/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-4-Clause * * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of Allegro Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ */ /*- * Copyright (C) 2001 Benno Rice. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * Since the information managed by this module is also stored by the * logical address mapping module, this module may throw away valid virtual * to physical mappings at almost any time. However, invalidations of * mappings must be done as requested. * * In order to cope with hardware architectures which make virtual to * physical map invalidates expensive, this module may delay invalidate * reduced protection operations until such time as they are actually * necessary. This module is given full information as to which processors * are currently using which maps, and to when physical maps must be made * correct. */ #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MOEA_DEBUG #define TODO panic("%s: not implemented", __func__); #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) #define VSID_TO_SR(vsid) ((vsid) & 0xf) #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) struct ofw_map { vm_offset_t om_va; vm_size_t om_len; vm_offset_t om_pa; u_int om_mode; }; extern unsigned char _etext[]; extern unsigned char _end[]; /* * Map of physical memory regions. */ static struct mem_region *regions; static struct mem_region *pregions; static u_int phys_avail_count; static int regions_sz, pregions_sz; static struct ofw_map *translations; /* * Lock for the pteg and pvo tables. */ struct mtx moea_table_mutex; struct mtx moea_vsid_mutex; /* tlbie instruction synchronization */ static struct mtx tlbie_mtx; /* * PTEG data. */ static struct pteg *moea_pteg_table; u_int moea_pteg_count; u_int moea_pteg_mask; /* * PVO data. */ struct pvo_head *moea_pvo_table; /* pvo entries by pteg index */ struct pvo_head moea_pvo_kunmanaged = LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged); /* list of unmanaged pages */ static struct rwlock_padalign pvh_global_lock; uma_zone_t moea_upvo_zone; /* zone for pvo entries for unmanaged pages */ uma_zone_t moea_mpvo_zone; /* zone for pvo entries for managed pages */ #define BPVO_POOL_SIZE 32768 static struct pvo_entry *moea_bpvo_pool; static int moea_bpvo_pool_index = 0; #define VSID_NBPW (sizeof(u_int32_t) * 8) static u_int moea_vsid_bitmap[NPMAPS / VSID_NBPW]; static boolean_t moea_initialized = FALSE; /* * Statistics. */ u_int moea_pte_valid = 0; u_int moea_pte_overflow = 0; u_int moea_pte_replacements = 0; u_int moea_pvo_entries = 0; u_int moea_pvo_enter_calls = 0; u_int moea_pvo_remove_calls = 0; u_int moea_pte_spills = 0; SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD, &moea_pte_overflow, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD, &moea_pte_replacements, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD, &moea_pvo_enter_calls, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD, &moea_pvo_remove_calls, 0, ""); SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD, &moea_pte_spills, 0, ""); /* * Allocate physical memory for use in moea_bootstrap. */ static vm_offset_t moea_bootstrap_alloc(vm_size_t, u_int); /* * PTE calls. */ static int moea_pte_insert(u_int, struct pte *); /* * PVO calls. */ static int moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *, vm_offset_t, vm_paddr_t, u_int, int); static void moea_pvo_remove(struct pvo_entry *, int); static struct pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *); static struct pte *moea_pvo_to_pte(const struct pvo_entry *, int); /* * Utility routines. */ static int moea_enter_locked(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t); static void moea_syncicache(vm_paddr_t, vm_size_t); static boolean_t moea_query_bit(vm_page_t, int); static u_int moea_clear_bit(vm_page_t, int); static void moea_kremove(vm_offset_t); int moea_pte_spill(vm_offset_t); /* * Kernel MMU interface */ void moea_clear_modify(vm_page_t); void moea_copy_page(vm_page_t, vm_page_t); void moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize); int moea_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, int8_t); void moea_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); void moea_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t); vm_paddr_t moea_extract(pmap_t, vm_offset_t); vm_page_t moea_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t); void moea_init(void); boolean_t moea_is_modified(vm_page_t); boolean_t moea_is_prefaultable(pmap_t, vm_offset_t); boolean_t moea_is_referenced(vm_page_t); int moea_ts_referenced(vm_page_t); vm_offset_t moea_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int); boolean_t moea_page_exists_quick(pmap_t, vm_page_t); void moea_page_init(vm_page_t); int moea_page_wired_mappings(vm_page_t); int moea_pinit(pmap_t); void moea_pinit0(pmap_t); void moea_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); void moea_qenter(vm_offset_t, vm_page_t *, int); void moea_qremove(vm_offset_t, int); void moea_release(pmap_t); void moea_remove(pmap_t, vm_offset_t, vm_offset_t); void moea_remove_all(vm_page_t); void moea_remove_write(vm_page_t); void moea_unwire(pmap_t, vm_offset_t, vm_offset_t); void moea_zero_page(vm_page_t); void moea_zero_page_area(vm_page_t, int, int); void moea_activate(struct thread *); void moea_deactivate(struct thread *); void moea_cpu_bootstrap(int); void moea_bootstrap(vm_offset_t, vm_offset_t); void *moea_mapdev(vm_paddr_t, vm_size_t); void *moea_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t); void moea_unmapdev(vm_offset_t, vm_size_t); vm_paddr_t moea_kextract(vm_offset_t); void moea_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t); void moea_kenter(vm_offset_t, vm_paddr_t); void moea_page_set_memattr(vm_page_t m, vm_memattr_t ma); boolean_t moea_dev_direct_mapped(vm_paddr_t, vm_size_t); static void moea_sync_icache(pmap_t, vm_offset_t, vm_size_t); void moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va); void moea_scan_init(void); vm_offset_t moea_quick_enter_page(vm_page_t m); void moea_quick_remove_page(vm_offset_t addr); boolean_t moea_page_is_mapped(vm_page_t m); static int moea_map_user_ptr(pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); static int moea_decode_kernel_ptr(vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr); static struct pmap_funcs moea_methods = { .clear_modify = moea_clear_modify, .copy_page = moea_copy_page, .copy_pages = moea_copy_pages, .enter = moea_enter, .enter_object = moea_enter_object, .enter_quick = moea_enter_quick, .extract = moea_extract, .extract_and_hold = moea_extract_and_hold, .init = moea_init, .is_modified = moea_is_modified, .is_prefaultable = moea_is_prefaultable, .is_referenced = moea_is_referenced, .ts_referenced = moea_ts_referenced, .map = moea_map, .page_exists_quick = moea_page_exists_quick, .page_init = moea_page_init, .page_wired_mappings = moea_page_wired_mappings, .pinit = moea_pinit, .pinit0 = moea_pinit0, .protect = moea_protect, .qenter = moea_qenter, .qremove = moea_qremove, .release = moea_release, .remove = moea_remove, .remove_all = moea_remove_all, .remove_write = moea_remove_write, .sync_icache = moea_sync_icache, .unwire = moea_unwire, .zero_page = moea_zero_page, .zero_page_area = moea_zero_page_area, .activate = moea_activate, .deactivate = moea_deactivate, .page_set_memattr = moea_page_set_memattr, .quick_enter_page = moea_quick_enter_page, .quick_remove_page = moea_quick_remove_page, .page_is_mapped = moea_page_is_mapped, /* Internal interfaces */ .bootstrap = moea_bootstrap, .cpu_bootstrap = moea_cpu_bootstrap, .mapdev_attr = moea_mapdev_attr, .mapdev = moea_mapdev, .unmapdev = moea_unmapdev, .kextract = moea_kextract, .kenter = moea_kenter, .kenter_attr = moea_kenter_attr, .dev_direct_mapped = moea_dev_direct_mapped, .dumpsys_pa_init = moea_scan_init, .dumpsys_map_chunk = moea_dumpsys_map, .map_user_ptr = moea_map_user_ptr, .decode_kernel_ptr = moea_decode_kernel_ptr, }; MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods); static __inline uint32_t moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) { uint32_t pte_lo; int i; if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (PTE_I | PTE_G); case VM_MEMATTR_CACHEABLE: return (PTE_M); case VM_MEMATTR_WRITE_COMBINING: case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: return (PTE_I); case VM_MEMATTR_WRITE_THROUGH: return (PTE_W | PTE_M); } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ pte_lo = PTE_I | PTE_G; for (i = 0; i < pregions_sz; i++) { if ((pa >= pregions[i].mr_start) && (pa < (pregions[i].mr_start + pregions[i].mr_size))) { pte_lo = PTE_M; break; } } return pte_lo; } /* * Translate OFW translations into VM attributes. */ static __inline vm_memattr_t moea_bootstrap_convert_wimg(uint32_t mode) { switch (mode) { case (PTE_I | PTE_G): /* PCI device memory */ return VM_MEMATTR_UNCACHEABLE; case (PTE_M): /* Explicitly coherent */ return VM_MEMATTR_CACHEABLE; case 0: /* Default claim */ case 2: /* Alternate PP bits set by OF for the original payload */ /* "Normal" memory. */ return VM_MEMATTR_DEFAULT; default: /* Err on the side of caution for unknowns */ /* XXX should we panic instead? */ return VM_MEMATTR_UNCACHEABLE; } } static void tlbie(vm_offset_t va) { mtx_lock_spin(&tlbie_mtx); __asm __volatile("ptesync"); __asm __volatile("tlbie %0" :: "r"(va)); __asm __volatile("eieio; tlbsync; ptesync"); mtx_unlock_spin(&tlbie_mtx); } static void tlbia(void) { vm_offset_t va; for (va = 0; va < 0x00040000; va += 0x00001000) { __asm __volatile("tlbie %0" :: "r"(va)); powerpc_sync(); } __asm __volatile("tlbsync"); powerpc_sync(); } static __inline int va_to_sr(u_int *sr, vm_offset_t va) { return (sr[(uintptr_t)va >> ADDR_SR_SHFT]); } static __inline u_int va_to_pteg(u_int sr, vm_offset_t addr) { u_int hash; hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >> ADDR_PIDX_SHFT); return (hash & moea_pteg_mask); } static __inline struct pvo_head * vm_page_to_pvoh(vm_page_t m) { return (&m->md.mdpg_pvoh); } static __inline void moea_attr_clear(vm_page_t m, int ptebit) { rw_assert(&pvh_global_lock, RA_WLOCKED); m->md.mdpg_attrs &= ~ptebit; } static __inline int moea_attr_fetch(vm_page_t m) { return (m->md.mdpg_attrs); } static __inline void moea_attr_save(vm_page_t m, int ptebit) { rw_assert(&pvh_global_lock, RA_WLOCKED); m->md.mdpg_attrs |= ptebit; } static __inline int moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt) { if (pt->pte_hi == pvo_pt->pte_hi) return (1); return (0); } static __inline int moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which) { return (pt->pte_hi & ~PTE_VALID) == (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | ((va >> ADDR_API_SHFT) & PTE_API) | which); } static __inline void moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo) { mtx_assert(&moea_table_mutex, MA_OWNED); /* * Construct a PTE. Default to IMB initially. Valid bit only gets * set when the real pte is set in memory. * * Note: Don't set the valid bit for correct operation of tlb update. */ pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API); pt->pte_lo = pte_lo; } static __inline void moea_pte_synch(struct pte *pt, struct pte *pvo_pt) { mtx_assert(&moea_table_mutex, MA_OWNED); pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG); } static __inline void moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit) { mtx_assert(&moea_table_mutex, MA_OWNED); /* * As shown in Section 7.6.3.2.3 */ pt->pte_lo &= ~ptebit; tlbie(va); } static __inline void moea_pte_set(struct pte *pt, struct pte *pvo_pt) { mtx_assert(&moea_table_mutex, MA_OWNED); pvo_pt->pte_hi |= PTE_VALID; /* * Update the PTE as defined in section 7.6.3.1. * Note that the REF/CHG bits are from pvo_pt and thus should have * been saved so this routine can restore them (if desired). */ pt->pte_lo = pvo_pt->pte_lo; powerpc_sync(); pt->pte_hi = pvo_pt->pte_hi; powerpc_sync(); moea_pte_valid++; } static __inline void moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) { mtx_assert(&moea_table_mutex, MA_OWNED); pvo_pt->pte_hi &= ~PTE_VALID; /* * Force the reg & chg bits back into the PTEs. */ powerpc_sync(); /* * Invalidate the pte. */ pt->pte_hi &= ~PTE_VALID; tlbie(va); /* * Save the reg & chg bits. */ moea_pte_synch(pt, pvo_pt); moea_pte_valid--; } static __inline void moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) { /* * Invalidate the PTE */ moea_pte_unset(pt, pvo_pt, va); moea_pte_set(pt, pvo_pt); } /* * Quick sort callout for comparing memory regions. */ static int om_cmp(const void *a, const void *b); static int om_cmp(const void *a, const void *b) { const struct ofw_map *mapa; const struct ofw_map *mapb; mapa = a; mapb = b; if (mapa->om_pa < mapb->om_pa) return (-1); else if (mapa->om_pa > mapb->om_pa) return (1); else return (0); } void moea_cpu_bootstrap(int ap) { u_int sdr; int i; if (ap) { powerpc_sync(); __asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu)); __asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl)); isync(); __asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu)); __asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl)); isync(); } __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); isync(); __asm __volatile("mtibatu 1,%0" :: "r"(0)); __asm __volatile("mtdbatu 2,%0" :: "r"(0)); __asm __volatile("mtibatu 2,%0" :: "r"(0)); __asm __volatile("mtdbatu 3,%0" :: "r"(0)); __asm __volatile("mtibatu 3,%0" :: "r"(0)); isync(); for (i = 0; i < 16; i++) mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]); powerpc_sync(); sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10); __asm __volatile("mtsdr1 %0" :: "r"(sdr)); isync(); tlbia(); } void moea_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) { ihandle_t mmui; phandle_t chosen, mmu; int sz; int i, j; vm_size_t size, physsz, hwphyssz; vm_offset_t pa, va, off; void *dpcpu; /* * Map PCI memory space. */ battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW); battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW); battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW); battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs); battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW); battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs); powerpc_sync(); /* map pci space */ __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); isync(); /* set