/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008-2015 Nathan Whitehorn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * Since the information managed by this module is also stored by the * logical address mapping module, this module may throw away valid virtual * to physical mappings at almost any time. However, invalidations of * mappings must be done as requested. * * In order to cope with hardware architectures which make virtual to * physical map invalidates expensive, this module may delay invalidate * reduced protection operations until such time as they are actually * necessary. This module is given full information as to which processors * are currently using which maps, and to when physical maps must be made * correct. */ #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_oea64.h" void moea64_release_vsid(uint64_t vsid); uintptr_t moea64_get_unique_vsid(void); #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) #define ENABLE_TRANS(msr) mtmsr(msr) #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) #define VSID_HASH_MASK 0x0000007fffffffffULL /* * Locking semantics: * * There are two locks of interest: the page locks and the pmap locks, which * protect their individual PVO lists and are locked in that order. The contents * of all PVO entries are protected by the locks of their respective pmaps. * The pmap of any PVO is guaranteed not to change so long as the PVO is linked * into any list. * */ #define PV_LOCK_COUNT PA_LOCK_COUNT static struct mtx_padalign pv_lock[PV_LOCK_COUNT]; /* * Cheap NUMA-izing of the pv locks, to reduce contention across domains. * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the * index at (N << 45). */ #ifdef __powerpc64__ #define PV_LOCK_IDX(pa) ((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT) #else #define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_COUNT) #endif #define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)])) #define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa)) #define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa)) #define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED) #define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m)) #define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m)) #define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m)) /* Superpage PV lock */ #define PV_LOCK_SIZE (1<pvo_vaddr & PVO_LARGE) && \ (pvo)->pvo_pmap != kernel_pmap) /* Get physical address from PVO. */ #define PVO_PADDR(pvo) moea64_pvo_paddr(pvo) /* MD page flag indicating that the page is a superpage. */ #define MDPG_ATTR_SP 0x40000000 SYSCTL_DECL(_vm_pmap); static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0, "SP page mapping counters"); static u_long sp_demotions; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD, &sp_demotions, 0, "SP page demotions"); static u_long sp_mappings; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD, &sp_mappings, 0, "SP page mappings"); static u_long sp_p_failures; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD, &sp_p_failures, 0, "SP page promotion failures"); static u_long sp_p_fail_pa; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD, &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match"); static u_long sp_p_fail_flags; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD, &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match"); static u_long sp_p_fail_prot; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD, &sp_p_fail_prot, 0, "SP page promotion failure: page protections don't match"); static u_long sp_p_fail_wimg; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD, &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match"); static u_long sp_promotions; SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD, &sp_promotions, 0, "SP page promotions"); static bool moea64_ps_enabled(pmap_t); static void moea64_align_superpage(vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t); static int moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind); static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree); static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m); static void moea64_sp_demote_aligned(struct pvo_entry *sp); static void moea64_sp_demote(struct pvo_entry *pvo); static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp); static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot); static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit); static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit); static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva); /* * Kernel MMU interface */ void moea64_clear_modify(vm_page_t); void moea64_copy_page(vm_page_t, vm_page_t); void moea64_copy_page_dmap(vm_page_t, vm_page_t); void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize); void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize); int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t); vm_paddr_t moea64_extract(pmap_t, vm_offset_t); vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t); void moea64_init(void); boolean_t moea64_is_modified(vm_page_t); boolean_t moea64_is_prefaultable(pmap_t, vm_offset_t); boolean_t moea64_is_referenced(vm_page_t); int moea64_ts_referenced(vm_page_t); vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int); boolean_t moea64_page_exists_quick(pmap_t, vm_page_t); void moea64_page_init(vm_page_t); int moea64_page_wired_mappings(vm_page_t); int moea64_pinit(pmap_t); void moea64_pinit0(pmap_t); void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); void moea64_qenter(vm_offset_t, vm_page_t *, int); void moea64_qremove(vm_offset_t, int); void moea64_release(pmap_t); void moea64_remove(pmap_t, vm_offset_t, vm_offset_t); void moea64_remove_pages(pmap_t); void moea64_remove_all(vm_page_t); void moea64_remove_write(vm_page_t); void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t); void moea64_zero_page(vm_page_t); void moea64_zero_page_dmap(vm_page_t); void moea64_zero_page_area(vm_page_t, int, int); void moea64_activate(struct thread *); void moea64_deactivate(struct thread *); void *moea64_mapdev(vm_paddr_t, vm_size_t); void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t); void moea64_unmapdev(vm_offset_t, vm_size_t); vm_paddr_t moea64_kextract(vm_offset_t); void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma); void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma); void moea64_kenter(vm_offset_t, vm_paddr_t); boolean_t moea64_dev_direct_mapped(vm_paddr_t, vm_size_t); static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t); void moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va); void moea64_scan_init(void); vm_offset_t moea64_quick_enter_page(vm_page_t m); vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m); void moea64_quick_remove_page(vm_offset_t addr); boolean_t moea64_page_is_mapped(vm_page_t m); static int moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); static int moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr); static size_t moea64_scan_pmap(struct bitset *dump_bitset); static void *moea64_dump_pmap_init(unsigned blkpgs); #ifdef __powerpc64__ static void moea64_page_array_startup(long); #endif static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *); static struct pmap_funcs moea64_methods = { .clear_modify = moea64_clear_modify, .copy_page = moea64_copy_page, .copy_pages = moea64_copy_pages, .enter = moea64_enter, .enter_object = moea64_enter_object, .enter_quick = moea64_enter_quick, .extract = moea64_extract, .extract_and_hold = moea64_extract_and_hold, .init = moea64_init, .is_modified = moea64_is_modified, .is_prefaultable = moea64_is_prefaultable, .is_referenced = moea64_is_referenced, .ts_referenced = moea64_ts_referenced, .map = moea64_map, .mincore = moea64_mincore, .page_exists_quick = moea64_page_exists_quick, .page_init = moea64_page_init, .page_wired_mappings = moea64_page_wired_mappings, .pinit = moea64_pinit, .pinit0 = moea64_pinit0, .protect = moea64_protect, .qenter = moea64_qenter, .qremove = moea64_qremove, .release = moea64_release, .remove = moea64_remove, .remove_pages = moea64_remove_pages, .remove_all = moea64_remove_all, .remove_write = moea64_remove_write, .sync_icache = moea64_sync_icache, .unwire = moea64_unwire, .zero_page = moea64_zero_page, .zero_page_area = moea64_zero_page_area, .activate = moea64_activate, .deactivate = moea64_deactivate, .page_set_memattr = moea64_page_set_memattr, .quick_enter_page = moea64_quick_enter_page, .quick_remove_page = moea64_quick_remove_page, .page_is_mapped = moea64_page_is_mapped, #ifdef __powerpc64__ .page_array_startup = moea64_page_array_startup, #endif .ps_enabled = moea64_ps_enabled, .align_superpage = moea64_align_superpage, /* Internal interfaces */ .mapdev = moea64_mapdev, .mapdev_attr = moea64_mapdev_attr, .unmapdev = moea64_unmapdev, .kextract = moea64_kextract, .kenter = moea64_kenter, .kenter_attr = moea64_kenter_attr, .dev_direct_mapped = moea64_dev_direct_mapped, .dumpsys_pa_init = moea64_scan_init, .dumpsys_scan_pmap = moea64_scan_pmap, .dumpsys_dump_pmap_init = moea64_dump_pmap_init, .dumpsys_map_chunk = moea64_dumpsys_map, .map_user_ptr = moea64_map_user_ptr, .decode_kernel_ptr = moea64_decode_kernel_ptr, }; MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods); /* * Get physical address from PVO. * * For superpages, the lower bits are not stored on pvo_pte.pa and must be * obtained from VA. */ static __always_inline vm_paddr_t moea64_pvo_paddr(struct pvo_entry *pvo) { vm_paddr_t pa; pa = (pvo)->pvo_pte.pa & LPTE_RPGN; if (PVO_IS_SP(pvo)) { pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */ pa |= PVO_VADDR(pvo) & HPT_SP_MASK; } return (pa); } static struct pvo_head * vm_page_to_pvoh(vm_page_t m) { mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED); return (&m->md.mdpg_pvoh); } static struct pvo_entry * alloc_pvo_entry(int bootstrap) { struct pvo_entry *pvo; if (!moea64_initialized || bootstrap) { if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) { panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd." "Try setting machdep.moea64_bpvo_pool_size tunable", __func__, moea64_bpvo_pool_index, moea64_bpvo_pool_size, moea64_bpvo_pool_size * sizeof(struct pvo_entry)); } pvo = &moea64_bpvo_pool[ atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)]; bzero(pvo, sizeof(*pvo)); pvo->pvo_vaddr = PVO_BOOTSTRAP; } else pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO); return (pvo); } static void init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va) { uint64_t vsid; uint64_t hash; int shift; PMAP_LOCK_ASSERT(pmap, MA_OWNED); pvo->pvo_pmap = pmap; va &= ~ADDR_POFF; pvo->pvo_vaddr |= va; vsid = va_to_vsid(pmap, va); pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) | (vsid << 16); if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0) shift = moea64_large_page_shift; else shift = ADDR_PIDX_SHFT; hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift); pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3; } static void free_pvo_entry(struct pvo_entry *pvo) { if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) uma_zfree(moea64_pvo_zone, pvo); } void moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte) { lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo); lpte->pte_hi |= LPTE_VALID; if (pvo->pvo_vaddr & PVO_LARGE) lpte->pte_hi |= LPTE_BIG; if (pvo->pvo_vaddr & PVO_WIRED) lpte->pte_hi |= LPTE_WIRED; if (pvo->pvo_vaddr & PVO_HID) lpte->pte_hi |= LPTE_HID; lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */ if (pvo->pvo_pte.prot & VM_PROT_WRITE) lpte->pte_lo |= LPTE_BW; else lpte->pte_lo |= LPTE_BR; if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE)) lpte->pte_lo |= LPTE_NOEXEC; } static __inline uint64_t moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) { uint64_t pte_lo; int i; if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (LPTE_I | LPTE_G); case VM_MEMATTR_CACHEABLE: return (LPTE_M); case VM_MEMATTR_WRITE_COMBINING: case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: return (LPTE_I); case VM_MEMATTR_WRITE_THROUGH: return (LPTE_W | LPTE_M); } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ pte_lo = LPTE_I | LPTE_G; for (i = 0; i < pregions_sz; i++) { if ((pa >= pregions[i].mr_start) && (pa < (pregions[i].mr_start + pregions[i].mr_size))) { pte_lo &= ~(LPTE_I | LPTE_G); pte_lo |= LPTE_M; break; } } return pte_lo; } /* * Quick sort callout for comparing memory regions. */ static int om_cmp(const void *a, const void *b); static int om_cmp(const void *a, const void *b) { const struct ofw_map *mapa; const struct ofw_map *mapb; mapa = a; mapb = b; if (mapa->om_pa < mapb->om_pa) return (-1); else if (mapa->om_pa > mapb->om_pa) return (1); else return (0); } static void moea64_add_ofw_mappings(phandle_t mmu, size_t sz) { struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */ pcell_t acells, trans_cells[sz/sizeof(cell_t)]; struct pvo_entry *pvo; register_t msr; vm_offset_t off; vm_paddr_t pa_base; int i, j; bzero(translations, sz); OF_getencprop(OF_finddevice("/"), "#address-cells", &acells, sizeof(acells)); if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1) panic("moea64_bootstrap: can't get ofw translations"); CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); sz /= sizeof(cell_t); for (i = 0, j = 0; i < sz; j++) { translations[j].om_va = trans_cells[i++]; translations[j].om_len = trans_cells[i++]; translations[j].om_pa = trans_cells[i++]; if (acells == 2) { translations[j].om_pa <<= 32; translations[j].om_pa |= trans_cells[i++]; } translations[j].om_mode = trans_cells[i++]; } KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)", i, sz)); sz = j; qsort(translations, sz, sizeof (*translations), om_cmp); for (i = 0; i < sz; i++) { pa_base = translations[i].om_pa; #ifndef __powerpc64__ if ((translations[i].om_pa >> 32) != 0) panic("OFW translations above 32-bit boundary!"); #endif if (pa_base % PAGE_SIZE) panic("OFW translation not page-aligned (phys)!"); if (translations[i].om_va % PAGE_SIZE) panic("OFW translation not page-aligned (virt)!"); CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x", pa_base, translations[i].om_va, translations[i].om_len); /* Now enter the pages for this mapping */ DISABLE_TRANS(msr); for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { /* If this address is direct-mapped, skip remapping */ if (hw_direct_map && translations[i].om_va == PHYS_TO_DMAP(pa_base) && moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) == LPTE_M) continue; PMAP_LOCK(kernel_pmap); pvo = moea64_pvo_find_va(kernel_pmap, translations[i].om_va + off); PMAP_UNLOCK(kernel_pmap); if (pvo != NULL) continue; moea64_kenter(translations[i].om_va + off, pa_base + off); } ENABLE_TRANS(msr); } } #ifdef __powerpc64__ static void moea64_probe_large_page(void) { uint16_t pvr = mfpvr() >> 16; switch (pvr) { case IBM970: case IBM970FX: case IBM970MP: powerpc_sync(); isync(); mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); powerpc_sync(); isync(); /* FALLTHROUGH */ default: if (moea64_large_page_size == 0) { moea64_large_page_size = 0x1000000; /* 16 MB */ moea64_large_page_shift = 24; } } moea64_large_page_mask = moea64_large_page_size - 1; } static void moea64_bootstrap_slb_prefault(vm_offset_t va, int large) { struct slb *cache; struct slb entry; uint64_t esid, slbe; uint64_t i; cache = PCPU_GET(aim.slb); esid = va >> ADDR_SR_SHFT; slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; for (i = 0; i < 64; i++) { if (cache[i].slbe == (slbe | i)) return; } entry.slbe = slbe; entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; if (large) entry.slbv |= SLBV_L; slb_insert_kernel(entry.slbe, entry.slbv); } #endif static int moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap) { struct pvo_entry *pvo; uint64_t pte_lo; int error; pte_lo = LPTE_M; pte_lo |= attr; pvo = alloc_pvo_entry(bootstrap); pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE; init_pvo_entry(pvo, kernel_pmap, va); pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; pvo->pvo_pte.pa = pa | pte_lo; error = moea64_pvo_enter(pvo, NULL, NULL); if (error != 0) panic("Error %d inserting large page\n", error); return (0); } static void moea64_setup_direct_map(vm_offset_t kernelstart, vm_offset_t kernelend) { register_t msr; vm_paddr_t pa, pkernelstart, pkernelend; vm_offset_t size, off; uint64_t pte_lo; int i; if (moea64_large_page_size == 0) hw_direct_map = 0; DISABLE_TRANS(msr); if (hw_direct_map) { PMAP_LOCK(kernel_pmap); for (i = 0; i < pregions_sz; i++) { for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + pregions[i].mr_size; pa += moea64_large_page_size) { pte_lo = LPTE_M; if (pa & moea64_large_page_mask) { pa &= moea64_large_page_mask; pte_lo |= LPTE_G; } if (pa + moea64_large_page_size > pregions[i].mr_start + pregions[i].mr_size) pte_lo |= LPTE_G; moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1); } } PMAP_UNLOCK(kernel_pmap); } /* * Make sure the kernel and BPVO pool stay mapped on systems either * without a direct map or on which the kernel is not already executing * out of the direct-mapped region. */ if (kernelstart < DMAP_BASE_ADDRESS) { /* * For pre-dmap execution, we need to use identity mapping * because we will be operating with the mmu on but in the * wrong address configuration until we __restartkernel(). */ for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE) moea64_kenter(pa, pa); } else if (!hw_direct_map) { pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS; pkernelend = kernelend & ~DMAP_BASE_ADDRESS; for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend; pa += PAGE_SIZE) moea64_kenter(pa | DMAP_BASE_ADDRESS, pa); } if (!hw_direct_map) { size = moea64_bpvo_pool_size*sizeof(struct pvo_entry); off = (vm_offset_t)(moea64_bpvo_pool); for (pa = off; pa < off + size; pa += PAGE_SIZE) moea64_kenter(pa, pa); /* Map exception vectors */ for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE) moea64_kenter(pa | DMAP_BASE_ADDRESS, pa); } ENABLE_TRANS(msr); /* * Allow user to override unmapped_buf_allowed for testing. * XXXKIB Only direct map implementation was tested. */ if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed", &unmapped_buf_allowed)) unmapped_buf_allowed = hw_direct_map; } /* Quick sort callout for comparing physical addresses. */ static int pa_cmp(const void *a, const void *b) { const vm_paddr_t *pa = a, *pb = b; if (*pa < *pb) return (-1); else if (*pa > *pb) return (1); else return (0); } void moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) { int i, j; vm_size_t physsz, hwphyssz; vm_paddr_t kernelphysstart, kernelphysend; int rm_pavail; /* Level 0 reservations consist of 4096 pages (16MB superpage). */ vm_level_0_order = 12; #ifndef __powerpc64__ /* We don't have a direct map since there is no BAT */ hw_direct_map = 0; /* Make sure battable is zero, since we have no BAT */ for (i = 0; i < 16; i++) { battable[i].batu = 0; battable[i].batl = 0; } #else /* Install trap handlers for SLBs */ bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap); bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap); __syncicache((void *)EXC_DSE, 0x80); __syncicache((void *)EXC_ISE, 0x80); #endif kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS; kernelphysend = kernelend & ~DMAP_BASE_ADDRESS; /* Get physical memory regions from firmware */ mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); if (PHYS_AVAIL_ENTRIES < regions_sz) panic("moea64_bootstrap: phys_avail too small"); phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); for (i = 0, j = 0; i < regions_sz; i++, j += 2) { CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)", regions[i].mr_start, regions[i].mr_start + regions[i].mr_size, regions[i].mr_size); if (hwphyssz != 0 && (physsz + regions[i].mr_size) >= hwphyssz) { if (physsz < hwphyssz) { phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; dump_avail[j] = phys_avail[j]; dump_avail[j + 1] = phys_avail[j + 1]; } break; } phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; phys_avail_count++; physsz += regions[i].mr_size; dump_avail[j] = phys_avail[j]; dump_avail[j + 1] = phys_avail[j + 1]; } /* Check for overlap with the kernel and exception vectors */ rm_pavail = 0; for (j = 0; j < 2*phys_avail_count; j+=2) { if (phys_avail[j] < EXC_LAST) phys_avail[j] += EXC_LAST; if (phys_avail[j] >= kernelphysstart && phys_avail[j+1] <= kernelphysend) { phys_avail[j] = phys_avail[j+1] = ~0; rm_pavail++; continue; } if (kernelphysstart >= phys_avail[j] && kernelphysstart < phys_avail[j+1]) { if (kernelphysend < phys_avail[j+1]) { phys_avail[2*phys_avail_count] = (kernelphysend & ~PAGE_MASK) + PAGE_SIZE; phys_avail[2*phys_avail_count + 1] = phys_avail[j+1]; phys_avail_count++; } phys_avail[j+1] = kernelphysstart & ~PAGE_MASK; } if (kernelphysend >= phys_avail[j] && kernelphysend < phys_avail[j+1]) { if (kernelphysstart > phys_avail[j]) { phys_avail[2*phys_avail_count] = phys_avail[j]; phys_avail[2*phys_avail_count + 1] = kernelphysstart & ~PAGE_MASK; phys_avail_count++; } phys_avail[j] = (kernelphysend & ~PAGE_MASK) + PAGE_SIZE; } } /* Remove physical available regions marked for removal (~0) */ if (rm_pavail) { qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]), pa_cmp); phys_avail_count -= rm_pavail; for (i = 2*phys_avail_count; i < 2*(phys_avail_count + rm_pavail); i+=2) phys_avail[i] = phys_avail[i+1] = 0; } physmem = btoc(physsz); #ifdef PTEGCOUNT moea64_pteg_count = PTEGCOUNT; #else moea64_pteg_count = 0x1000; while (moea64_pteg_count < physmem) moea64_pteg_count <<= 1; moea64_pteg_count >>= 1; #endif /* PTEGCOUNT */ } void moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) { int i; /* * Set PTEG mask */ moea64_pteg_mask = moea64_pteg_count - 1; /* * Initialize SLB table lock and page locks */ mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); for (i = 0; i < PV_LOCK_COUNT; i++) mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF); /* * Initialise the bootstrap pvo pool. */ TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size); if (moea64_bpvo_pool_size == 0) { if (!hw_direct_map) moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) / (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR; else moea64_bpvo_pool_size = BPVO_POOL_SIZE; } if (boothowto & RB_VERBOSE) { printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n", moea64_bpvo_pool_size, moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576); } moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE); moea64_bpvo_pool_index = 0; /* Place at address usable through the direct map */ if (hw_direct_map) moea64_bpvo_pool = (struct pvo_entry *) PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool); /* * Make sure kernel vsid is allocated as well as VSID 0. */ #ifndef __powerpc64__ moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); moea64_vsid_bitmap[0] |= 