu_radix_map(&start, pa, end - start, VM_MEMATTR_DEFAULT); #ifdef notyet /* TODO: NUMA vm_page_array. Blocked out until then (copied from amd64). */ for (va = start; va < end; va += L3_PAGE_SIZE) { pfn = first_page + (va - start) / sizeof(struct vm_page); domain = vm_phys_domain(ptoa(pfn)); l2e = pmap_pml2e(kernel_pmap, va); if ((be64toh(*l2e) & PG_V) == 0) { pa = vm_phys_early_alloc(domain, PAGE_SIZE); dump_add_page(pa); pagezero(PHYS_TO_DMAP(pa)); pde_store(l2e, (pml2_entry_t)pa); } pde = pmap_l2e_to_l3e(l2e, va); if ((be64toh(*pde) & PG_V) != 0) panic("Unexpected pde %p", pde); pa = vm_phys_early_alloc(domain, L3_PAGE_SIZE); for (i = 0; i < NPDEPG; i++) dump_add_page(pa + i * PAGE_SIZE); newl3 = (pml3_entry_t)(pa | RPTE_EAA_P | RPTE_EAA_R | RPTE_EAA_W); pte_store(pde, newl3); } #endif vm_page_array = (vm_page_t)start; } #ifdef DDB #include #include static void pmap_pte_walk(pml1_entry_t *l1, vm_offset_t va) { pml1_entry_t *l1e; pml2_entry_t *l2e; pml3_entry_t *l3e; pt_entry_t *pte; l1e = &l1[pmap_pml1e_index(va)]; db_printf("VA %#016lx l1e %#016lx", va, be64toh(*l1e)); if ((be64toh(*l1e) & PG_V) == 0) { db_printf("\n"); return; } l2e = pmap_l1e_to_l2e(l1e, va); db_printf(" l2e %#016lx", be64toh(*l2e)); if ((be64toh(*l2e) & PG_V) == 0 || (be64toh(*l2e) & RPTE_LEAF) != 0) { db_printf("\n"); return; } l3e = pmap_l2e_to_l3e(l2e, va); db_printf(" l3e %#016lx", be64toh(*l3e)); if ((be64toh(*l3e) & PG_V) == 0 || (be64toh(*l3e) & RPTE_LEAF) != 0) { db_printf("\n"); return; } pte = pmap_l3e_to_pte(l3e, va); db_printf(" pte %#016lx\n", be64toh(*pte)); } void pmap_page_print_mappings(vm_page_t m) { pmap_t pmap; pv_entry_t pv; db_printf("page %p(%lx)\n", m, m->phys_addr); /* need to elide locks if running in ddb */ TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { db_printf("pv: %p ", pv); db_printf("va: %#016lx ", pv->pv_va); pmap = PV_PMAP(pv); db_printf("pmap %p ", pmap); if (pmap != NULL) { db_printf("asid: %lu\n", pmap->pm_pid); pmap_pte_walk(pmap->pm_pml1, pv->pv_va); } } } DB_SHOW_COMMAND(pte, pmap_print_pte) { vm_offset_t va; pmap_t pmap; if (!have_addr) { db_printf("show pte addr\n"); return; } va = (vm_offset_t)addr; if (va >= DMAP_MIN_ADDRESS) pmap = kernel_pmap; else if (kdb_thread != NULL) pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace); else pmap = vmspace_pmap(curthread->td_proc->p_vmspace); pmap_pte_walk(pmap->pm_pml1, va); } #endif