global direct map flag */ hw_direct_map = 1; mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); CTR0(KTR_PMAP, "moea_bootstrap: physical memory"); for (i = 0; i < pregions_sz; i++) { vm_offset_t pa; vm_offset_t end; CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)", pregions[i].mr_start, pregions[i].mr_start + pregions[i].mr_size, pregions[i].mr_size); /* * Install entries into the BAT table to allow all * of physmem to be convered by on-demand BAT entries. * The loop will sometimes set the same battable element * twice, but that's fine since they won't be used for * a while yet. */ pa = pregions[i].mr_start & 0xf0000000; end = pregions[i].mr_start + pregions[i].mr_size; do { u_int n = pa >> ADDR_SR_SHFT; battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW); battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs); pa += SEGMENT_LENGTH; } while (pa < end); } if (PHYS_AVAIL_ENTRIES < regions_sz) panic("moea_bootstrap: phys_avail too small"); phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); for (i = 0, j = 0; i < regions_sz; i++, j += 2) { CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, regions[i].mr_start + regions[i].mr_size, regions[i].mr_size); if (hwphyssz != 0 && (physsz + regions[i].mr_size) >= hwphyssz) { if (physsz < hwphyssz) { phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; } break; } phys_avail[j] = regions[i].mr_start; phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; phys_avail_count++; physsz += regions[i].mr_size; } /* Check for overlap with the kernel and exception vectors */ for (j = 0; j < 2*phys_avail_count; j+=2) { if (phys_avail[j] < EXC_LAST) phys_avail[j] += EXC_LAST; if (kernelstart >= phys_avail[j] && kernelstart < phys_avail[j+1]) { if (kernelend < phys_avail[j+1]) { phys_avail[2*phys_avail_count] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; phys_avail[2*phys_avail_count + 1] = phys_avail[j+1]; phys_avail_count++; } phys_avail[j+1] = kernelstart & ~PAGE_MASK; } if (kernelend >= phys_avail[j] && kernelend < phys_avail[j+1]) { if (kernelstart > phys_avail[j]) { phys_avail[2*phys_avail_count] = phys_avail[j]; phys_avail[2*phys_avail_count + 1] = kernelstart & ~PAGE_MASK; phys_avail_count++; } phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; } } physmem = btoc(physsz); /* * Allocate PTEG table. */ #ifdef PTEGCOUNT moea_pteg_count = PTEGCOUNT; #else moea_pteg_count = 0x1000; while (moea_pteg_count < physmem) moea_pteg_count <<= 1; moea_pteg_count >>= 1; #endif /* PTEGCOUNT */ size = moea_pteg_count * sizeof(struct pteg); CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count, size); moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size); CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table); bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg)); moea_pteg_mask = moea_pteg_count - 1; /* * Allocate pv/overflow lists. */ size = sizeof(struct pvo_head) * moea_pteg_count; moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size, PAGE_SIZE); CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table); for (i = 0; i < moea_pteg_count; i++) LIST_INIT(&moea_pvo_table[i]); /* * Initialize the lock that synchronizes access to the pteg and pvo * tables. */ mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF | MTX_RECURSE); mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF); mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN); /* * Initialise the unmanaged pvo pool. */ moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc( BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); moea_bpvo_pool_index = 0; /* * Make sure kernel vsid is allocated as well as VSID 0. */ moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW] |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); moea_vsid_bitmap[0] |= 1; /* * Initialize the kernel pmap (which is statically allocated). */ PMAP_LOCK_INIT(kernel_pmap); for (i = 0; i < 16; i++) kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; CPU_FILL(&kernel_pmap->pm_active); RB_INIT(&kernel_pmap->pmap_pvo); /* * Initialize the global pv list lock. */ rw_init(&pvh_global_lock, "pmap pv global"); /* * Set up the Open Firmware mappings */ chosen = OF_finddevice("/chosen"); if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 && (mmu = OF_instance_to_package(mmui)) != -1 && (sz = OF_getproplen(mmu, "translations")) != -1) { translations = NULL; for (i = 0; phys_avail[i] != 0; i += 2) { if (phys_avail[i + 1] >= sz) { translations = (struct ofw_map *)phys_avail[i]; break; } } if (translations == NULL) panic("moea_bootstrap: no space to copy translations"); bzero(translations, sz); if (OF_getprop(mmu, "translations", translations, sz) == -1) panic("moea_bootstrap: can't get ofw translations"); CTR0(KTR_PMAP, "moea_bootstrap: translations"); sz /= sizeof(*translations); qsort(translations, sz, sizeof (*translations), om_cmp); for (i = 0; i < sz; i++) { CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", translations[i].om_pa, translations[i].om_va, translations[i].om_len); /* * If the mapping is 1:1, let the RAM and device * on-demand BAT tables take care of the translation. * * However, always enter mappings for segment 16, * which is mixed-protection and therefore not * compatible with a BAT entry. */ if ((translations[i].om_va >> ADDR_SR_SHFT) != 0xf && translations[i].om_va == translations[i].om_pa) continue; /* Enter the pages */ for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) moea_kenter_attr(translations[i].om_va + off, translations[i].om_pa + off, moea_bootstrap_convert_wimg(translations[i].om_mode)); } } /* * Calculate the last available physical address. */ for (i = 0; phys_avail[i + 2] != 0; i += 2) ; Maxmem = powerpc_btop(phys_avail[i + 1]); moea_cpu_bootstrap(0); mtmsr(mfmsr() | PSL_DR | PSL_IR); pmap_bootstrapped++; /* * Set the start and end of kva. */ virtual_avail = VM_MIN_KERNEL_ADDRESS; virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; /* * Allocate a kernel stack with a guard page for thread0 and map it * into the kernel page map. */ pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE); va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; virtual_avail = va + kstack_pages * PAGE_SIZE; CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va); thread0.td_kstack = va; thread0.td_kstack_pages = kstack_pages; for (i = 0; i < kstack_pages; i++) { moea_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the message buffer. */ pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE); msgbufp = (struct msgbuf *)virtual_avail; va = virtual_avail; virtual_avail += round_page(msgbufsize); while (va < virtual_avail) { moea_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } /* * Allocate virtual address space for the dynamic percpu area. */ pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); dpcpu = (void *)virtual_avail; va = virtual_avail; virtual_avail += DPCPU_SIZE; while (va < virtual_avail) { moea_kenter(va, pa); pa += PAGE_SIZE; va += PAGE_SIZE; } dpcpu_init(dpcpu, 0); } /* * Activate a user pmap. The pmap must be activated before it's address * space can be accessed in any way. */ void moea_activate(struct