1; #endif /* * Initialize the kernel pmap (which is statically allocated). */ #ifdef __powerpc64__ for (i = 0; i < 64; i++) { pcpup->pc_aim.slb[i].slbv = 0; pcpup->pc_aim.slb[i].slbe = 0; } #else for (i = 0; i < 16; i++) kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; #endif kernel_pmap->pmap_phys = kernel_pmap; CPU_FILL(&kernel_pmap->pm_active); RB_INIT(&kernel_pmap->pmap_pvo); PMAP_LOCK_INIT(kernel_pmap); /* * Now map in all the other buffers we allocated earlier */ moea64_setup_direct_map(kernelstart, kernelend); } void moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) { ihandle_t mmui; phandle_t chosen; phandle_t mmu; ssize_t sz; int i; vm_offset_t pa, va; void *dpcpu; /* * Set up the Open Firmware pmap and add its mappings if not in real * mode. */ chosen = OF_finddevice("/chosen"); if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) { mmu = OF_instance_to_package(mmui); if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1) sz = 0; if (sz > 6144 /* tmpstksz - 2 KB headroom */) panic("moea64_bootstrap: too many ofw translations"); if (sz > 0) moea64_add_ofw_mappings(mmu, sz); } /* * Calculate the last available physical address. */ Maxmem = 0; for (i = 0; phys_avail[i + 1] != 0; i += 2) Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1])); /* * Initialize MMU. */ pmap_cpu_bootstrap(0); mtmsr(mfmsr() | PSL_DR | PSL_IR); pmap_bootstrapped++; /* * Set the start and end of kva. */ virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; /* * Map the entire KVA range into the SLB. We must not fault there. */ #ifdef __powerpc64__ for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) moea64_bootstrap_slb_prefault(va, 0); #endif /* * Remap any early IO mappings (console framebuffer, etc.) */ bs_remap_earlyboot(); /* * Figure out how far we can extend virtual_end into segment 16 * without running into existing mappings. Segment 16 is guaranteed * to contain neither RAM nor devices (at least on Apple hardware), * but will generally contain some OFW mappings we should not * step on. */ #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ PMAP_LOCK(kernel_pmap); while (virtual_end < VM_MAX_KERNEL_ADDRESS && moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) virtual_end += PAGE_SIZE; PMAP_UNLOCK(kernel_pmap); #endif /* * Allocate a kernel stack with a guard page for thread0 and map it * into the kernel page map. */ pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE); va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; virtual_avail = va + kstack_pages * PAGE_SIZE; CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); thread0.td_kstack = va; thread0.td_kstack_pages = kstack_pages; for (i = 0; i < kstack_pages; i++) { moea64_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the message buffer. */ pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); msgbufp = (struct msgbuf *)virtual_avail; va = virtual_avail; virtual_avail += round_page(msgbufsize); while (va < virtual_avail) { moea64_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the dynamic percpu area. */ pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); dpcpu = (void *)virtual_avail; va = virtual_avail; virtual_avail += DPCPU_SIZE; while (va < virtual_avail) { moea64_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } dpcpu_init(dpcpu, curcpu); crashdumpmap = (caddr_t)virtual_avail; virtual_avail += MAXDUMPPGS * PAGE_SIZE; /* * Allocate some things for page zeroing. We put this directly * in the page table and use MOEA64_PTE_REPLACE to avoid any * of the PVO book-keeping or other parts of the VM system * from even knowing that this hack exists. */ if (!hw_direct_map) { mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF); for (i = 0; i < 2; i++) { moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; virtual_end -= PAGE_SIZE; moea64_kenter(moea64_scratchpage_va[i], 0); PMAP_LOCK(kernel_pmap); moea64_scratchpage_pvo[i] = moea64_pvo_find_va( kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); PMAP_UNLOCK(kernel_pmap); } } numa_mem_regions(&numa_pregions, &numapregions_sz); } static void moea64_pmap_init_qpages(void) { struct pcpu *pc; int i; if (hw_direct_map) return; CPU_FOREACH(i) { pc = pcpu_find(i); pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); if (pc->pc_qmap_addr == 0) panic("pmap_init_qpages: unable to allocate KVA"); PMAP_LOCK(kernel_pmap); pc->pc_aim.qmap_pvo = moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr); PMAP_UNLOCK(kernel_pmap); mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF); } } SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL); /* * Activate a user pmap. This mostly involves setting some non-CPU * state. */ void moea64_activate(struct thread *td) { pmap_t pm; pm = &td->td_proc->p_vmspace->vm_pmap; CPU_SET(PCPU_GET(cpuid), &pm->pm_active); #ifdef __powerpc64__ PCPU_SET(aim.userslb, pm->pm_slb); __asm __volatile("slbmte %0, %1; isync" :: "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE)); #else PCPU_SET(curpmap, pm->pmap_phys); mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid); #endif } void moea64_deactivate(struct thread *td) { pmap_t pm; __asm __volatile("isync; slbie %0" :: "r"(USER_ADDR)); pm = &td->td_proc->p_vmspace->vm_pmap; CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); #ifdef __powerpc64__ PCPU_SET(aim.userslb, NULL); #else PCPU_SET(curpmap, NULL); #endif } void moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry key, *pvo; vm_page_t m; int64_t refchg; key.pvo_vaddr = sva; PMAP_LOCK(pm); for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { if (PVO_IS_SP(pvo)) { if (moea64_sp_pvo_in_range(pvo, sva, eva)) { pvo = moea64_sp_unwire(pvo); continue; } else { CTR1(KTR_PMAP, "%s: demote before unwire", __func__); moea64_sp_demote(pvo); } } if ((pvo->pvo_vaddr & PVO_WIRED) == 0) panic("moea64_unwire: pvo %p is missing PVO_WIRED", pvo); pvo->pvo_vaddr &= ~PVO_WIRED; refchg = moea64_pte_replace(pvo, 0 /* No invalidation */); if ((pvo->pvo_vaddr & PVO_MANAGED) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { if (refchg < 0) refchg = LPTE_CHG; m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); refchg |= atomic_readandclear_32(&m->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(m); if (refchg & LPTE_REF) vm_page_aflag_set(m, PGA_REFERENCED); } pm->pm_stats.wired_count--; } PMAP_UNLOCK(pm); } static int moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap) { struct pvo_entry *pvo; vm_paddr_t pa; vm_page_t m; int val; bool managed; PMAP_LOCK(pmap); pvo = moea64_pvo_find_va(pmap, addr); if (pvo != NULL) { pa = PVO_PADDR(pvo); m = PHYS_TO_VM_PAGE(pa); managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED; if (PVO_IS_SP(pvo)) val = MINCORE_INCORE | MINCORE_PSIND(1); else val = MINCORE_INCORE; } else { PMAP_UNLOCK(pmap); return (0); } PMAP_UNLOCK(pmap); if (m == NULL) return (0); if (managed) { if (moea64_is_modified(m)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if (moea64_is_referenced(m)) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) { *pap = pa; } return (val); } /* * This goes through and sets the physical address of our * special scratch PTE to the PA we want to zero or copy. Because * of locking issues (this can get called in pvo_enter() by * the UMA allocator), we can't use most other utility functions here */ static __inline void moea64_set_scratchpage_pa(int which, vm_paddr_t pa) { struct pvo_entry *pvo; KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); pvo = moea64_scratchpage_pvo[which]; PMAP_LOCK(pvo->pvo_pmap); pvo->pvo_pte.pa = moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); PMAP_UNLOCK(pvo->pvo_pmap); isync(); } void moea64_copy_page(vm_page_t msrc, vm_page_t mdst) { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc)); moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst)); bcopy((void *)moea64_scratchpage_va[0], (void *)moea64_scratchpage_va[1], PAGE_SIZE); mtx_unlock(&moea64_scratchpage_mtx); } void moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst) { vm_offset_t dst; vm_offset_t src; dst = VM_PAGE_TO_PHYS(mdst); src = VM_PAGE_TO_PHYS(msrc); bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst), PAGE_SIZE); } inline void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); a_cp = (char *)(uintptr_t)PHYS_TO_DMAP( VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); b_cp = (char *)(uintptr_t)PHYS_TO_DMAP( VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } } void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; mtx_lock(&moea64_scratchpage_mtx); while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } mtx_unlock(&moea64_scratchpage_mtx); } void moea64_zero_page_area(vm_page_t m, int off, int size) { vm_paddr_t pa = VM_PAGE_TO_PHYS(m); if (size + off > PAGE_SIZE) panic("moea64_zero_page: size + off > PAGE_SIZE"); if (hw_direct_map) { bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size); } else { mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(0, pa); bzero((caddr_t)moea64_scratchpage_va[0] + off, size); mtx_unlock(&moea64_scratchpage_mtx); } } /* * Zero a page of physical memory by temporarily mapping it */ void moea64_zero_page(vm_page_t m) { vm_paddr_t pa = VM_PAGE_TO_PHYS(m); vm_offset_t va, off; mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(0, pa); va = moea64_scratchpage_va[0]; for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(va + off)); mtx_unlock(&moea64_scratchpage_mtx); } void moea64_zero_page_dmap(vm_page_t m) { vm_paddr_t pa = VM_PAGE_TO_PHYS(m); vm_offset_t va, off; va = PHYS_TO_DMAP(pa); for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(va + off)); } vm_offset_t moea64_quick_enter_page(vm_page_t m) { struct pvo_entry *pvo; vm_paddr_t pa = VM_PAGE_TO_PHYS(m); /* * MOEA64_PTE_REPLACE does some locking, so we can't just grab * a critical section and access the PCPU data like on i386. * Instead, pin the thread and grab the PCPU lock to prevent * a preempting thread from using the same PCPU data. */ sched_pin(); mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED); pvo = PCPU_GET(aim.qmap_pvo); mtx_lock(PCPU_PTR(aim.qmap_lock)); pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) | (uint64_t)pa; moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); isync(); return (PCPU_GET(qmap_addr)); } vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m) { return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); } void moea64_quick_remove_page(vm_offset_t addr) { mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED); KASSERT(PCPU_GET(qmap_addr) == addr, ("moea64_quick_remove_page: invalid address")); mtx_unlock(PCPU_PTR(aim.qmap_lock)); sched_unpin(); } boolean_t moea64_page_is_mapped(vm_page_t m) { return (!LIST_EMPTY(&(m)->md.mdpg_pvoh)); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. */ int moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { struct pvo_entry *pvo, *oldpvo, *tpvo; struct pvo_head *pvo_head; uint64_t pte_lo; int error; vm_paddr_t pa; if ((m->oflags & VPO_UNMANAGED) == 0) { if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0) VM_PAGE_OBJECT_BUSY_ASSERT(m); else VM_OBJECT_ASSERT_LOCKED(m->object); } if (psind > 0) return (moea64_sp_enter(pmap, va, m, prot, flags, psind)); pvo = alloc_pvo_entry(0); if (pvo == NULL) return (KERN_RESOURCE_SHORTAGE); pvo->pvo_pmap = NULL; /* to be filled in later */ pvo->pvo_pte.prot = prot; pa = VM_PAGE_TO_PHYS(m); pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m)); pvo->pvo_pte.pa = pa | pte_lo; if ((flags & PMAP_ENTER_WIRED) != 0) pvo->pvo_vaddr |= PVO_WIRED; if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) { pvo_head = NULL; } else { pvo_head = &m->md.mdpg_pvoh; pvo->pvo_vaddr |= PVO_MANAGED; } PV_LOCK(pa); PMAP_LOCK(pmap); if (pvo->pvo_pmap == NULL) init_pvo_entry(pvo, pmap, va); if (moea64_ps_enabled(pmap) && (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL && PVO_IS_SP(tpvo)) { /* Demote SP before entering a regular page */ CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx", __func__, (uintmax_t)va); moea64_sp_demote_aligned(tpvo); } if (prot & VM_PROT_WRITE) if (pmap_bootstrapped && (m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); error = moea64_pvo_enter(pvo, pvo_head, &oldpvo); if (error == EEXIST) { if (oldpvo->pvo_vaddr == pvo->pvo_vaddr && oldpvo->pvo_pte.pa == pvo->pvo_pte.pa && oldpvo->pvo_pte.prot == prot) { /* Identical mapping already exists */ error = 0; /* If not in page table, reinsert it */ if (moea64_pte_synch(oldpvo) < 0) { STAT_MOEA64(moea64_pte_overflow--); moea64_pte_insert(oldpvo); } /* Then just clean up and go home */ PMAP_UNLOCK(pmap); PV_UNLOCK(pa); free_pvo_entry(pvo); pvo = NULL; goto out; } else { /* Otherwise, need to kill it first */ KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old " "mapping does not match new mapping")); moea64_pvo_remove_from_pmap(oldpvo); moea64_pvo_enter(pvo, pvo_head, NULL); } } PMAP_UNLOCK(pmap); PV_UNLOCK(pa); /* Free any dead pages */ if (error == EEXIST) { moea64_pvo_remove_from_page(oldpvo); free_pvo_entry(oldpvo); } out: /* * Flush the page from the instruction cache if this page is * mapped executable and cacheable. */ if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 && (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { vm_page_aflag_set(m, PGA_EXECUTABLE); moea64_syncicache(pmap, va, pa, PAGE_SIZE); } #if VM_NRESERVLEVEL > 0 /* * Try to promote pages. * * If the VA of the entered page is not aligned with its PA, * don't try page promotion as it is not possible. * This reduces the number of promotion failures dramatically. */ if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL && (pvo->pvo_vaddr & PVO_MANAGED) != 0 && (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) && (m->flags & PG_FICTITIOUS) == 0 && vm_reserv_level_iffullpop(m) == 0) moea64_sp_promote(pmap, va, m); #endif return (KERN_SUCCESS); } static void moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, vm_size_t sz) { /* * This is much trickier than on older systems because * we can't sync the icache on physical addresses directly * without a direct map. Instead we check a couple of cases * where the memory is already mapped in and, failing that, * use the same trick we use for page zeroing to create * a temporary mapping for this physical address. */ if (!pmap_bootstrapped) { /* * If PMAP is not bootstrapped, we are likely to be * in real mode. */ __syncicache((void *)(uintptr_t)pa, sz); } else if (pmap == kernel_pmap) { __syncicache((void *)va, sz); } else if (hw_direct_map) { __syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz); } else { /* Use the scratch page to set up a temp mapping */ mtx_lock(&moea64_scratchpage_mtx); moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF); __syncicache((void *)(moea64_scratchpage_va[1] + (va & ADDR_POFF)), sz); mtx_unlock(&moea64_scratchpage_mtx); } } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; vm_offset_t va; int8_t psind; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); m = m_start; while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { va = start + ptoa(diff); if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end && m->psind == 1 && moea64_ps_enabled(pm)) psind = 1; else psind = 0; moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind); if (psind == 1) m = &m[HPT_SP_SIZE / PAGE_SIZE - 1]; m = TAILQ_NEXT(m, listq); } } void moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot) { moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0); } vm_paddr_t moea64_extract(pmap_t pm, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; PMAP_LOCK(pm); pvo = moea64_pvo_find_va(pm, va); if (pvo == NULL) pa = 0; else pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo)); PMAP_UNLOCK(pm); return (pa); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ vm_page_t moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { struct pvo_entry *pvo; vm_page_t m; m = NULL; PMAP_LOCK(pmap); pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) { m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); if (!vm_page_wire_mapped(m)) m = NULL; } PMAP_UNLOCK(pmap); return (m); } static void * moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, int wait) { struct pvo_entry *pvo; vm_offset_t va; vm_page_t m; int needed_lock; /* * This entire routine is a horrible hack to avoid bothering kmem * for new KVA addresses. Because this can get called from inside * kmem allocation routines, calling kmem for a new address here * can lead to multiply locking non-recursive mutexes. */ *flags = UMA_SLAB_PRIV; needed_lock = !PMAP_LOCKED(kernel_pmap); m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) | VM_ALLOC_WIRED); if (m == NULL) return (NULL); va = VM_PAGE_TO_PHYS(m); pvo = alloc_pvo_entry(1 /* bootstrap */); pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE; pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M; if (needed_lock) PMAP_LOCK(kernel_pmap); init_pvo_entry(pvo, kernel_pmap, va); pvo->pvo_vaddr |= PVO_WIRED; moea64_pvo_enter(pvo, NULL, NULL); if (needed_lock) PMAP_UNLOCK(kernel_pmap); return (void *)va; } extern int elf32_nxstack; void moea64_init() { CTR0(KTR_PMAP, "moea64_init"); moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); /* * Are large page mappings enabled? * * While HPT superpages are not better tested, leave it disabled by * default. */ superpages_enabled = 0; TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled); if (superpages_enabled) { KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0, ("moea64_init: can't assign to pagesizes[1]")); if (moea64_large_page_size == 0) { printf("mmu_oea64: HW does not support large pages. " "Disabling superpages...\n"); superpages_enabled = 0; } else if (!moea64_has_lp_4k_16m) { printf("mmu_oea64: " "HW does not support mixed 4KB/16MB page sizes. " "Disabling superpages...\n"); superpages_enabled = 0; } else pagesizes[1] = HPT_SP_SIZE; } if (!hw_direct_map) { uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc); } #ifdef COMPAT_FREEBSD32 elf32_nxstack = 1; #endif moea64_initialized = TRUE; } boolean_t moea64_is_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_is_referenced: page %p is not managed", m)); return (moea64_query_bit(m, LPTE_REF)); } boolean_t moea64_is_modified(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_is_modified: page %p is not managed", m)); /* * If the page is not busied then this check is racy. */ if (!pmap_page_is_write_mapped(m)) return (FALSE); return (moea64_query_bit(m, LPTE_CHG)); } boolean_t moea64_is_prefaultable(pmap_t pmap, vm_offset_t va) { struct pvo_entry *pvo; boolean_t rv = TRUE; PMAP_LOCK(pmap); pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); if (pvo != NULL) rv = FALSE; PMAP_UNLOCK(pmap); return (rv); } void moea64_clear_modify(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_clear_modify: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; moea64_clear_bit(m, LPTE_CHG); } /* * Clear the write and modified bits in each of the given page's mappings. */ void moea64_remove_write(vm_page_t m) { struct pvo_entry *pvo; int64_t refchg, ret; pmap_t pmap; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_remove_write: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; powerpc_sync(); PV_PAGE_LOCK(m); refchg = 0; LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); if (!(pvo->pvo_vaddr & PVO_DEAD) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { if (PVO_IS_SP(pvo)) { CTR1(KTR_PMAP, "%s: demote before remwr", __func__); moea64_sp_demote(pvo); } pvo->pvo_pte.prot &= ~VM_PROT_WRITE; ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); if (ret < 0) ret = LPTE_CHG; refchg |= ret; if (pvo->pvo_pmap == kernel_pmap) isync(); } PMAP_UNLOCK(pmap); } if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG) vm_page_dirty(m); vm_page_aflag_clear(m, PGA_WRITEABLE); PV_PAGE_UNLOCK(m); } /* * moea64_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ int moea64_ts_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_ts_referenced: page %p is not managed", m)); return (moea64_clear_bit(m, LPTE_REF)); } /* * Modify the WIMG settings of all mappings for a page. */ void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma) { struct pvo_entry *pvo; int64_t refchg; pmap_t pmap; uint64_t lo; CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x", __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma); if ((m->oflags & VPO_UNMANAGED) != 0) { m->md.mdpg_cache_attrs = ma; return; } lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); if (!(pvo->pvo_vaddr & PVO_DEAD)) { if (PVO_IS_SP(pvo)) { CTR1(KTR_PMAP, "%s: demote before set_memattr", __func__); moea64_sp_demote(pvo); } pvo->pvo_pte.pa &= ~LPTE_WIMG; pvo->pvo_pte.pa |= lo; refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); if (refchg < 0) refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ? LPTE_CHG : 0; if ((pvo->pvo_vaddr & PVO_MANAGED) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { refchg |= atomic_readandclear_32(&m->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(m); if (refchg & LPTE_REF) vm_page_aflag_set(m, PGA_REFERENCED); } if (pvo->pvo_pmap == kernel_pmap) isync(); } PMAP_UNLOCK(pmap); } m->md.mdpg_cache_attrs = ma; PV_PAGE_UNLOCK(m); } /* * Map a wired page into kernel virtual address space. */ void moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) { int error; struct pvo_entry *pvo, *oldpvo; do { pvo = alloc_pvo_entry(0); if (pvo == NULL) vm_wait(NULL); } while (pvo == NULL); pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma); pvo->pvo_vaddr |= PVO_WIRED; PMAP_LOCK(kernel_pmap); oldpvo = moea64_pvo_find_va(kernel_pmap, va); if (oldpvo != NULL) moea64_pvo_remove_from_pmap(oldpvo); init_pvo_entry(pvo, kernel_pmap, va); error = moea64_pvo_enter(pvo, NULL, NULL); PMAP_UNLOCK(kernel_pmap); /* Free any dead pages */ if (oldpvo != NULL) { moea64_pvo_remove_from_page(oldpvo); free_pvo_entry(oldpvo); } if (error != 0) panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va, (uintmax_t)pa, error); } void moea64_kenter(vm_offset_t va, vm_paddr_t pa) { moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT); } /* * Extract the physical page address associated with the given kernel virtual * address. */ vm_paddr_t moea64_kextract(vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; /* * Shortcut the direct-mapped case when applicable. We never put * anything but 1:1 (or 62-bit aliased) mappings below * VM_MIN_KERNEL_ADDRESS. */ if (va < VM_MIN_KERNEL_ADDRESS) return (va & ~DMAP_BASE_ADDRESS); PMAP_LOCK(kernel_pmap); pvo = moea64_pvo_find_va(kernel_pmap, va); KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, va)); pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo)); PMAP_UNLOCK(kernel_pmap); return (pa); } /* * Remove a wired page from kernel virtual address space. */ void moea64_kremove(vm_offset_t