thread *td) { pmap_t pm, pmr; /* * Load all the data we need up front to encourage the compiler to * not issue any loads while we have interrupts disabled below. */ pm = &td->td_proc->p_vmspace->vm_pmap; pmr = pm->pmap_phys; CPU_SET(PCPU_GET(cpuid), &pm->pm_active); PCPU_SET(curpmap, pmr); mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid); } void moea_deactivate(struct thread *td) { pmap_t pm; pm = &td->td_proc->p_vmspace->vm_pmap; CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); PCPU_SET(curpmap, NULL); } void moea_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry key, *pvo; PMAP_LOCK(pm); key.pvo_vaddr = sva; for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { if ((pvo->pvo_vaddr & PVO_WIRED) == 0) panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo); pvo->pvo_vaddr &= ~PVO_WIRED; pm->pm_stats.wired_count--; } PMAP_UNLOCK(pm); } void moea_copy_page(vm_page_t msrc, vm_page_t mdst) { vm_offset_t dst; vm_offset_t src; dst = VM_PAGE_TO_PHYS(mdst); src = VM_PAGE_TO_PHYS(msrc); bcopy((void *)src, (void *)dst, PAGE_SIZE); } void moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset, vm_page_t *mb, vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; int cnt; while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) + a_pg_offset; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } } /* * Zero a page of physical memory by temporarily mapping it into the tlb. */ void moea_zero_page(vm_page_t m) { vm_offset_t off, pa = VM_PAGE_TO_PHYS(m); for (off = 0; off < PAGE_SIZE; off += cacheline_size) __asm __volatile("dcbz 0,%0" :: "r"(pa + off)); } void moea_zero_page_area(vm_page_t m, int off, int size) { vm_offset_t pa = VM_PAGE_TO_PHYS(m); void *va = (void *)(pa + off); bzero(va, size); } vm_offset_t moea_quick_enter_page(vm_page_t m) { return (VM_PAGE_TO_PHYS(m)); } void moea_quick_remove_page(vm_offset_t addr) { } boolean_t moea_page_is_mapped(vm_page_t m) { return (!LIST_EMPTY(&(m)->md.mdpg_pvoh)); } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. */ int moea_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { int error; for (;;) { rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); error = moea_enter_locked(pmap, va, m, prot, flags, psind); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); if (error != ENOMEM) return (KERN_SUCCESS); if ((flags & PMAP_ENTER_NOSLEEP) != 0) return (KERN_RESOURCE_SHORTAGE); VM_OBJECT_ASSERT_UNLOCKED(m->object); vm_wait(NULL); } } /* * Map the given physical page at the specified virtual address in the * target pmap with the protection requested. If specified the page * will be wired down. * * The global pvh and pmap must be locked. */ static int moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind __unused) { struct pvo_head *pvo_head; uma_zone_t zone; u_int pte_lo, pvo_flags; int error; if (pmap_bootstrapped) rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((m->oflags & VPO_UNMANAGED) == 0) { if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0) VM_PAGE_OBJECT_BUSY_ASSERT(m); else VM_OBJECT_ASSERT_LOCKED(m->object); } if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) { pvo_head = &moea_pvo_kunmanaged; zone = moea_upvo_zone; pvo_flags = 0; } else { pvo_head = vm_page_to_pvoh(m); zone = moea_mpvo_zone; pvo_flags = PVO_MANAGED; } pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); if (prot & VM_PROT_WRITE) { pte_lo |= PTE_BW; if (pmap_bootstrapped && (m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); } else pte_lo |= PTE_BR; if ((flags & PMAP_ENTER_WIRED) != 0) pvo_flags |= PVO_WIRED; error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags); /* * Flush the real page from the instruction cache. This has be done * for all user mappings to prevent information leakage via the * instruction cache. moea_pvo_enter() returns ENOENT for the first * mapping for a page. */ if (pmap != kernel_pmap && error == ENOENT && (pte_lo & (PTE_I | PTE_G)) == 0) moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE); return (error); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void moea_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); m = m_start; rw_wlock(&pvh_global_lock); PMAP_LOCK(pm); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { moea_enter_locked(pm, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED, 0); m = TAILQ_NEXT(m, listq); } rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pm); } void moea_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot) { rw_wlock(&pvh_global_lock); PMAP_LOCK(pm); moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED, 0); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pm); } vm_paddr_t moea_extract(pmap_t pm, vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; PMAP_LOCK(pm); pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); if (pvo == NULL) pa = 0; else pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); PMAP_UNLOCK(pm); return (pa); } /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ vm_page_t moea_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { struct pvo_entry *pvo; vm_page_t m; m = NULL; PMAP_LOCK(pmap); pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) && ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW || (prot & VM_PROT_WRITE) == 0)) { m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN); if (!vm_page_wire_mapped(m)) m = NULL; } PMAP_UNLOCK(pmap); return (m); } void moea_init() { moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); moea_initialized = TRUE; } boolean_t moea_is_referenced(vm_page_t m) { boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea_is_referenced: page %p is not managed", m)); rw_wlock(&pvh_global_lock); rv = moea_query_bit(m, PTE_REF); rw_wunlock(&pvh_global_lock); return (rv); } boolean_t moea_is_modified(vm_page_t m) { boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea_is_modified: page %p is not managed", m)); /* * If the page is not busied then this check is racy. */ if (!pmap_page_is_write_mapped(m)) return (FALSE); rw_wlock(&pvh_global_lock); rv = moea_query_bit(m, PTE_CHG); rw_wunlock(&pvh_global_lock); return (rv); } boolean_t moea_is_prefaultable(pmap_t pmap, vm_offset_t va) { struct pvo_entry *pvo; boolean_t rv; PMAP_LOCK(pmap); pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0; PMAP_UNLOCK(pmap); return (rv); } void moea_clear_modify(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea_clear_modify: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; rw_wlock(&pvh_global_lock); moea_clear_bit(m, PTE_CHG); rw_wunlock(&pvh_global_lock); } /* * Clear the write and modified bits in each of the given page's mappings. */ void moea_remove_write(vm_page_t m) { struct pvo_entry *pvo; struct pte *pt; pmap_t pmap; u_int lo; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea_remove_write: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; rw_wlock(&pvh_global_lock); lo = moea_attr_fetch(m); powerpc_sync(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) { pt = moea_pvo_to_pte(pvo, -1); pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; pvo->pvo_pte.pte.pte_lo |= PTE_BR; if (pt != NULL) { moea_pte_synch(pt, &pvo->pvo_pte.pte); lo |= pvo->pvo_pte.pte.pte_lo; pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG; moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); mtx_unlock(&moea_table_mutex); } } PMAP_UNLOCK(pmap); } if ((lo & PTE_CHG) != 0) { moea_attr_clear(m, PTE_CHG); vm_page_dirty(m); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } /* * moea_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * XXX: The exact number of bits to check and clear is a matter that * should be tested and standardized at some point in the future for * optimal aging of shared pages. */ int moea_ts_referenced(vm_page_t m) { int count; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea_ts_referenced: page %p is not managed", m)); rw_wlock(&pvh_global_lock); count = moea_clear_bit(m, PTE_REF); rw_wunlock(&pvh_global_lock); return (count); } /* * Modify the WIMG settings of all mappings for a page. */ void moea_page_set_memattr(vm_page_t m, vm_memattr_t ma) { struct pvo_entry *pvo; struct pvo_head *pvo_head; struct pte *pt; pmap_t pmap; u_int lo; if ((m->oflags & VPO_UNMANAGED) != 0) { m->md.mdpg_cache_attrs = ma; return; } rw_wlock(&pvh_global_lock); pvo_head = vm_page_to_pvoh(m); lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma); LIST_FOREACH(pvo, pvo_head, pvo_vlink) { pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); pt = moea_pvo_to_pte(pvo, -1); pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG; pvo->pvo_pte.pte.pte_lo |= lo; if (pt != NULL) { moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); if (pvo->pvo_pmap == kernel_pmap) isync(); } mtx_unlock(&moea_table_mutex); PMAP_UNLOCK(pmap); } m->md.mdpg_cache_attrs = ma; rw_wunlock(&pvh_global_lock); } /* * Map a wired page into kernel virtual address space. */ void moea_kenter(vm_offset_t va, vm_paddr_t pa) { moea_kenter_attr(va, pa, VM_MEMATTR_DEFAULT); } void moea_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) { u_int pte_lo; int error; #if 0 if (va < VM_MIN_KERNEL_ADDRESS) panic("moea_kenter: attempt to enter non-kernel address %#x", va); #endif pte_lo = moea_calc_wimg(pa, ma); PMAP_LOCK(kernel_pmap); error = moea_pvo_enter(kernel_pmap, moea_upvo_zone, &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED); if (error != 0 && error != ENOENT) panic("moea_kenter: failed to enter va %#x pa %#x: %d", va, pa, error); PMAP_UNLOCK(kernel_pmap); } /* * Extract the physical page address associated with the given kernel virtual * address. */ vm_paddr_t moea_kextract(vm_offset_t va) { struct pvo_entry *pvo; vm_paddr_t pa; /* * Allow direct mappings on 32-bit OEA */ if (va < VM_MIN_KERNEL_ADDRESS) { return (va); } PMAP_LOCK(kernel_pmap); pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); KASSERT(pvo != NULL, ("moea_kextract: no addr found")); pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); PMAP_UNLOCK(kernel_pmap); return (pa); } /* * Remove a wired page from kernel virtual address space. */ void moea_kremove(vm_offset_t va) { moea_remove(kernel_pmap, va, va + PAGE_SIZE); } /* * Provide a kernel pointer corresponding to a given userland pointer. * The returned pointer is valid until the next time this function is * called in this thread. This is used internally in copyin/copyout. */ int moea_map_user_ptr(pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen) { size_t l; register_t vsid; *kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK); l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr); if (l > ulen) l = ulen; if (klen) *klen = l; else if (l != ulen) return (EFAULT); vsid = va_to_vsid(pm, (vm_offset_t)uaddr); /* Mark segment no-execute */ vsid |= SR_N; /* If we have already set this VSID, we can just return */ if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid) return (0); __asm __volatile("isync"); curthread->td_pcb->pcb_cpu.aim.usr_segm = (uintptr_t)uaddr >> ADDR_SR_SHFT; curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid; __asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid)); return (0); } /* * Figure out where a given kernel pointer (usually in a fault) points * to from the VM's perspective, potentially remapping into userland's * address space. */ static int moea_decode_kernel_ptr(vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr) { vm_offset_t user_sr; if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) { user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm; addr &= ADDR_PIDX | ADDR_POFF; addr |= user_sr << ADDR_SR_SHFT; *decoded_addr = addr; *is_user = 1; } else { *decoded_addr = addr; *is_user = 0; } return (0); } /* * Map a range of physical addresses into kernel virtual address space. * * The value passed in *virt is a suggested virtual address for the mapping. * Architectures which can support a direct-mapped physical to virtual region * can return the appropriate address within that region, leaving '*virt' * unchanged. We cannot and therefore do not; *virt is updated with the * first usable address after the mapped region. */ vm_offset_t moea_map(vm_offset_t *virt, vm_paddr_t pa_start, vm_paddr_t pa_end, int prot) { vm_offset_t sva, va; sva = *virt; va = sva; for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) moea_kenter(va, pa_start); *virt = va; return (sva); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t moea_page_exists_quick(pmap_t pmap, vm_page_t m) { int loops; struct pvo_entry *pvo; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("moea_page_exists_quick: page %p is not managed", m)); loops = 0; rv = FALSE; rw_wlock(&pvh_global_lock); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { if (pvo->pvo_pmap == pmap) { rv = TRUE; break; } if (++loops >= 16) break; } rw_wunlock(&pvh_global_lock); return (rv); } void moea_page_init(vm_page_t m) { m->md.mdpg_attrs = 0; m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT; LIST_INIT(&m->md.mdpg_pvoh); } /* * Return the number of managed mappings to the given physical page * that are wired. */ int moea_page_wired_mappings(vm_page_t m) { struct pvo_entry *pvo; int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); rw_wlock(&pvh_global_lock); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) if ((pvo->pvo_vaddr & PVO_WIRED) != 0) count++; rw_wunlock(&pvh_global_lock); return (count); } static u_int moea_vsidcontext; int moea_pinit(pmap_t pmap) { int i, mask; u_int entropy; RB_INIT(&pmap->pmap_pvo); entropy = 0; __asm __volatile("mftb %0" : "=r"(entropy)); if ((pmap->pmap_phys = (pmap_t)moea_kextract((vm_offset_t)pmap)) == NULL) { pmap->pmap_phys = pmap; } mtx_lock(&moea_vsid_mutex); /* * Allocate some segment registers for this pmap. */ for (i = 0; i < NPMAPS; i += VSID_NBPW) { u_int hash, n; /* * Create a new value by mutiplying by a prime and adding in * entropy from the timebase register. This is to make the * VSID more random so that the PT hash function collides * less often. (Note that the prime casues gcc to do shifts * instead of a multiply.) */ moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy; hash = moea_vsidcontext & (NPMAPS - 1); if (hash == 0) /* 0 is special, avoid it */ continue; n = hash >> 5; mask = 1 << (hash & (VSID_NBPW - 1)); hash = (moea_vsidcontext & 0xfffff); if (moea_vsid_bitmap[n] & mask) { /* collision? */ /* anything free in this bucket? */ if (moea_vsid_bitmap[n] == 0xffffffff) { entropy = (moea_vsidcontext >> 20); continue; } i = ffs(~moea_vsid_bitmap[n]) - 1; mask = 1 << i; hash &= rounddown2(0xfffff, VSID_NBPW); hash |= i; } KASSERT(!(moea_vsid_bitmap[n] & mask), ("Allocating in-use VSID group %#x\n", hash)); moea_vsid_bitmap[n] |= mask; for (i = 0; i < 16; i++) pmap->pm_sr[i] = VSID_MAKE(i, hash); mtx_unlock(&moea_vsid_mutex); return (1); } mtx_unlock(&moea_vsid_mutex); panic("moea_pinit: out of segments"); } /* * Initialize the pmap associated with process 0. */ void moea_pinit0(pmap_t pm) { PMAP_LOCK_INIT(pm); moea_pinit(pm); bzero(&pm->pm_stats, sizeof(pm->pm_stats)); } /* * Set the physical protection on the specified range of this map as requested. */ void moea_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { struct pvo_entry *pvo, *tpvo, key; struct pte *pt; KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, ("moea_protect: non current pmap")); if ((prot & VM_PROT_READ) == VM_PROT_NONE) { moea_remove(pm, sva, eva); return; } rw_wlock(&pvh_global_lock); PMAP_LOCK(pm); key.pvo_vaddr = sva; for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); /* * Grab the PTE pointer before we diddle with the cached PTE * copy. */ pt = moea_pvo_to_pte(pvo, -1); /* * Change the protection of the page. */ pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; pvo->pvo_pte.pte.pte_lo |= PTE_BR; /* * If the PVO is in the page table, update that pte as well. */ if (pt != NULL) { moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); mtx_unlock(&moea_table_mutex); } } rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pm); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ void moea_qenter(vm_offset_t sva, vm_page_t *m, int count) { vm_offset_t va; va = sva; while (count-- > 0) { moea_kenter(va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by moea_qenter. */ void moea_qremove(vm_offset_t sva, int count) { vm_offset_t va; va = sva; while (count-- > 0) { moea_kremove(va); va += PAGE_SIZE; } } void moea_release(pmap_t pmap) { int idx, mask; /* * Free segment register's VSID */ if (pmap->pm_sr[0] == 0) panic("moea_release"); mtx_lock(&moea_vsid_mutex); idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1); mask = 1 << (idx % VSID_NBPW); idx /= VSID_NBPW; moea_vsid_bitmap[idx] &= ~mask; mtx_unlock(&moea_vsid_mutex); } /* * Remove the given range of addresses from the specified map. */ void moea_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva) { struct pvo_entry *pvo, *tpvo, key; rw_wlock(&pvh_global_lock); PMAP_LOCK(pm); key.pvo_vaddr = sva; for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); moea_pvo_remove(pvo, -1); } PMAP_UNLOCK(pm); rw_wunlock(&pvh_global_lock); } /* * Remove physical page from all pmaps in which it resides. moea_pvo_remove() * will reflect changes in pte's back to the vm_page. */ void moea_remove_all(vm_page_t m) { struct pvo_head *pvo_head; struct pvo_entry *pvo, *next_pvo; pmap_t pmap; rw_wlock(&pvh_global_lock); pvo_head = vm_page_to_pvoh(m); for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { next_pvo = LIST_NEXT(pvo, pvo_vlink); pmap = pvo->pvo_pmap; PMAP_LOCK(pmap); moea_pvo_remove(pvo, -1); PMAP_UNLOCK(pmap); } if ((m->a.flags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) { moea_attr_clear(m, PTE_CHG); vm_page_dirty(m); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } /* * Allocate a physical page of memory directly from the phys_avail map. * Can only be called from moea_bootstrap before avail start and end are * calculated. */ static vm_offset_t moea_bootstrap_alloc(vm_size_t size, u_int align) { vm_offset_t s, e; int i, j; size = round_page(size); for (i = 0; phys_avail[i + 1] != 0; i += 2) { if (align != 0) s = roundup2(phys_avail[i], align); else s = phys_avail[i]; e = s + size; if (s < phys_avail[i] || e > phys_avail[i + 1]) continue; if (s == phys_avail[i]) { phys_avail[i] += size; } else if (e == phys_avail[i + 1]) { phys_avail[i + 1] -= size; } else { for (j = phys_avail_count * 2; j > i; j -= 2) { phys_avail[j] = phys_avail[j - 2]; phys_avail[j + 1] = phys_avail[j - 1]; } phys_avail[i + 3] = phys_avail[i + 1]; phys_avail[i + 1] = s; phys_avail[i + 2] = e; phys_avail_count++; } return (s); } panic("moea_bootstrap_alloc: could not allocate memory"); } static void moea_syncicache(vm_paddr_t pa, vm_size_t len) { __syncicache((void *)pa, len); } static int moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head, vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags) { struct pvo_entry *pvo; u_int sr; int first; u_int ptegidx; int i; int bootstrap; moea_pvo_enter_calls++; first = 0; bootstrap = 0; /* * Compute the PTE Group index. */ va &= ~ADDR_POFF; sr = va_to_sr(pm->pm_sr, va); ptegidx = va_to_pteg(sr, va); /* * Remove any existing mapping for this page. Reuse the pvo entry if * there is a mapping. */ mtx_lock(&moea_table_mutex); LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa && (pvo->pvo_pte.pte.pte_lo & PTE_PP) == (pte_lo & PTE_PP)) { /* * The PTE is not changing. Instead, this may * be a request to change the mapping's wired * attribute. */ mtx_unlock(&moea_table_mutex); if ((flags & PVO_WIRED) != 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) { pvo->pvo_vaddr |= PVO_WIRED; pm->pm_stats.wired_count++; } else if ((flags & PVO_WIRED) == 0 && (pvo->pvo_vaddr & PVO_WIRED) != 0) { pvo->pvo_vaddr &= ~PVO_WIRED; pm->pm_stats.wired_count--; } return (0); } moea_pvo_remove(pvo, -1); break; } } /* * If we aren't overwriting a mapping, try to allocate. */ if (moea_initialized) { pvo = uma_zalloc(zone, M_NOWAIT); } else { if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) { panic("moea_enter: bpvo pool exhausted, %d, %d, %d", moea_bpvo_pool_index, BPVO_POOL_SIZE, BPVO_POOL_SIZE * sizeof(struct pvo_entry)); } pvo = &moea_bpvo_pool[moea_bpvo_pool_index]; moea_bpvo_pool_index++; bootstrap = 1; } if (pvo == NULL) { mtx_unlock(&moea_table_mutex); return (ENOMEM); } moea_pvo_entries++; pvo->pvo_vaddr = va; pvo->pvo_pmap = pm; LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink); pvo->pvo_vaddr &= ~ADDR_POFF; if (flags & PVO_WIRED) pvo->pvo_vaddr |= PVO_WIRED; if (pvo_head != &moea_pvo_kunmanaged) pvo->pvo_vaddr |= PVO_MANAGED; if (bootstrap) pvo->pvo_vaddr |= PVO_BOOTSTRAP; moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo); /* * Add to pmap list */ RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo); /* * Remember if the list was empty and therefore will be the first * item. */ if (LIST_FIRST(pvo_head) == NULL) first = 1; LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); if (pvo->pvo_vaddr & PVO_WIRED) pm->pm_stats.wired_count++; pm->pm_stats.resident_count++; i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); KASSERT(i < 8, ("Invalid PTE index")); if (i >= 0) { PVO_PTEGIDX_SET(pvo, i); } else { panic("moea_pvo_enter: overflow"); moea_pte_overflow++; } mtx_unlock(&moea_table_mutex); return (first ? ENOENT : 0); } static void moea_pvo_remove(struct pvo_entry *pvo, int pteidx) { struct pte *pt; /* * If there is an active pte entry, we need to deactivate it (and * save the ref & cfg bits). */ pt = moea_pvo_to_pte(pvo, pteidx); if (pt != NULL) { moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); mtx_unlock(&moea_table_mutex); PVO_PTEGIDX_CLR(pvo); } else { moea_pte_overflow--; } /* * Update our statistics. */ pvo->pvo_pmap->pm_stats.resident_count--; if (pvo->pvo_vaddr & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count--; /* * Remove this PVO from the PV and pmap lists. */ LIST_REMOVE(pvo, pvo_vlink); RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); /* * Save the REF/CHG bits into their cache if the page is managed. * Clear PGA_WRITEABLE if all mappings of the page have been removed. */ if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) { struct vm_page *pg; pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN); if (pg != NULL) { moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo & (PTE_REF | PTE_CHG)); if (LIST_EMPTY(&pg->md.mdpg_pvoh)) vm_page_aflag_clear(pg, PGA_WRITEABLE); } } /* * Remove this from the overflow list and return it to the pool * if we aren't going to reuse it. */ LIST_REMOVE(pvo, pvo_olink); if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone : moea_upvo_zone, pvo); moea_pvo_entries--; moea_pvo_remove_calls++; } static __inline int moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) { int pteidx; /* * We can find the actual pte entry without searching by grabbing * the PTEG index from 3 unused bits in pte_lo[11:9] and by * noticing the HID bit. */ pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); if (pvo->pvo_pte.pte.pte_hi & PTE_HID) pteidx ^= moea_pteg_mask * 8; return (pteidx); } static struct pvo_entry * moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p) { struct pvo_entry *pvo; int ptegidx; u_int sr; va &= ~ADDR_POFF; sr = va_to_sr(pm->pm_sr, va); ptegidx = va_to_pteg(sr, va); mtx_lock(&moea_table_mutex); LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if (pteidx_p) *pteidx_p = moea_pvo_pte_index(pvo, ptegidx); break; } } mtx_unlock(&moea_table_mutex); return (pvo); } static struct pte * moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) { struct pte *pt; /* * If we haven't been supplied the ptegidx, calculate it. */ if (pteidx == -1) { int ptegidx; u_int sr; sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr); ptegidx = va_to_pteg(sr, pvo->pvo_vaddr); pteidx = moea_pvo_pte_index(pvo, ptegidx); } pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7]; mtx_lock(&moea_table_mutex); if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no " "valid pte index", pvo); } if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo " "pvo but no valid pte", pvo); } if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) { if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) { panic("moea_pvo_to_pte: pvo %p has valid pte in " "moea_pteg_table %p but invalid in pvo", pvo, pt); } if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) { panic("moea_pvo_to_pte: pvo %p pte does not match " "pte %p in moea_pteg_table", pvo, pt); } mtx_assert(&moea_table_mutex, MA_OWNED); return (pt); } if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) { panic("moea_pvo_to_pte: pvo %p has invalid pte %p in " "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi); } mtx_unlock(&moea_table_mutex); return (NULL); } /* * XXX: THIS STUFF SHOULD BE IN pte.c? */ int moea_pte_spill(vm_offset_t addr) { struct pvo_entry *source_pvo, *victim_pvo; struct pvo_entry *pvo; int ptegidx, i, j; u_int sr; struct pteg *pteg; struct pte *pt; moea_pte_spills++; sr = mfsrin(addr); ptegidx = va_to_pteg(sr, addr); /* * Have to substitute some entry. Use the primary hash for this. * Use low bits of timebase as random generator. */ pteg = &moea_pteg_table[ptegidx]; mtx_lock(&moea_table_mutex); __asm __volatile("mftb %0" : "=r"(i)); i &= 7; pt = &pteg->pt[i]; source_pvo = NULL; victim_pvo = NULL; LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { /* * We need to find a pvo entry for this address. */ if (source_pvo == NULL && moea_pte_match(&pvo->pvo_pte.pte, sr, addr, pvo->pvo_pte.pte.pte_hi & PTE_HID)) { /* * Now found an entry to be spilled into the pteg. * The PTE is now valid, so we know it's active. */ j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); if (j >= 0) { PVO_PTEGIDX_SET(pvo, j); moea_pte_overflow--; mtx_unlock(&moea_table_mutex); return (1); } source_pvo = pvo; if (victim_pvo != NULL) break; } /* * We also need the pvo entry of the victim we are replacing * so save the R & C bits of the PTE. */ if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL && moea_pte_compare(pt, &pvo->pvo_pte.pte)) { victim_pvo = pvo; if (source_pvo != NULL) break; } } if (source_pvo == NULL) { mtx_unlock(&moea_table_mutex); return (0); } if (victim_pvo == NULL) { if ((pt->pte_hi & PTE_HID) == 0) panic("moea_pte_spill: victim p-pte (%p) has no pvo" "entry", pt); /* * If this is a secondary PTE, we need to search it's primary * pvo bucket for the matching PVO. */ LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask], pvo_olink) { /* * We also need the pvo entry of the victim we are * replacing so save the R & C bits of the PTE. */ if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) { victim_pvo = pvo; break; } } if (victim_pvo == NULL) panic("moea_pte_spill: victim s-pte (%p) has no pvo" "entry", pt); } /* * We are invalidating the TLB entry for the EA we are replacing even * though it's valid. If we don't, we lose any ref/chg bit changes * contained in the TLB entry. */ source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID; moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); moea_pte_set(pt, &source_pvo->pvo_pte.pte); PVO_PTEGIDX_CLR(victim_pvo); PVO_PTEGIDX_SET(source_pvo, i); moea_pte_replacements++; mtx_unlock(&moea_table_mutex); return (1); } static __inline struct pvo_entry * moea_pte_spillable_ident(u_int ptegidx) { struct pte *pt; struct pvo_entry *pvo_walk, *pvo = NULL; LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) { if (pvo_walk->pvo_vaddr & PVO_WIRED) continue; if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID)) continue; pt = moea_pvo_to_pte(pvo_walk, -1); if (pt == NULL) continue; pvo = pvo_walk; mtx_unlock(&moea_table_mutex); if (!