va) { moea64_remove(kernel_pmap, va, va + PAGE_SIZE); } /* * Provide a kernel pointer corresponding to a given userland pointer. * The returned pointer is valid until the next time this function is * called in this thread. This is used internally in copyin/copyout. */ static int moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen) { size_t l; #ifdef __powerpc64__ struct slb *slb; #endif register_t slbv; *kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK); l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr); if (l > ulen) l = ulen; if (klen) *klen = l; else if (l != ulen) return (EFAULT); #ifdef __powerpc64__ /* Try lockless look-up first */ slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr); if (slb == NULL) { /* If it isn't there, we need to pre-fault the VSID */ PMAP_LOCK(pm); slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT; PMAP_UNLOCK(pm); } else { slbv = slb->slbv; } /* Mark segment no-execute */ slbv |= SLBV_N; #else slbv = va_to_vsid(pm, (vm_offset_t)uaddr); /* Mark segment no-execute */ slbv |= SR_N; #endif /* If we have already set this VSID, we can just return */ if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv) return (0); __asm __volatile("isync"); curthread->td_pcb->pcb_cpu.aim.usr_segm = (uintptr_t)uaddr >> ADDR_SR_SHFT; curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv; #ifdef __powerpc64__ __asm __volatile ("slbie %0; slbmte %1, %2; isync" :: "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE)); #else __asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv)); #endif return (0); } /* * Figure out where a given kernel pointer (usually in a fault) points * to from the VM's perspective, potentially remapping into userland's * address space. */ static int moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr) { vm_offset_t user_sr; if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) { user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm; addr &= ADDR_PIDX | ADDR_POFF; addr |= user_sr << ADDR_SR_SHFT; *decoded_addr = addr; *is_user = 1; } else { *decoded_addr = addr; *is_user = 0; } return (0); } /* * Map a range of physical addresses into kernel virtual address space. * * The value passed in *virt is a suggested virtual address for the mapping. * Architectures which can support a direct-mapped physical to virtual region * can return the appropriate address within that region, leaving '*virt' * unchanged. Other architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped region. */ vm_offset_t moea64_map(vm_offset_t *virt, vm_paddr_t pa_start, vm_paddr_t pa_end, int prot) { vm_offset_t sva, va; if (hw_direct_map) { /* * Check if every page in the region is covered by the direct * map. The direct map covers all of physical memory. Use * moea64_calc_wimg() as a shortcut to see if the page is in * physical memory as a way to see if the direct map covers it. */ for (va = pa_start; va < pa_end; va += PAGE_SIZE) if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M) break; if (va == pa_end) return (PHYS_TO_DMAP(pa_start)); } sva = *virt; va = sva; /* XXX respect prot argument */ for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) moea64_kenter(va, pa_start); *virt = va; return (sva); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t moea64_page_exists_quick(pmap_t pmap, vm_page_t m) { int loops; struct pvo_entry *pvo; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea64_page_exists_quick: page %p is not managed", m)); loops = 0; rv = FALSE; PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) { rv = TRUE; break; } if (++loops >= 16) break; } PV_PAGE_UNLOCK(m); return (rv); } void moea64_page_init(vm_page_t m) { m->md.mdpg_attrs = 0; m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT; LIST_INIT(&m->md.mdpg_pvoh); } /* * Return the number of managed mappings to the given physical page * that are wired. */ int moea64_page_wired_mappings(vm_page_t m) { struct pvo_entry *pvo; int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED) count++; PV_PAGE_UNLOCK(m); return (count); } static uintptr_t moea64_vsidcontext; uintptr_t moea64_get_unique_vsid(void) { u_int entropy; register_t hash; uint32_t mask; int i; entropy = 0; __asm __volatile("mftb %0" : "=r"(entropy)); mtx_lock(&moea64_slb_mutex); for (i = 0; i < NVSIDS; i += VSID_NBPW) { u_int n; /* * Create a new value by mutiplying by a prime and adding in * entropy from the timebase register. This is to make the * VSID more random so that the PT hash function collides * less often. (Note that the prime casues gcc to do shifts * instead of a multiply.) */ moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; hash = moea64_vsidcontext & (NVSIDS - 1); if (hash == 0) /* 0 is special, avoid it */ continue; n = hash >> 5; mask = 1 << (hash & (VSID_NBPW - 1)); hash = (moea64_vsidcontext & VSID_HASHMASK); if (moea64_vsid_bitmap[n] & mask) { /* collision? */ /* anything free in this bucket? */ if (moea64_vsid_bitmap[n] == 0xffffffff) { entropy = (moea64_vsidcontext >> 20); continue; } i = ffs(~moea64_vsid_bitmap[n]) - 1; mask = 1 << i; hash &= rounddown2(VSID_HASHMASK, VSID_NBPW); hash |= i; } if (hash == VSID_VRMA) /* also special, avoid this too */ continue; KASSERT(!(moea64_vsid_bitmap[n] & mask), ("Allocating in-use VSID %#zx\n", hash)); moea64_vsid_bitmap[n] |= mask; mtx_unlock(&moea64_slb_mutex); return (hash); } mtx_unlock(&moea64_slb_mutex); panic("%s: out of segments",__func__); } #ifdef __powerpc64__ int moea64_pinit(pmap_t pmap) { RB_INIT(&pmap->pmap_pvo); pmap->pm_slb_tree_root = slb_alloc_tree(); pmap->pm_slb = slb_alloc_user_cache(); pmap->pm_slb_len = 0; return (1); } #else int moea64_pinit(pmap_t pmap) { int i; uint32_t hash; RB_INIT(&pmap->pmap_pvo); if (pmap_bootstrapped) pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap); else pmap->pmap_phys = pmap; /* * Allocate some segment registers for this pmap. */ hash = moea64_get_unique_vsid(); for (i = 0; i < 16; i++) pmap->pm_sr[i] = VSID_MAKE(i, hash); KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); return (1); } #endif /* * Initialize the pmap associated with process 0. */ void moea64_pinit0(pmap_t pm) { PMAP_LOCK_INIT(pm); moea64_pinit(pm); bzero(&pm->pm_stats, sizeof(pm->pm_stats)); } /* * Set the physical protection on the specified range of this map as requested. */ static void moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot) { struct vm_page *pg; vm_prot_t oldprot; int32_t refchg; PMAP_LOCK_ASSERT(pm, MA_OWNED); /* * Change the protection of the page. */ oldprot = pvo->pvo_pte.prot; pvo->pvo_pte.prot = prot; pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); /* * If the PVO is in the page table, update mapping */ refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); if (refchg < 0) refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0; if (pm != kernel_pmap && pg != NULL && (pg->a.flags & PGA_EXECUTABLE) == 0 && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { if ((pg->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(pg, PGA_EXECUTABLE); moea64_syncicache(pm, PVO_VADDR(pvo), PVO_PADDR(pvo), PAGE_SIZE); } /* * Update vm about the REF/CHG bits if the page is managed and we have * removed write access. */ if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) && (oldprot & VM_PROT_WRITE)) { refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(pg); if (refchg & LPTE_REF) vm_page_aflag_set(pg, PGA_REFERENCED); } } void moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { struct pvo_entry *pvo, key; CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva, eva, prot); KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("moea64_protect: non current pmap")); if ((prot & VM_PROT_READ) == VM_PROT_NONE) { moea64_remove(pm, sva, eva); return; } PMAP_LOCK(pm); key.pvo_vaddr = sva; for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { if (PVO_IS_SP(pvo)) { if (moea64_sp_pvo_in_range(pvo, sva, eva)) { pvo = moea64_sp_protect(pvo, prot); continue; } else { CTR1(KTR_PMAP, "%s: demote before protect", __func__); moea64_sp_demote(pvo); } } moea64_pvo_protect(pm, pvo, prot); } PMAP_UNLOCK(pm); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ void moea64_qenter(vm_offset_t va, vm_page_t *m, int count) { while (count-- > 0) { moea64_kenter(va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by moea64_qenter. */ void moea64_qremove(vm_offset_t va, int count) { while (count-- > 0) { moea64_kremove(va); va += PAGE_SIZE; } } void moea64_release_vsid(uint64_t vsid) { int idx, mask; mtx_lock(&moea64_slb_mutex); idx = vsid & (NVSIDS-1); mask = 1 << (idx % VSID_NBPW); idx /= VSID_NBPW; KASSERT(moea64_vsid_bitmap[idx] & mask, ("Freeing unallocated VSID %#jx", vsid)); moea64_vsid_bitmap[idx] &= ~mask; mtx_unlock(&moea64_slb_mutex); } void moea64_release(pmap_t pmap) { /* * Free segment registers' VSIDs */ #ifdef __powerpc64__ slb_free_tree(pmap); slb_free_user_cache(pmap->pm_slb); #else KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); #endif } /* * Remove all pages mapped by the specified pmap */ void moea64_remove_pages(pmap_t pm) { struct pvo_entry *pvo, *tpvo; struct pvo_dlist tofree; SLIST_INIT(&tofree); PMAP_LOCK(pm); RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) { if (pvo->pvo_vaddr & PVO_WIRED) continue; /* * For locking reasons, remove this from the page table and * pmap, but save delinking from the vm_page for a second * pass */ moea64_pvo_remove_from_pmap(pvo); SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink); } PMAP_UNLOCK(pm); while (!SLIST_EMPTY(&tofree)) { pvo = SLIST_FIRST(&tofree); SLIST_REMOVE_HEAD(&tofree, pvo_dlink); moea64_pvo_remove_from_page(pvo); free_pvo_entry(pvo); } } static void moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva, struct pvo_dlist *tofree) { struct pvo_entry *pvo, *tpvo, key; PMAP_LOCK_ASSERT(pm, MA_OWNED); key.pvo_vaddr = sva; for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { if (PVO_IS_SP(pvo)) { if (moea64_sp_pvo_in_range(pvo, sva, eva)) { tpvo = moea64_sp_remove(pvo, tofree); continue; } else { CTR1(KTR_PMAP, "%s: demote before remove", __func__); moea64_sp_demote(pvo); } } tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); /* * For locking reasons, remove this from the page table and * pmap, but save delinking from the vm_page for a second * pass */ moea64_pvo_remove_from_pmap(pvo); SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink); } } /* * Remove the given range of addresses from the specified map. */ void moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry *pvo; struct pvo_dlist tofree; /* * Perform an unsynchronized read. This is, however, safe. */ if (pm->pm_stats.resident_count == 0) return; SLIST_INIT(&tofree); PMAP_LOCK(pm); moea64_remove_locked(pm, sva, eva, &tofree); PMAP_UNLOCK(pm); while (!SLIST_EMPTY(&tofree)) { pvo = SLIST_FIRST(&tofree); SLIST_REMOVE_HEAD(&tofree, pvo_dlink); moea64_pvo_remove_from_page(pvo); free_pvo_entry(pvo); } } /* * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() * will reflect changes in pte's back to the vm_page. */ void moea64_remove_all(vm_page_t m) { struct pvo_entry *pvo, *next_pvo; struct pvo_head freequeue; int wasdead; pmap_t pmap; LIST_INIT(&freequeue); PV_PAGE_LOCK(m); LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); wasdead = (pvo->pvo_vaddr & PVO_DEAD); if (!wasdead) { if (PVO_IS_SP(pvo)) { CTR1(KTR_PMAP, "%s: demote before