(pt->pte_lo & PTE_REF)) return (pvo_walk); } return (pvo); } static int moea_pte_insert(u_int ptegidx, struct pte *pvo_pt) { struct pte *pt; struct pvo_entry *victim_pvo; int i; int victim_idx; u_int pteg_bkpidx = ptegidx; mtx_assert(&moea_table_mutex, MA_OWNED); /* * First try primary hash. */ for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & PTE_VALID) == 0) { pvo_pt->pte_hi &= ~PTE_HID; moea_pte_set(pt, pvo_pt); return (i); } } /* * Now try secondary hash. */ ptegidx ^= moea_pteg_mask; for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & PTE_VALID) == 0) { pvo_pt->pte_hi |= PTE_HID; moea_pte_set(pt, pvo_pt); return (i); } } /* Try again, but this time try to force a PTE out. */ ptegidx = pteg_bkpidx; victim_pvo = moea_pte_spillable_ident(ptegidx); if (victim_pvo == NULL) { ptegidx ^= moea_pteg_mask; victim_pvo = moea_pte_spillable_ident(ptegidx); } if (victim_pvo == NULL) { panic("moea_pte_insert: overflow"); return (-1); } victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx); if (pteg_bkpidx == ptegidx) pvo_pt->pte_hi &= ~PTE_HID; else pvo_pt->pte_hi |= PTE_HID; /* * Synchronize the sacrifice PTE with its PVO, then mark both * invalid. The PVO will be reused when/if the VM system comes * here after a fault. */ pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7]; if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi) panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi); /* * Set the new PTE. */ moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); PVO_PTEGIDX_CLR(victim_pvo); moea_pte_overflow++; moea_pte_set(pt, pvo_pt); return (victim_idx & 7); } static boolean_t moea_query_bit(vm_page_t m, int ptebit) { struct pvo_entry *pvo; struct pte *pt; rw_assert(&pvh_global_lock, RA_WLOCKED); if (moea_attr_fetch(m) & ptebit) return (TRUE); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { /* * See if we saved the bit off. If so, cache it and return * success. */ if (pvo->pvo_pte.pte.pte_lo & ptebit) { moea_attr_save(m, ptebit); return (TRUE); } } /* * No luck, now go through the hard part of looking at the PTEs * themselves. Sync so that any pending REF/CHG bits are flushed to * the PTEs. */ powerpc_sync(); LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { /* * See if this pvo has a valid PTE. if so, fetch the * REF/CHG bits from the valid PTE. If the appropriate * ptebit is set, cache it and return success. */ pt = moea_pvo_to_pte(pvo, -1); if (pt != NULL) { moea_pte_synch(pt, &pvo->pvo_pte.pte); mtx_unlock(&moea_table_mutex); if (pvo->pvo_pte.pte.pte_lo & ptebit) { moea_attr_save(m, ptebit); return (TRUE); } } } return (FALSE); } static u_int moea_clear_bit(vm_page_t m, int ptebit) { u_int count; struct pvo_entry *pvo; struct pte *pt; rw_assert(&pvh_global_lock, RA_WLOCKED); /* * Clear the cached value. */ moea_attr_clear(m, ptebit); /* * Sync so that any pending REF/CHG bits are flushed to the PTEs (so * we can reset the right ones). note that since the pvo entries and * list heads are accessed via BAT0 and are never placed in the page * table, we don't have to worry about further accesses setting the * REF/CHG bits. */ powerpc_sync(); /* * For each pvo entry, clear the pvo's ptebit. If this pvo has a * valid pte clear the ptebit from the valid pte. */ count = 0; LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { pt = moea_pvo_to_pte(pvo, -1); if (pt != NULL) { moea_pte_synch(pt, &pvo->pvo_pte.pte); if (pvo->pvo_pte.pte.pte_lo & ptebit) { count++; moea_pte_clear(pt, PVO_VADDR(pvo), ptebit); } mtx_unlock(&moea_table_mutex); } pvo->pvo_pte.pte.pte_lo &= ~ptebit; } return (count); } /* * Return true if the physical range is encompassed by the battable[idx] */ static int moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size) { u_int prot; u_int32_t start; u_int32_t end; u_int32_t bat_ble; /* * Return immediately if not a valid mapping */ if (!(battable[idx].batu & BAT_Vs)) return (EINVAL); /* * The BAT entry must be cache-inhibited, guarded, and r/w * so it can function as an i/o page */ prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW); if (prot != (BAT_I|BAT_G|BAT_PP_RW)) return (EPERM); /* * The address should be within the BAT range. Assume that the * start address in the BAT has the correct alignment (thus * not requiring masking) */ start = battable[idx].batl & BAT_PBS; bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03; end = start | (bat_ble << 15) | 0x7fff; if ((pa < start) || ((pa + size) > end)) return (ERANGE); return (0); } boolean_t moea_dev_direct_mapped(vm_paddr_t pa, vm_size_t size) { int i; /* * This currently does not work for entries that * overlap 256M BAT segments. */ for(i = 0; i < 16; i++) if (moea_bat_mapped(i, pa, size) == 0) return (0); return (EFAULT); } /* * Map a set of physical memory pages into the kernel virtual * address space. Return a pointer to where it is mapped. This * routine is intended to be used for mapping device memory, * NOT real memory. */ void * moea_mapdev(vm_paddr_t pa, vm_size_t size) { return (moea_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT)); } void * moea_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) { vm_offset_t va, tmpva, ppa, offset; int i; ppa = trunc_page(pa); offset = pa & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); /* * If the physical address lies within a valid BAT table entry, * return the 1:1 mapping. This currently doesn't work * for regions that overlap 256M BAT segments. */ for (i = 0; i < 16; i++) { if (moea_bat_mapped(i, pa, size) == 0) return ((void *) pa); } va = kva_alloc(size); if (!va) panic("moea_mapdev: Couldn't alloc kernel virtual memory"); for (tmpva = va; size > 0;) { moea_kenter_attr(tmpva, ppa, ma); tlbie(tmpva); size -= PAGE_SIZE; tmpva += PAGE_SIZE; ppa += PAGE_SIZE; } return ((void *)(va + offset)); } void moea_unmapdev(vm_offset_t va, vm_size_t size) { vm_offset_t base, offset; /* * If this is outside kernel virtual space, then it's a * battable entry and doesn't require unmapping */ if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) { base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); moea_qremove(base, atop(size)); kva_free(base, size); } } static void moea_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) { struct pvo_entry *pvo; vm_offset_t lim; vm_paddr_t pa; vm_size_t len; PMAP_LOCK(pm); while (sz > 0) { lim = round_page(va + 1); len = MIN(lim - va, sz); pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); if (pvo != NULL) { pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); moea_syncicache(pa, len); } va += len; sz -= len; } PMAP_UNLOCK(pm); } void moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va) { *va = (void *)pa; } extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; void moea_scan_init() { struct pvo_entry *pvo; vm_offset_t va; int i; if (!do_minidump) { /* Initialize phys. segments for dumpsys(). */ memset(&dump_map, 0, sizeof(dump_map)); mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); for (i = 0; i < pregions_sz; i++) { dump_map[i].pa_start = pregions[i].mr_start; dump_map[i].pa_size = pregions[i].mr_size; } return; } /* Virtual segments for minidumps: */ memset(&dump_map, 0, sizeof(dump_map)); /* 1st: kernel .data and .bss. */ dump_map[0].pa_start = trunc_page((uintptr_t)_etext); dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start; /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr; dump_map[1].pa_size = round_page(msgbufp->msg_size); /* 3rd: kernel VM. */ va = dump_map[1].pa_start + dump_map[1].pa_size; /* Find start of next chunk (from va). */ while (va < virtual_end) { /* Don't dump the buffer cache. */ if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { va = kmi.buffer_eva; continue; } pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID)) break; va += PAGE_SIZE; } if (va < virtual_end) { dump_map[2].pa_start = va; va += PAGE_SIZE; /* Find last page in chunk. */ while (va < virtual_end) { /* Don't run into the buffer cache. */ if (va == kmi.buffer_sva) break; pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); if (pvo == NULL || !(pvo->pvo_pte.pte.pte_hi & PTE_VALID)) break; va += PAGE_SIZE; } dump_map[2].pa_size = va - dump_map[2].pa_start; } }