remove_all", __func__); moea64_sp_demote(pvo); } moea64_pvo_remove_from_pmap(pvo); } moea64_pvo_remove_from_page_locked(pvo, m); if (!wasdead) LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink); PMAP_UNLOCK(pmap); } KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings")); KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable")); PV_PAGE_UNLOCK(m); /* Clean up UMA allocations */ LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo) free_pvo_entry(pvo); } /* * Allocate a physical page of memory directly from the phys_avail map. * Can only be called from moea64_bootstrap before avail start and end are * calculated. */ vm_offset_t moea64_bootstrap_alloc(vm_size_t size, vm_size_t align) { vm_offset_t s, e; int i, j; size = round_page(size); for (i = 0; phys_avail[i + 1] != 0; i += 2) { if (align != 0) s = roundup2(phys_avail[i], align); else s = phys_avail[i]; e = s + size; if (s < phys_avail[i] || e > phys_avail[i + 1]) continue; if (s + size > platform_real_maxaddr()) continue; if (s == phys_avail[i]) { phys_avail[i] += size; } else if (e == phys_avail[i + 1]) { phys_avail[i + 1] -= size; } else { for (j = phys_avail_count * 2; j > i; j -= 2) { phys_avail[j] = phys_avail[j - 2]; phys_avail[j + 1] = phys_avail[j - 1]; } phys_avail[i + 3] = phys_avail[i + 1]; phys_avail[i + 1] = s; phys_avail[i + 2] = e; phys_avail_count++; } return (s); } panic("moea64_bootstrap_alloc: could not allocate memory"); } static int moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head, struct pvo_entry **oldpvop) { struct pvo_entry *old_pvo; int err; PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); STAT_MOEA64(moea64_pvo_enter_calls++); /* * Add to pmap list */ old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); if (old_pvo != NULL) { if (oldpvop != NULL) *oldpvop = old_pvo; return (EEXIST); } if (pvo_head != NULL) { LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); } if (pvo->pvo_vaddr & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count++; pvo->pvo_pmap->pm_stats.resident_count++; /* * Insert it into the hardware page table */ err = moea64_pte_insert(pvo); if (err != 0) { panic("moea64_pvo_enter: overflow"); } STAT_MOEA64(moea64_pvo_entries++); if (pvo->pvo_pmap == kernel_pmap) isync(); #ifdef __powerpc64__ /* * Make sure all our bootstrap mappings are in the SLB as soon * as virtual memory is switched on. */ if (!pmap_bootstrapped) moea64_bootstrap_slb_prefault(PVO_VADDR(pvo), pvo->pvo_vaddr & PVO_LARGE); #endif return (0); } static void moea64_pvo_remove_from_pmap(struct pvo_entry *pvo) { struct vm_page *pg; int32_t refchg; KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap")); PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO")); /* * If there is an active pte entry, we need to deactivate it */ refchg = moea64_pte_unset(pvo); if (refchg < 0) { /* * If it was evicted from the page table, be pessimistic and * dirty the page. */ if (pvo->pvo_pte.prot & VM_PROT_WRITE) refchg = LPTE_CHG; else refchg = 0; } /* * Update our statistics. */ pvo->pvo_pmap->pm_stats.resident_count--; if (pvo->pvo_vaddr & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count--; /* * Remove this PVO from the pmap list. */ RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); /* * Mark this for the next sweep */ pvo->pvo_vaddr |= PVO_DEAD; /* Send RC bits to VM */ if ((pvo->pvo_vaddr & PVO_MANAGED) && (pvo->pvo_pte.prot & VM_PROT_WRITE)) { pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); if (pg != NULL) { refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(pg); if (refchg & LPTE_REF) vm_page_aflag_set(pg, PGA_REFERENCED); } } } static inline void moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo, vm_page_t m) { KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page")); /* Use NULL pmaps as a sentinel for races in page deletion */ if (pvo->pvo_pmap == NULL) return; pvo->pvo_pmap = NULL; /* * Update vm about page writeability/executability if managed */ PV_LOCKASSERT(PVO_PADDR(pvo)); if (pvo->pvo_vaddr & PVO_MANAGED) { if (m != NULL) { LIST_REMOVE(pvo, pvo_vlink); if (LIST_EMPTY(vm_page_to_pvoh(m))) vm_page_aflag_clear(m, PGA_WRITEABLE | PGA_EXECUTABLE); } } STAT_MOEA64(moea64_pvo_entries--); STAT_MOEA64(moea64_pvo_remove_calls++); } static void moea64_pvo_remove_from_page(struct pvo_entry *pvo) { vm_page_t pg = NULL; if (pvo->pvo_vaddr & PVO_MANAGED) pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); PV_LOCK(PVO_PADDR(pvo)); moea64_pvo_remove_from_page_locked(pvo, pg); PV_UNLOCK(PVO_PADDR(pvo)); } static struct pvo_entry * moea64_pvo_find_va(pmap_t pm, vm_offset_t va) { struct pvo_entry key; PMAP_LOCK_ASSERT(pm, MA_OWNED); key.pvo_vaddr = va & ~ADDR_POFF; return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key)); } static boolean_t moea64_query_bit(vm_page_t m, uint64_t ptebit) { struct pvo_entry *pvo; int64_t ret; boolean_t rv; vm_page_t sp; /* * See if this bit is stored in the page already. * * For superpages, the bit is stored in the first vm page. */ if ((m->md.mdpg_attrs & ptebit) != 0 || ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL && (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) == (ptebit | MDPG_ATTR_SP))) return (TRUE); /* * Examine each PTE. Sync so that any pending REF/CHG bits are * flushed to the PTEs. */ rv = FALSE; powerpc_sync(); PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { if (PVO_IS_SP(pvo)) { ret = moea64_sp_query(pvo, ptebit); /* * If SP was not demoted, check its REF/CHG bits here. */ if (ret != -1) { if ((ret & ptebit) != 0) { rv = TRUE; break; } continue; } /* else, fallthrough */ } ret = 0; /* * See if this pvo has a valid PTE. if so, fetch the * REF/CHG bits from the valid PTE. If the appropriate * ptebit is set, return success. */ PMAP_LOCK(pvo->pvo_pmap); if (!(pvo->pvo_vaddr & PVO_DEAD)) ret = moea64_pte_synch(pvo); PMAP_UNLOCK(pvo->pvo_pmap); if (ret > 0) { atomic_set_32(&m->md.mdpg_attrs, ret & (LPTE_CHG | LPTE_REF)); if (ret & ptebit) { rv = TRUE; break; } } } PV_PAGE_UNLOCK(m); return (rv); } static u_int moea64_clear_bit(vm_page_t m, u_int64_t ptebit) { u_int count; struct pvo_entry *pvo; int64_t ret; /* * Sync so that any pending REF/CHG bits are flushed to the PTEs (so * we can reset the right ones). */ powerpc_sync(); /* * For each pvo entry, clear the pte's ptebit. */ count = 0; PV_PAGE_LOCK(m); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { if (PVO_IS_SP(pvo)) { if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) { count += ret; continue; } } ret = 0; PMAP_LOCK(pvo->pvo_pmap); if (!(pvo->pvo_vaddr & PVO_DEAD)) ret = moea64_pte_clear(pvo, ptebit); PMAP_UNLOCK(pvo->pvo_pmap); if (ret > 0 && (ret & ptebit)) count++; } atomic_clear_32(&m->md.mdpg_attrs, ptebit); PV_PAGE_UNLOCK(m); return (count); } boolean_t moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size) { struct pvo_entry *pvo, key; vm_offset_t ppa; int error = 0; if (hw_direct_map && mem_valid(pa, size) == 0) return (0); PMAP_LOCK(kernel_pmap); ppa = pa & ~ADDR_POFF; key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa; for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key); ppa < pa + size; ppa += PAGE_SIZE, pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) { if (pvo == NULL || PVO_PADDR(pvo) != ppa) { error = EFAULT; break; } } PMAP_UNLOCK(kernel_pmap); return (error); } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) { vm_offset_t va, tmpva, ppa, offset; ppa = trunc_page(pa); offset = pa & PAGE_MASK; size = roundup2(offset + size, PAGE_SIZE); va = kva_alloc(size); if (!va) panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0;) { moea64_kenter_attr(tmpva, ppa, ma); size -= PAGE_SIZE; tmpva += PAGE_SIZE; ppa += PAGE_SIZE; } return ((void *)(va + offset)); } void * moea64_mapdev(vm_paddr_t pa, vm_size_t size) { return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT); } void moea64_unmapdev(vm_offset_t va, vm_size_t size) { vm_offset_t base, offset; base = trunc_page(va); offset = va & PAGE_MASK; size = roundup2(offset + size, PAGE_SIZE); moea64_qremove(base, atop(size)); kva_free(base, size); } void moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) { struct pvo_entry *pvo; vm_offset_t lim; vm_paddr_t pa; vm_size_t len; if (__predict_false(pm == NULL)) pm = &curthread->td_proc->p_vmspace->vm_pmap; PMAP_LOCK(pm); while (sz > 0) { lim = round_page(va+1); len = MIN(lim - va, sz); pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) { pa = PVO_PADDR(pvo) | (va & ADDR_POFF); moea64_syncicache(pm, va, pa, len); } va += len; sz -= len; } PMAP_UNLOCK(pm); } void moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va) { *va = (void *)(uintptr_t)pa; } extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; void moea64_scan_init() { struct pvo_entry *pvo; vm_offset_t va; int i; if (!do_minidump) { /* Initialize phys. segments for dumpsys(). */ memset(&dump_map, 0, sizeof(dump_map)); mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); for (i = 0; i < pregions_sz; i++) { dump_map[i].pa_start = pregions[i].mr_start; dump_map[i].pa_size = pregions[i].mr_size; } return; } /* Virtual segments for minidumps: */ memset(&dump_map, 0, sizeof(dump_map)); /* 1st: kernel .data and .bss. */ dump_map[0].pa_start = trunc_page((uintptr_t)_etext); dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start; /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr; dump_map[1].pa_size = round_page(msgbufp->msg_size); /* 3rd: kernel VM. */ va = dump_map[1].pa_start + dump_map[1].pa_size; /* Find start of next chunk (from va). */ while (va < virtual_end) { /* Don't dump the buffer cache. */ if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { va = kmi.buffer_eva; continue; } pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD)) break; va += PAGE_SIZE; } if (va < virtual_end) { dump_map[2].pa_start = va; va += PAGE_SIZE; /* Find last page in chunk. */ while (va < virtual_end) { /* Don't run into the buffer cache. */ if (va == kmi.buffer_sva) break; pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD)) break; va += PAGE_SIZE; } dump_map[2].pa_size = va - dump_map[2].pa_start; } } #ifdef __powerpc64__ static size_t moea64_scan_pmap(struct bitset *dump_bitset) { struct pvo_entry *pvo; vm_paddr_t pa, pa_end; vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp; uint64_t lpsize; lpsize = moea64_large_page_size; kstart = trunc_page((vm_offset_t)_etext); kend = round_page((vm_offset_t)_end); kstart_lp = kstart & ~moea64_large_page_mask; kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask; CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, " "kstart_lp=0x%016lx, kend_lp=0x%016lx", kstart, kend, kstart_lp, kend_lp); PMAP_LOCK(kernel_pmap); RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) { va = pvo->pvo_vaddr; if (va & PVO_DEAD) continue; /* Skip DMAP (except kernel area) */ if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) { if (va & PVO_LARGE) { pgva = va & ~moea64_large_page_mask; if (pgva < kstart_lp || pgva >= kend_lp) continue; } else { pgva = trunc_page(va); if (pgva < kstart || pgva >= kend) continue; } } pa = PVO_PADDR(pvo); if (va & PVO_LARGE) { pa_end = pa + lpsize; for (; pa < pa_end; pa += PAGE_SIZE) { if (vm_phys_is_dumpable(pa)) vm_page_dump_add(dump_bitset, pa); } } else { if (vm_phys_is_dumpable(pa)) vm_page_dump_add(dump_bitset, pa); } } PMAP_UNLOCK(kernel_pmap); return (sizeof(struct lpte) * moea64_pteg_count * 8); } static struct dump_context dump_ctx; static void * moea64_dump_pmap_init(unsigned blkpgs) { dump_ctx.ptex = 0; dump_ctx.ptex_end = moea64_pteg_count * 8; dump_ctx.blksz = blkpgs * PAGE_SIZE; return (&dump_ctx); } #else static size_t moea64_scan_pmap(struct bitset *dump_bitset __unused) { return (0); } static void * moea64_dump_pmap_init(unsigned blkpgs) { return (NULL); } #endif #ifdef __powerpc64__ static void moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages) { for (; npages > 0; --npages) { if (moea64_large_page_size != 0 && (pa & moea64_large_page_mask) == 0 && (va & moea64_large_page_mask) == 0 && npages >= (moea64_large_page_size >> PAGE_SHIFT)) { PMAP_LOCK(kernel_pmap); moea64_kenter_large(va, pa, 0, 0); PMAP_UNLOCK(kernel_pmap); pa += moea64_large_page_size; va += moea64_large_page_size; npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1; } else { moea64_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } } } static void moea64_page_array_startup(long pages) { long dom_pages[MAXMEMDOM]; vm_paddr_t pa; vm_offset_t va, vm_page_base; vm_size_t needed, size; long page; int domain; int i; vm_page_base = 0xd000000000000000ULL; /* Short-circuit single-domain systems. */ if (vm_ndomains == 1) { size = round_page(pages * sizeof(struct vm_page)); pa = vm_phys_early_alloc(0, size); vm_page_base = moea64_map(&vm_page_base, pa, pa + size, VM_PROT_READ | VM_PROT_WRITE); vm_page_array_size = pages; vm_page_array = (vm_page_t)vm_page_base; return; } page = 0; for (i = 0; i < MAXMEMDOM; i++) dom_pages[i] = 0; /* Now get the number of pages required per domain. */ for (i = 0; i < vm_phys_nsegs; i++) { domain = vm_phys_segs[i].domain; KASSERT(domain < MAXMEMDOM, ("Invalid vm_phys_segs NUMA domain %d!\n", domain)); /* Get size of vm_page_array needed for this segment. */ size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start); dom_pages[domain] += size; } for (i = 0; phys_avail[i + 1] != 0; i+= 2) { domain = vm_phys_domain(phys_avail[i]); KASSERT(domain < MAXMEMDOM, ("Invalid phys_avail NUMA domain %d!\n", domain)); size = btoc(phys_avail[i + 1] - phys_avail[i]); dom_pages[domain] += size; } /* * Map in chunks that can get us all 16MB pages. There will be some * overlap between domains, but that's acceptable for now. */ vm_page_array_size = 0; va = vm_page_base; for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) { if (dom_pages[i] == 0) continue; size = ulmin(pages - vm_page_array_size, dom_pages[i]); size = round_page(size * sizeof(struct vm_page)); needed = size; size = roundup2(size, moea64_large_page_size); pa = vm_phys_early_alloc(i, size); vm_page_array_size += size / sizeof(struct vm_page); moea64_map_range(va, pa, size >> PAGE_SHIFT); /* Scoot up domain 0, to reduce the domain page overlap. */ if (i == 0) vm_page_base += size - needed; va += size; } vm_page_array = (vm_page_t)vm_page_base; vm_page_array_size = pages; } #endif static int64_t moea64_null_method(void) { return (0); } static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags) { int64_t refchg; refchg = moea64_pte_unset(pvo); moea64_pte_insert(pvo); return (refchg); } struct moea64_funcs *moea64_ops; #define DEFINE_OEA64_IFUNC(ret, func, args, def) \ DEFINE_IFUNC(, ret, moea64_##func, args) { \ moea64_##func##_t f; \ if (moea64_ops == NULL) \ return ((moea64_##func##_t)def); \ f = moea64_ops->func; \ return (f != NULL ? f : (moea64_##func##_t)def);\ } void moea64_install(void) { #ifdef __powerpc64__ if (hw_direct_map == -1) { moea64_probe_large_page(); /* Use a direct map if we have large page support */ if (moea64_large_page_size > 0) hw_direct_map = 1; else hw_direct_map = 0; } #endif /* * Default to non-DMAP, and switch over to DMAP functions once we know * we have DMAP. */ if (hw_direct_map) { moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap; moea64_methods.quick_remove_page = NULL; moea64_methods.copy_page = moea64_copy_page_dmap; moea64_methods.zero_page = moea64_zero_page_dmap; moea64_methods.copy_pages = moea64_copy_pages_dmap; } } DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int), moea64_pte_replace_default) DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method) DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method) DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t), moea64_null_method) DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method) DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method) DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method) DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method) /* Superpage functions */ /* MMU interface */ static bool moea64_ps_enabled(pmap_t pmap) { return (superpages_enabled); } static void moea64_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { vm_offset_t sp_offset; if (size < HPT_SP_SIZE) return; CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx", __func__, (uintmax_t)offset, addr, (uintmax_t)size); if (object != NULL && (object->flags & OBJ_COLORED) != 0) offset += ptoa(object->pg_color); sp_offset = offset & HPT_SP_MASK; if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE || (*addr & HPT_SP_MASK) == sp_offset) return; if ((*addr & HPT_SP_MASK) < sp_offset) *addr = (*addr & ~HPT_SP_MASK) + sp_offset; else *addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset; } /* Helpers */ static __inline void moea64_pvo_cleanup(struct pvo_dlist *tofree) { struct pvo_entry *pvo; /* clean up */ while (!SLIST_EMPTY(tofree)) { pvo = SLIST_FIRST(tofree); SLIST_REMOVE_HEAD(tofree, pvo_dlink); if (pvo->pvo_vaddr & PVO_DEAD) moea64_pvo_remove_from_page(pvo); free_pvo_entry(pvo); } } static __inline uint16_t pvo_to_vmpage_flags(struct pvo_entry *pvo) { uint16_t flags; flags = 0; if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0) flags |= PGA_WRITEABLE; if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0) flags |= PGA_EXECUTABLE; return (flags); } /* * Check if the given pvo and its superpage are in sva-eva range. */ static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva) { vm_offset_t spva; spva = PVO_VADDR(pvo) & ~HPT_SP_MASK; if (spva >= sva && spva + HPT_SP_SIZE <= eva) { /* * Because this function is intended to be called from loops * that iterate over ordered pvo entries, if the condition * above is true then the pvo must be the first of its * superpage. */ KASSERT(PVO_VADDR(pvo) == spva, ("%s: unexpected unaligned superpage pvo", __func__)); return (true); } return (false); } /* * Update vm about the REF/CHG bits if the superpage is managed and * has (or had) write access. */ static void moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m, int64_t sp_refchg, vm_prot_t prot) { vm_page_t m_end; int64_t refchg; if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) { for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) { refchg = sp_refchg | atomic_readandclear_32(&m->md.mdpg_attrs); if (refchg & LPTE_CHG) vm_page_dirty(m); if (refchg & LPTE_REF) vm_page_aflag_set(m, PGA_REFERENCED); } } } /* Superpage ops */ static int moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { struct pvo_entry *pvo, **pvos; struct pvo_head *pvo_head; vm_offset_t sva; vm_page_t sm; vm_paddr_t pa, spa; bool sync; struct pvo_dlist tofree; int error, i; uint16_t aflags; KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned", __func__, (uintmax_t)va)); KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind)); KASSERT(m->psind == 1, ("%s: invalid m->psind: %d", __func__, m->psind)); KASSERT(pmap != kernel_pmap, ("%s: function called with kernel pmap", __func__)); CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1", __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m), prot, flags); SLIST_INIT(&tofree); sva = va; sm = m; spa = pa = VM_PAGE_TO_PHYS(sm); /* Try to allocate all PVOs first, to make failure handling easier. */ pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP, M_NOWAIT); if (pvos == NULL) { CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__); return (KERN_RESOURCE_SHORTAGE); } for (i = 0; i < HPT_SP_PAGES; i++) { pvos[i] = alloc_pvo_entry(0); if (pvos[i] == NULL) { CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__); for (i = i - 1; i >= 0; i--) free_pvo_entry(pvos[i]); free(pvos, M_TEMP); return (KERN_RESOURCE_SHORTAGE); } } SP_PV_LOCK_ALIGNED(spa); PMAP_LOCK(pmap); /* Note: moea64_remove_locked() also clears cached REF/CHG bits. */ moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree); /* Enter pages */ for (i = 0; i < HPT_SP_PAGES; i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) { pvo = pvos[i]; pvo->pvo_pte.prot = prot; pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M | moea64_calc_wimg(pa, pmap_page_get_memattr(m)); if ((flags & PMAP_ENTER_WIRED) != 0) pvo->pvo_vaddr |= PVO_WIRED; pvo->pvo_vaddr |= PVO_LARGE; if ((m->oflags & VPO_UNMANAGED) != 0) pvo_head = NULL; else { pvo_head = &m->md.mdpg_pvoh; pvo->pvo_vaddr |= PVO_MANAGED; } init_pvo_entry(pvo, pmap, va); error = moea64_pvo_enter(pvo, pvo_head, NULL); /* * All superpage PVOs were previously removed, so no errors * should occur while inserting the new ones. */ KASSERT(error == 0, ("%s: unexpected error " "when inserting superpage PVO: %d", __func__, error)); } PMAP_UNLOCK(pmap); SP_PV_UNLOCK_ALIGNED(spa); sync = (sm->a.flags & PGA_EXECUTABLE) == 0; /* Note: moea64_pvo_cleanup() also clears page prot. flags. */ moea64_pvo_cleanup(&tofree); pvo = pvos[0]; /* Set vm page flags */ aflags = pvo_to_vmpage_flags(pvo); if (aflags != 0) for (m = sm; m < &sm[HPT_SP_PAGES]; m++) vm_page_aflag_set(m, aflags); /* * Flush the page from the instruction cache if this page is * mapped executable and cacheable. */ if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE); atomic_add_long(&sp_mappings, 1); CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p", __func__, (uintmax_t)sva, pmap); free(pvos, M_TEMP); return (KERN_SUCCESS); } static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m) { struct pvo_entry *first, *pvo; vm_paddr_t pa, pa_end; vm_offset_t sva, va_end; int64_t sp_refchg; /* This CTR may generate a lot of output. */ /* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */ va &= ~HPT_SP_MASK; sva = va; /* Get superpage */ pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK; m = PHYS_TO_VM_PAGE(pa); PMAP_LOCK(pmap); /* * Check if all pages meet promotion criteria. * * XXX In some cases the loop below may be executed for each or most * of the entered pages of a superpage, which can be expensive * (although it was not profiled) and need some optimization. * * Some cases where this seems to happen are: * - When a superpage is first entered read-only and later becomes * read-write. * - When some of the superpage's virtual addresses map to previously * wired/cached pages while others map to pages allocated from a * different physical address range. A common scenario where this * happens is when mmap'ing a file that is already present in FS * block cache and doesn't fill a superpage. */ first = pvo = moea64_pvo_find_va(pmap, sva); for (pa_end = pa + HPT_SP_SIZE; pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) { if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) { CTR3(KTR_PMAP, "%s: NULL or dead PVO: pmap=%p, va=%#jx", __func__, pmap, (uintmax_t)va); goto error; } if (PVO_PADDR(pvo) != pa) { CTR5(KTR_PMAP, "%s: PAs don't match: " "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx", __func__, pmap, (uintmax_t)va, (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa); atomic_add_long(&sp_p_fail_pa, 1); goto error; } if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) != (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) { CTR5(KTR_PMAP, "%s: PVO flags don't match: " "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx", __func__, pmap, (uintmax_t)va, (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE), (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE)); atomic_add_long(&sp_p_fail_flags, 1); goto error; } if (first->pvo_pte.prot != pvo->pvo_pte.prot) { CTR5(KTR_PMAP, "%s: PVO protections don't match: " "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x", __func__, pmap, (uintmax_t)va, pvo->pvo_pte.prot, first->pvo_pte.prot); atomic_add_long(&sp_p_fail_prot, 1); goto error; } if ((first->pvo_pte.pa & LPTE_WIMG) != (pvo->pvo_pte.pa & LPTE_WIMG)) { CTR5(KTR_PMAP, "%s: WIMG bits don't match: " "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx", __func__, pmap, (uintmax_t)va, (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG), (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG)); atomic_add_long(&sp_p_fail_wimg, 1); goto error; } pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo); } /* All OK, promote. */ /* * Handle superpage REF/CHG bits. If REF or CHG is set in * any page, then it must be set in the superpage. * * Instead of querying each page, we take advantage of two facts: * 1- If a page is being promoted, it was referenced. * 2- If promoted pages are writable, they were modified. */ sp_refchg = LPTE_REF | ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0); /* Promote pages */ for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE; pvo != NULL && PVO_VADDR(pvo) < va_end; pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK; pvo->pvo_pte.pa |= LPTE_LP_4K_16M; pvo->pvo_vaddr |= PVO_LARGE; } moea64_pte_replace_sp(first); /* Send REF/CHG bits to VM */ moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot); /* Use first page to cache REF/CHG bits */ atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP); PMAP_UNLOCK(pmap); atomic_add_long(&sp_mappings, 1); atomic_add_long(&sp_promotions, 1); CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p", __func__, (uintmax_t)sva, pmap); return; error: atomic_add_long(&sp_p_failures, 1); PMAP_UNLOCK(pmap); } static void moea64_sp_demote_aligned(struct pvo_entry *sp) { struct pvo_entry *pvo; vm_offset_t va, va_end; vm_paddr_t pa; vm_page_t m; pmap_t pmap; int64_t refchg; CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); pmap = sp->pvo_pmap; PMAP_LOCK_ASSERT(pmap, MA_OWNED); pvo = sp; /* Demote pages */ va = PVO_VADDR(pvo); pa = PVO_PADDR(pvo); m = PHYS_TO_VM_PAGE(pa); for (pvo = sp, va_end = va + HPT_SP_SIZE; pvo != NULL && PVO_VADDR(pvo) < va_end; pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo), va += PAGE_SIZE, pa += PAGE_SIZE) { KASSERT(pvo && PVO_VADDR(pvo) == va, ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va)); pvo->pvo_vaddr &= ~PVO_LARGE; pvo->pvo_pte.pa &= ~LPTE_RPGN; pvo->pvo_pte.pa |= pa; } refchg = moea64_pte_replace_sp(sp); /* * Clear SP flag * * XXX It is possible that another pmap has this page mapped as * part of a superpage, but as the SP flag is used only for * caching SP REF/CHG bits, that will be queried if not set * in cache, it should be ok to clear it here. */ atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP); /* * Handle superpage REF/CHG bits. A bit set in the superpage * means all pages should consider it set. */ moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot); atomic_add_long(&sp_demotions, 1); CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p", __func__, (uintmax_t)PVO_VADDR(sp), pmap); } static void moea64_sp_demote(struct pvo_entry *pvo) { PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { pvo = moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK); KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx", __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); } moea64_sp_demote_aligned(pvo); } static struct pvo_entry * moea64_sp_unwire(struct pvo_entry *sp) { struct pvo_entry *pvo, *prev; vm_offset_t eva; pmap_t pm; int64_t ret, refchg; CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); pm = sp->pvo_pmap; PMAP_LOCK_ASSERT(pm, MA_OWNED); eva = PVO_VADDR(sp) + HPT_SP_SIZE; refchg = 0; for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { if ((pvo->pvo_vaddr & PVO_WIRED) == 0) panic("%s: pvo %p is missing PVO_WIRED", __func__, pvo); pvo->pvo_vaddr &= ~PVO_WIRED; ret = moea64_pte_replace(pvo, 0 /* No invalidation */); if (ret < 0) refchg |= LPTE_CHG; else refchg |= ret; pm->pm_stats.wired_count--; } /* Send REF/CHG bits to VM */ moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)), refchg, sp->pvo_pte.prot); return (prev); } static struct pvo_entry * moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot) { struct pvo_entry *pvo, *prev; vm_offset_t eva; pmap_t pm; vm_page_t m, m_end; int64_t ret, refchg; vm_prot_t oldprot; CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x", __func__, (uintmax_t)PVO_VADDR(sp), prot); pm = sp->pvo_pmap; PMAP_LOCK_ASSERT(pm, MA_OWNED); oldprot = sp->pvo_pte.prot; m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); KASSERT(m != NULL, ("%s: missing vm page for pa %#jx", __func__, (uintmax_t)PVO_PADDR(sp))); eva = PVO_VADDR(sp) + HPT_SP_SIZE; refchg = 0; for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { pvo->pvo_pte.prot = prot; /* * If the PVO is in the page table, update mapping */ ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); if (ret < 0) refchg |= LPTE_CHG; else refchg |= ret; } /* Send REF/CHG bits to VM */ moea64_sp_refchg_process(sp, m, refchg, oldprot); /* Handle pages that became executable */ if ((m->a.flags & PGA_EXECUTABLE) == 0 && (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { if ((m->oflags & VPO_UNMANAGED) == 0) for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) vm_page_aflag_set(m, PGA_EXECUTABLE); moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp), HPT_SP_SIZE); } return (prev); } static struct pvo_entry * moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree) { struct pvo_entry *pvo, *tpvo; vm_offset_t eva; pmap_t pm; CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); pm = sp->pvo_pmap; PMAP_LOCK_ASSERT(pm, MA_OWNED); eva = PVO_VADDR(sp) + HPT_SP_SIZE; for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); /* * For locking reasons, remove this from the page table and * pmap, but save delinking from the vm_page for a second * pass */ moea64_pvo_remove_from_pmap(pvo); SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink); } /* * Clear SP bit * * XXX See comment in moea64_sp_demote_aligned() for why it's * ok to always clear the SP bit on remove/demote. */ atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs, MDPG_ATTR_SP); return (tpvo); } static int64_t moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit) { int64_t refchg, ret; vm_offset_t eva; vm_page_t m; pmap_t pmap; struct pvo_entry *sp; pmap = pvo->pvo_pmap; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Get first SP PVO */ if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK); KASSERT(sp != NULL, ("%s: missing PVO for va %#jx", __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); } else sp = pvo; eva = PVO_VADDR(sp) + HPT_SP_SIZE; refchg = 0; for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { ret = moea64_pte_synch(pvo); if (ret > 0) { refchg |= ret & (LPTE_CHG | LPTE_REF); if ((refchg & ptebit) != 0) break; } } /* Save results */ if (refchg != 0) { m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP); } return (refchg); } static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit) { int64_t refchg; pmap_t pmap; pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); /* * Check if SP was demoted/removed before pmap lock was acquired. */ if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", __func__, (uintmax_t)PVO_PADDR(pvo)); PMAP_UNLOCK(pmap); return (-1); } refchg = moea64_sp_query_locked(pvo, ptebit); PMAP_UNLOCK(pmap); CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx", __func__, (uintmax_t)PVO_VADDR(pvo), (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg); return (refchg); } static int64_t moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit) { int64_t refchg, ret; pmap_t pmap; struct pvo_entry *sp; vm_offset_t eva; vm_page_t m; pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); /* * Check if SP was demoted/removed before pmap lock was acquired. */ if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", __func__, (uintmax_t)PVO_PADDR(pvo)); PMAP_UNLOCK(pmap); return (-1); } /* Get first SP PVO */ if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK); KASSERT(sp != NULL, ("%s: missing PVO for va %#jx", __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); } else sp = pvo; eva = PVO_VADDR(sp) + HPT_SP_SIZE; refchg = 0; for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { ret = moea64_pte_clear(pvo, ptebit); if (ret > 0) refchg |= ret & (LPTE_CHG | LPTE_REF); } m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); atomic_clear_32(&m->md.mdpg_attrs, ptebit); PMAP_UNLOCK(pmap); CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx", __func__, (uintmax_t)PVO_VADDR(sp), (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg); return (refchg); } static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit) { int64_t count, ret; pmap_t pmap; count = 0; pmap = pvo->pvo_pmap; /* * Since this reference bit is shared by 4096 4KB pages, it * should not be cleared every time it is tested. Apply a * simple "hash" function on the physical page number, the * virtual superpage number, and the pmap address to select * one 4KB page out of the 4096 on which testing the * reference bit will result in clearing that reference bit. * This function is designed to avoid the selection of the * same 4KB page for every 16MB page mapping. * * Always leave the reference bit of a wired mapping set, as * the current state of its reference bit won't affect page * replacement. */ if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^ (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) & (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) { if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1) return (-1); if ((ret & ptebit) != 0) count++; /* * If this page was not selected by the hash function, then assume * its REF bit was set. */ } else if (ptebit == LPTE_REF) { count++; /* * To clear the CHG bit of a single SP page, first it must be demoted. * But if no CHG bit is set, no bit clear and thus no SP demotion is * needed. */ } else { CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx", __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo), (uintmax_t)PVO_PADDR(pvo)); PMAP_LOCK(pmap); /* * Make sure SP wasn't demoted/removed before pmap lock * was acquired. */ if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", __func__, (uintmax_t)PVO_PADDR(pvo)); PMAP_UNLOCK(pmap); return (-1); } ret = moea64_sp_query_locked(pvo, ptebit); if ((ret & ptebit) != 0) count++; else { PMAP_UNLOCK(pmap); return (0); } moea64_sp_demote(pvo); moea64_pte_clear(pvo, ptebit); /* * Write protect the mapping to a single page so that a * subsequent write access may repromote. */ if ((pvo->pvo_vaddr & PVO_WIRED) == 0) moea64_pvo_protect(pmap, pvo, pvo->pvo_pte.prot & ~VM_PROT_WRITE); PMAP_UNLOCK(pmap); } return (count); }